Formal Power Series and Generating Functions

In the July, 2010 Women In Mathematics video, Lauren Williams shows how to obtain the
Fibonacci numbers as the coefficients of a formal power series or generating function equivalent to

the expression
1

1—x— a2
Since this is a concept that even my second semester calculus students struggle with, I thought 1
should provide some explanation.

In imprecise terms, a formal power series is a polynomial of infinite degree. What do we mean
by this? Let’s start by describing what we mean by a polynomial, since this is something we may
have encountered before. We’ll also restrict our attention to polynomials in one variable because
the one variable case already illustrates the key concepts.

A polynomial in one variable, x, is a mathematical expression that can be put in the form:

ao + a1z + asx® + ...+ apa”,

where each ao,...,a, is a fixed number (e.g., 1, v/2, or 7), and x is a variable. Here are some
examples of polynomials in z:
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1+ 2z + 322 + 423 + 524
3x? — %1‘5 + 7.32100

=223 + V2210 + 4,921

Notice that, for all of the examples above (and, indeed, for any polynomial), if we replace x
by a number, then the polynomial expression also naturally represents a number. For example,
in the third polynomial in the list above, if we make the substitution x = 2, then the polynomial
expression yields the number 1+ 2(2) 4 3(2)? + 4(2)3 + 5(2)* = 129.

Even though we can always substitute numbers for the variable x in a polynomial expression,
we usually don’t make a substitution when calculating with them because we rarely have to. We
can calculate with polynomial expressions without having a specific value in mind for the variable
x. Of course, because x represents a number, it obeys all the laws of arithmetic. Thus, for instance,
x -2 =22 and 4+ 22 = 3z. The sum, difference, and product of two polynomials in 2 will also
be a polynomial in z. As an example, let’s explicitly compute the sum, difference, and product of
14 2+ 22 and 3 + 222 4 5a3:

A+z+2)+B+22°+52%) = 14+3)+ (1 +0)z+ (14+2)z* + (0+5)2°
= 4+x+ 3%+ 523,

A4+z4+2)—3+22°+52%) = 1-3)+1—-0z+(1—-2)z2+(0-5)2°
—2+x—m2—5:r3,



and

(I+z+a%) - (3+222 +52°) = 1-(3+22% +52%) +z-(3+22° +52%) + 2% (3 +22° + 52?)
= 343z 4522+ 723 + 72t +52°

But, what about division? This is where things begin to get a little tricky. For a variety of
reasons, we cannot expect that when we divide a polynomial by another polynomial, the result will
be a polynomial. For example, if we divide 1 by z, the result does not have a value if we substitute
x = 0, whereas it is possible to substitute x = 0 into any polynomial and get a number.

For fun, we might try to forge ahead and try to divide 1 by, say, 1 — 2 — 22, as Lauren does in
the video. We can try to do this by using long division and see what happens. As Lauren shows,
if we try to do this, we end up adding term after term; the long division process never terminates.
We get something that looks like a polynomial, but isn’t because a polynomial only has a finite
number of terms. One might say that the result looks like a polynomial of “infinite degree”!

Should we reject this as nonsensical?

In fact, we don’t have to reject it. We can accept it as a new mathematical object. Because it
represents a sum of terms that look like a constant times a power of x, we call it a formal power
series. The word “formal” here means that we no longer think of x as representing a number. If
you try to substitute x = 1, for instance, into Lauren’s equation, you will get

~1=1+4142+3+5+8+13+...,

which is absurd.

But if we think of x as a symbol that can be manipulated according to the laws of arithmetic,
treating it as if it were a kind of number, then the equations make sense. We just have to remember
not to substitute a particular number for x and expect to get something that makes sense. (People
do study situations where substituting specific numbers in for x in a formal power series still makes
sense. Understanding such substitutions is part of a subject known as analysis.) But as an equation
involving formal power series, it works, and we can add, subtract, multiply, and, if the constant
term is nonzero, divide by power series to get other power series.

Lauren didn’t explain why long division works in this new setting (and it would take at least a
decent-sized chapter in a book to explain this rigorously!), but the point is that the long division
procedure is designed to ensure that the product of the denominator with the formal power series
one obtains as the quotient yields the numerator.

So, a formal power series is like a “polynomial of infinite degree” that we manipulate without
reference to what happens when we plug in a number for the variable x. In particular, when Lauren
writes
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what she means is that if you multiply the two formal power series 1 — 2 — 2 and Yoo Fna™, as
follows:

(1—2z—2%- (ZF,@") = l-z—2%) -(1+a+222+323+ 521 +..)
n=0



you will obtain 1. I encourage you to try doing this multiplication for yourself!

I’ll close by remarking that I would not be surprised if the concepts discussed in Lauren’s video
(and elaborated on in this not-so-short note) seem complicated and overly-abstract. This is because
they are concepts that are more abstract than polynomials, and, like all abstractions, take a while
to get used to. However, just like all of mathematics, the effort you put into understanding a
concept will eventually pay off. Maybe you won’t fully understand it this time around, but next
time it will seem a bit more familiar, and eventually, after your brain percolates on it a bit, it will
all click into place.

If you would like to read more about generating functions and formal power series, I suggest
starting with Chapter 7 in the book Mathematics of Choice by Ivan Niven, followed by Chapter 8
of A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory by Miklés
Béna.



