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An Interview with 
Greta Panova 

 

Greta Panova is the Distinguished Professor 
in Science and Engineering and Professor of 
Mathematics at the University of Southern 
California, Los Angeles. Greta earned her 
doctoral degree in mathematics from 
Harvard University under the supervision of 
Richard Stanley. She also holds a Master’s 
degree in Mathematics from the University 
of California, Berkeley and two Bachelor of 
Science degrees, one in Mathematics and 
one in Electrical Science and Engineering, 
both from the Massachusetts Institute of 
Technology. 
 
This interview was conducted by Elsa 
Frankel of Wellesley College. 
 
Elsa: When did you first develop an interest 

in mathematics, and what were some of the 

topics and ideas that caught your attention at 

the time? 

  

Greta: Sometime around 4th grade I realized 

that math was interesting and I was 

relatively good at it. This might have been 

partially because that year I was in school in 

Germany, in a completely new environment 

and new language; mathematics was the 

only universal tool I could communicate 

with. Later in school I developed a particular 

appreciation for geometry (Euclidean) as I 

really liked visualization and proofs via 

“additional constructions.” Then I had a 

great opportunity to study at the National 

High School of Mathematics and Natural 

Sciences in Bulgaria, where we had a lot of 

extracurricular math seminars and got to see 

math well beyond the standard school 

curriculum. 

 

Elsa: What’s a favorite geometry theorem 

that you recall fondly from grade school? 

Greta: It’s been a while, but here are a few 

interesting theorems: Ptolemy’s theorem 

which says that the product of diagonal 

lengths of an inscribed quadrilateral is equal 

to the sum of products of opposite 

sides. Another remarkable one is Pappus’ 

theorem which is about collinearity of 

points, or the Nine-point circle which says 

that 9 special points in a triangle lie on the 

same circle. 

 

Elsa: How did you become interested in 

algebraic combinatorics, and how would  

you describe the field to a broader audience? 

 

Greta: This happened at a relatively late 

stage, in my 3rd year of graduate school I 

took the “Combinatorial theory” class with 

Richard Stanley and really enjoyed the 

combination of creative constructions and 

tricks that come from combinatorics with the 

structure of algebra to guide them. This is 

also how I would describe the field – 

studying discrete objects originating from or 

motivated by algebra (algebraic geometry, 

representation theory) through purely 

combinatorial methods, and vice versa. 

 

Elsa: What problems in combinatorics are 

you currently excited about, and why? 

 

Greta: Currently I think a lot about “what 

can be solved and how,” which we formalize 

via computational complexity that I will 

explain later. I also enjoy problems in 

discrete probability, which usually involve 

inequalities or asymptotics of quantities of 

discrete combinatorial origin often inspired 

by algebra. 

Many research mathematicians did not 

do math competitions, because their 

strengths are depth, focus, and 

persistence which are necessary in 

research but not that much in 

competitions. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of the content.   We 
hope that you consider the value of such content and decide 
that the efforts required to produce such content are worthy of 
your financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                           Girls’ Angle: A Math Club for Girls 
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go to 
http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout. 
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Content Removed from Electronic Version 
 

 
 
 
 
 
 
 
 
 
 
 
 

America’s Greatest Math Game: Who Wants to Be a Mathematician. 
 

(advertisement) 
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Member’s Thoughts 
 

A Fibonacci Matrix 
by Ken Fan | edited by Amanda Galtman 
 
This summer, Girls’ Angle member Caitlin Cunjak embarked on an amazing mathematical 
journey that briefly ventured into Fibonacci land. Her attitude exemplifies the creative 
mathematical mindset. Let’s retrace her path to see how she created mathematics. 
 
We’ll join her adventure in the middle, when she began to look for a formula for the nth 
Fibonacci number. By definition, the first two Fibonacci numbers are both 1 and each successive 
Fibonacci number is the sum of the previous two: 
 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, … 
 
More precisely, for positive integers n, we define a sequence Fn by: F1 = F2 = 1 and the 
recurrence relation Fn + 1 = Fn + Fn – 1 for n > 1. 
 
The way these Fibonacci numbers are defined, to compute, say, the 100th Fibonacci number, we 
would have to use the recurrence relation over and over, extending the sequence above until we 
reached its 100th term. Tedious! 
 

Naturally, Caitlin wondered: Is there a formula for the nth Fibonacci number? 
 
There is a formula. Perhaps you know it? But Caitlin had never learned it, and it’s a fine question 
to think about, so instead of looking it up, she set off to find it herself. Besides, while everybody 
may be hiking toward the same mountain peak, no two paths taken to get there will be identical. 
 
Her first idea: The Fibonacci recurrence relation, Fn + 1 = Fn + Fn – 1, relates three terms of the 
Fibonacci sequence. If I can find two other equations involving the same three terms, I will be 
able to solve for the terms. Perhaps I can find a formula that way! 
 
She began playing with triplets of consecutive Fibonacci numbers to see if she could find other 
equations that they satisfy. She soon noticed that Fn

2 always seemed to differ from Fn – 1 Fn + 1 by 
1. For example, 3, 5, and 8 are consecutive Fibonacci numbers and 52 = 3 × 8 + 1. Also, 5, 8, and 
13 are consecutive Fibonacci numbers and 82 = 5 × 13 – 1. This led her to conjecture that 
 

Fn
2 = Fn – 1 Fn + 1 – (-1)n for n > 1. 

 
Instead of trying to prove this, she continued to seek out more relations among Fibonacci 
numbers. In the above equation, the square of a Fibonacci number is compared to the product of 
the two Fibonacci numbers that flank it in the sequence. This made her wonder how Fn

2 might 
relate to the product of the two Fibonacci numbers one term further away on each side. That is, 
how does Fn

2 compare to Fn – 2 Fn + 2? 
 
This led to her second conjecture: 
 

Fn
2 = Fn – 2 Fn + 2 + (-1)n for n > 2. 

We describe member Caitlin Cunjak’s adventure 
with Fibonacci numbers. Caitlin is a rising 11th 
grader at Newton Country Day School. 
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For example, the terms near the 8th term, 21, in the Fibonacci sequence go 8, 13, 21, 34, 55. 
Now 212 = 441 and 8 × 55 = 440, so 212 = 8 × 55 + 1, as her conjecture predicts. 
 
Naturally, she decided to compare Fn

2 to Fn – 3 Fn + 3 … could it be that Fn
2 =  Fn – 3 Fn + 3 – (-1)n? 

 
She computed a few examples: 

32 = 1 × 13 – 4 
52 = 1 × 21 + 4 
82 = 2 × 34 – 4 

132 = 3 × 55 + 4 
 
Curious... 
 
Maybe it’s too bad that it was no longer +1 or -1, but it was still nice that the difference seemed 
to be a constant. It would be really neat, she thought, if |Fn

2 – Fn – k  Fn + k| depended only on k and 
not on n. She computed more examples: 
 

k 1 2 3 4 5 6 7 

F8
2 – F8 – k F8 + k -1 1 -4 9 -25 64 -169 

F9
2 – F9 – k F9 + k 1 -1 4 -9 25 -64 169 

F10
2 – F10 – k F10 + k -1 1 -4 9 -25 64 -169 

F11
2 – F11 – k F11 + k 1 -1 4 -9 25 -64 169 

F12
2 – F12 – k F12 + k -1 1 -4 9 -25 64 -169 

 
Do you see what Caitlin saw? 
 
Not only are the absolute values along each column the same, but they are also perfect squares! 
 
And what are the square roots of the absolute values of these entries? 
 
The Fibonacci numbers! 
 
And so we arrive at Caitlin’s next conjecture, which subsumes the first two: 
 

Fn
2 = Fn – k Fn + k + (-1)n + kFk

2 for n > k. 
 
Exciting! 
 
But is it true? 
 
It is; Caitlin managed to prove it. 
 
In the process of proving it, Caitlin noticed that one can drop the condition that n > k if one 
extends the Fibonacci sequence backwards by insisting that the recurrence relation hold: 
 

…, 34, -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … 
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That is, we extend Fn to n ≤ 0 by requiring the recurrence relation Fn + 1 = Fn + Fn – 1 to hold for 
all n. Notice that F-n = (-1)n + 1Fn. 
 
There are many ways to prove that Fn

2 = Fn – k Fn + k + (-1)n + kFk
2, so rather than show you 

Caitlin’s proof, we urge you to dream up your own. 
 
It turns out that this nifty identity was already noted by Catalan, who recorded it in one of his 
notebooks dated October, 1879. Today, it is known as Catalan’s identity. 
 
Caitlin also rediscovered Vajda’s generalization of Catalan’s identity, which says 
 

Fn + a Fn + b – Fn Fn + a + b = (-1)nFa Fb. 
 
Despite rediscovering these pretty identities relating Fibonacci numbers, Caitlin was still unable 
to find a formula for the nth Fibonacci number. 
 
What to do? 
 

Caitlin: Maybe I can’t find a formula for the nth Fibonacci number, but 

perhaps I can solve a closely related problem. Suppose A and B are 

terms of a sequence that satisfies the Fibonacci recurrence relation 

and are separated by N terms. Can I find a formula for the terms 

between A and B? 
 
What a refreshing tweak of the original question! 
 
To answer this, Caitlin decided to tackle the N = 3 case first. When N = 3, we have five numbers, 
 

A, x, y, z, B, 
 
that satisfy the Fibonacci recurrence relation. Therefore, 
 

y = x + A 
z = y + x 
B = z + y 

 
A system of 3 linear equations in 3 unknowns! We can rearrange the terms so that the unknowns 
appear only to the left of the equal signs: 

x – y = -A 
x + y – z = 0 

y + z = B 
 
In matrix form, these equations can be written 
 

1 1 0

1 1 1 0

0 1 1

x A

y

z B

− −    
    − =
    
    

. 
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Using whichever technique you prefer to find the inverse of the matrix, you’ll find that 
 

2 1 1
1

1 1 1 0
3

1 1 2

x A

y

z B

−    
    = −
    

−    

. 

 
That is, 

x = (-2A + B)/3, 
y = (A + B)/3, 
z = (-A + 2B)/3. 

 
For N = 4, with the terms of the sequence labeled A, x, y, z, w, B, Caitlin found 
 

1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1

x A

y

z

w B

− −     
     −

=     
−          

     

 and 

3 2 1 1

1 2 2 1 1 0

1 1 2 2 05
1 1 2 3

x A

y

z

w B

−    
    −

=    
−        

− −    

. 

 
What patterns do you see? 
 
For general N, if we label the terms of the sequence A, x1, x2, x3, …, xN, B, Caitlin found 
 

1

2

3

1

1 1 0 0 0

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1
N

N

x A

x

x

x

x B
−

− −    
    −
    

−     =

    
    −

    
    

…

…

…

⋮⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮

…

…

. 

 
The N-by-N coefficient matrix, which we’ll denote by MN, has 1s along its main diagonal and on 
the diagonal just below the main diagonal, -1s along the diagonal just above the main diagonal, 
and 0s everywhere else. 
 
Using a combination of pattern observation and computation, Caitlin guessed the inverse of MN. 
For example, in the inverse of MN, it seems that the last column appears to be the first N terms of 
the Fibonacci sequence. The first column appears to be, up to sign, the N terms of the Fibonacci 
sequence starting from term -N. (Recall that Caitlin extended the Fibonacci sequence to negative 
indices.) And the determinant of MN … that turns out to be Fn + 1! Isn’t that neat? After guessing 
the explicit form of the inverse of MN and its determinant, Caitlin proved that her guess was 
correct. 
 
Unfortunately, the fact that the determinant of MN is FN + 1 has already been published. It appears 
as Exercise 24 at the end of Section 1.2.8 of Volume 1 of Donald Knuth’s The Art of Computer 

Programming, which was first published in 1968 … long before Caitlin was born, but almost 
100 years after Catalan recorded his identity. Even so, it’s pretty cool that she rediscovered a 
mathematical fact that someone as distinguished as Donald Knuth saw fit to publish. 
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A consequence of Caitlin’s determination of the inverse of MN is the formula 
 

xk = 1

1

( 1)N

k N k

N

BF AF

F

− − +

+

+ −
. 

 
It’s often fruitful to think about whether one might have been able to deduce such a nice formula 
directly. This formula shows that xk is a linear combination of Fibonacci sequences, specifically, 
it is B/FN + 1 times the Fibonacci sequence, plus (-1)NA/FN + 1 times the Fibonacci sequence 
shifted to the right by N + 1. Linear combinations of sequences that satisfy the Fibonacci 
recurrence relation must also satisfy the Fibonacci recurrence relation. Therefore, the explicit 
representation of xk as just such a linear combination guarantees that x1, …, xN interpolate 
between A and B in such a way that the result satisfies the Fibonacci recurrence relation. But why 
this particular linear combination? 
 
Let’s look at the sequences Fk /FN + 1 and (-1)NF-N – 1 + k /FN + 1 for several k values: 
 

k 0 1 2 3 … N N + 1 

Fk /FN + 1 0 1/FN + 1 1/FN + 1 2/FN + 1 … FN/FN + 1 1 

(-1)NF-N – 1 + k /FN + 1 1 (-1)NF-N/FN + 1 (-1)NF-N + 1/FN + 1 (-1)NF-N + 2/FN + 1 … (-1)N/FN + 1 0 

 
Notice the entries in the 0 and N + 1 columns! By adding A times the second sequence 
((-1)NF-N – 1 + k /FN + 1) to B times the first sequence (Fk /FN + 1), we obtain a sequence that satisfies 
the Fibonacci recurrence relation AND has its zeroeth term equal to A and its (N + 1)th term 
equal to B! 
 
Do you see how these observations provide a method for interpolating between two given values 
to create a sequence that satisfies any linear recurrence relation at all, not just the Fibonacci one? 
 
Also, can you deduce a criterion on the values of A and B that tells when the interpolated values 
will be integers? 
 
The Journey Continues 
 
The above method does more than interpolate between two given values A and B. By letting k be 
any integer, we automatically get the continuations of the sequence preceding A and going 
beyond B. 
 
Notice that terms 1 and 2 of the sequence Fk – 1 are 0 and 1, respectively, and terms 1 and 2 of the 
sequence Fk – 2 are 1 and 0, respectively. Using the same technique of taking linear combinations 
of sequences that satisfy the Fibonacci recurrence relation, we see that the Fibonacci-like 
sequence that begins A, B, … must be AFk – 2 + BFk – 1. 
 
All this beautiful math, yet a formula for the nth Fibonacci number remains elusive. Can linear 
combinations of sequences that obey the Fibonacci recurrence relation be used to obtain an 
explicit formula? If so, it seems that the linear combinations would have to be built from 
sequences that satisfy the Fibonacci recurrence relation and for which we do have an explicit 

formula for the nth term. 
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Caitlin: Can we find any sequence that has an explicit formula and satisfies 

the Fibonacci recurrence relation? 

 
For what sequences do we have explicit formulas for the nth term? Perhaps arithmetic and 
geometric sequences come to mind? 
 
But if we check to see which arithmetic sequences satisfy the Fibonacci recursion relation, we 
find that there is only one: the sequence whose every term is zero – not helpful for our purposes. 
 
What about geometric sequences? Since scaling a sequence doesn’t change its adherence to the 
recurrence relation, we can assume that 1 is one of the terms of the sequence. If the common 
ratio is r, then the sequence would include the terms 
 

…, 1/r3, 1/r2, 1/r, 1, r, r2, r3, …. 
 
To satisfy the Fibonacci recurrence relation, we need rn + 1 = rn + rn – 1 or, dividing by rn – 1 

throughout, r2 = r + 1. A quadratic equation! Its roots are r+ = 
1 5

2

+
 and r– = 

1 5

2

−
. So, up to 

a constant multiple, there are two geometric sequences that satisfy the Fibonacci recurrence 
relation. One goes 

…, 1, r+, r+
2, r+

3
, r+

4, … 
 
and the other goes 

…, 1, r–, r–
2, r–

3, r–
4, …. 

 
Armed with these two Fibonacci-recurrence-relation-satisfying sequences for-which-we-know-
an-explicit-formula-for-the-nth-term, we can apply the linear combination technique and know 
that the sequence Ar+

n + Br–
n must also satisfy the Fibonacci recurrence relation. If we choose A 

and B so that Ar+
0 + Br–

0 = 0 and Ar+
1 + Br–

1 = 1, we will get the desired explicit formula for the 
Fibonacci numbers! 
 
Solving the system of linear equations in A and B, we find: 
 

A = 1/ 5  and B = -1/ 5 . 

 
Thus, Caitlin rediscovered the Binet formula for the nth Fibonacci number: 
 

Fn = 

1 5 1 5

2 2

5

n n

   + −
−   

    . 

 
What a journey! 
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The 4-Cycle Property for Regular Edge Colorings1 
by Robert Donley2                            
edited by Amanda Galtman 
 
Before engaging with the main themes of this installment in the series, we note two real-world 
applications of regular edge colorings. For a tournament in which players are paired at most 
once, the roster describes the adjacency list of a regular edge coloring. If all pairings of players 
occur, we obtain a Latin square. If the players belong to two teams of the same size, then the 
bipartite condition applies.  
 
In the study of a subject called supersymmetry in particle physics, bipartite regular edge 
colorings are used to describe configurations of particles. These particles, called bosons and 
fermions, correspond to the parts in the bipartition of vertices. For a given choice of edge color, 
if we exchange the vertices on each edge of that color, then the term “supersymmetry” refers to 
these “perfect” (as in “perfect matching”) exchanges of bosons and fermions. 
 
In 2005, Michael Faux and S. James Gates, Jr. 
introduced the Adinkra, a graphical device for 
solving differential equations in supersymmetry. 
The Adinkra definition begins with a bipartite 
regular edge coloring and has further sophisticated 
conditions. In this installment, we explore the next 
condition, the 4-cycle property. (We omit the 
remaining parts of the definition: the totally odd 
dashing and the compatible partial order.) On the 
right is a typical Adinkra graph. 
 
Instead of a theory based on perfect matchings and permutation matrices, our new approach for 
creating regular edge colorings combines binary codes and Latin rectangles. It will be helpful to 
review the installment “Adjacency Lists and Latin Rectangles” (Volume 18, Number 2) for 
development of adjacency lists and the quadrilateral property, which we call the 4-cycle property 
in this installment. The installment “Regular Edge Colorings on Hypercubes” (Volume 18, 
Number 1) provides background on hypercubes and bitstrings, and it will be especially useful to 
refer to the big diagram for the hypercube Q4. 
 
To motivate the 4-cycle property, consider the regular edge 
coloring of the 3-cube with the following graph and adjacency list; 
recall that the adjacency list forms a Latin rectangle. 

 
1 This installment is 22nd in a series that began in Volume 15, Number 3. It is also part 9 of a subseries that began in 
Volume 17, Number 4. 
2 This content is supported in part by a grant from MathWorks. 

Q3 1 2 3 4 5 6 7 8 

Red 8 7 6 5 4 3 2 1 

Blue 6 5 8 7 2 1 4 3 

Black 5 6 7 8 1 2 3 4 
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Since the 3-cube is bipartite, the table naturally splits, and it is sufficient to present half of the 
table. The boxed entries in the first two rows exhibit the adjacency list property for a regular 
edge coloring; if 6 is in the red row and the column for 3, then 3 is also in the red row and 
column for 6. These boxes always form a rectangle. The boxed entries in the lower right-hand 
corner reflect the 4-cycle property. We recall its definition. 
 
Definition: A regular edge coloring satisfies the 4-cycle property if, when the graph is restricted 
to edges of any two colors, the resulting set of disjoint cycles consists only of 4-cycles. 
 
In terms of the adjacency list, if we delete the top row and all but two other rows, then for any 
columns in the remaining array, there is another column with the same entries but inverted. 
These entries always form a rectangle. If we delete the top two rows in the 3-cube example, the 
boxed entries refer to the black-blue 4-cycle with vertices 3, 7, 4, and 8. 
 
Exercise: In the 3-cube example, verify the adjacency list property for each pair of vertices, and 
verify the 4-cycle property by eliminating rows and identifying bicolor 4-cycles in the graph. 
 
Exercise:  For the Adinkra graph above, determine the adjacency list, verify the adjacency list 
property, and verify the 4-cycle property. What familiar graph is this?   
 
For an applied interpretation of the 4-cycle property, let’s consider walks in the graph.  
 
Definition: A walk in a graph is a single vertex or a sequence of consecutive adjacent vertices. 
A path is a walk in which no vertices repeat.  
 
We denote a walk by a list of vertices with dashes. For instance, 
with the 4-cycle property, the walk 8-1-6-2-7 on the right (which 
shows part of the 3-cube above) can be replaced by the walk 
8-1-5-2-7 without changing the number of black and blue edges. 
 
Let’s also consider a walk as a color sequence, read from left to right. With the starting vertex 8, 
the walk 8-1-6-2-7 may be represented by the color sequence Red, Blue, Black, Red; edge color 
regularity assigns each item in the sequence to a new vertex. On the other hand, the walk 8-1-5-
2-7 is given by the sequence Red, Black, Blue, Red. The operation of changing the walk to the 
other side of the bicolor 4-cycle is just the exchange of the two colors in the color sequence.  
 
With the 4-cycle property, if we have a walk determined by a color sequence, possibly with 
multiple instances of a color, any permutation of the colors results in another walk with the same 
initial and final vertices. Similarly, removing an adjacent pair of identical colors from such a 
sequence gives a walk with the same initial and final vertices. For instance, the sequence Red, 
Red, Red, Blue for the walk 8-1-8-1-6 may be shortened to the list Red, Blue, which gives the 
walk 8-1-6. Together, these operations on walks give the following lemma. 
 
Walk Reduction Lemma: Suppose we have a regular edge coloring with s colors c1, …, cs and 

with the 4-cycle property. Let w = 
1 ki ic c…  be a walk between vertices v1 and v2. Then there 

exists another walk w′ with the same initial and final vertices such that each color appears at 
most once. Call such a walk reduced. 
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Exercise: Prove the Walk Reduction Lemma. Is the reduced walk unique? If not, how many 
reduced walks are associated to a given walk w? 
 
Exercise:  In the 3-cube above, determine all paths from 8 to 7; each vertex should be used at 
most once. Use your proof of the Walk Reduction Lemma to reduce each path to 8-3-7. 
 
If we fix an ordering on the colors, then the result of the Walk Reduction Lemma is uniquely 
determined.   
 
Exercise:  For 3-cube, fix the ordering Red, Blue, Black. How many ordered reduced color 
sequences exist, including the empty sequence?  List these, and, starting from the initial vertex 8, 
determine the final vertex for each path.  
 
Exercise: In the previous exercise, associate to each sequence a bitstring with entries of 1 in the 
places where a color appears in the ordered sequence and 0 otherwise. Label each endpoint with 
the bitstring, and verify that vertices joined by an edge differ by 1 in exactly one entry. 
 
Exercise: Repeat the previous two exercises for the hypercube Q4 with the ordering Black, Blue, 
Red, Green. The graph appears in “Regular Edge Colorings on Hypercubes” (Volume 18, 
Number 1). Remove the bitstring labels on the vertices, rename them with integers, and recover 
the original bitstrings using the color sequences. The vertex labeled with the bitstring 0000 
should be the initial vertex when applying color sequences. 
 
For the general hypercube Qs with the parallel edge coloring, the path model with color 
sequences extends naturally. In fact, for a regular edge coloring of a connected graph with the 4-
cycle property, this path model for hypercubes still applies, but an ordered reduced walk may 
return to the initial vertex early, forming a cycle. In this case, each vertex is obtained from a 
reduced color sequence, but we obtain paths by removing any cycles from the walk list or color 
sequence. 
 
All this reasoning leads to the striking result that a connected graph with a regular edge coloring 
and the 4-cycle property is a quotient of a hypercube by a linear binary code, defined below. 
Since our interest lies in developing new examples of regular edge colorings, we instead explore 
binary codes and show how they work in practice with examples.  
 
Definition:  A binary code is a collection of bitstrings, possibly of different lengths. An element 
of a binary code is called a codeword. A binary block code is a binary code in which all 
codewords have the same length, called the block length. Such a code is called linear if, for any 
two codewords, their sum under binary addition is also a codeword. (Such codes are used in 
communications.) 
 
As we have seen above, the vertices of the hypercube Qn give the binary block code of all 
bitstrings of length n. In this work, we assume all binary codes are binary block codes. 
 
Definition: A codeword is called even if it contains an even number of 1s, and odd otherwise. A 
code is called even if every codeword is even. 
 
Exercise: Prove that the sum of two even or two odd codewords is even. Prove that the sum of 
an odd and an even codeword is odd. 
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By the previous exercise, the subset of even bitstrings forms a linear code. 
 
Definition: Let S be a set of bitstrings. The code C(S) generated by S is the set of all sums of 
bitstrings in S. If each element of a code C can be written uniquely as sum of elements of S, then 
we call S a basis for C. 
 
Exercise: Prove that the set E of even codewords of length 5 is generated by 
 

S = {11000, 01100, 00110, 00011}. 
 
List all codewords for E, and prove that S is a basis for E. 
 
We now show how to build a regular edge coloring on a connected graph from a linear code C. 
Let s be the block length and let B be a basis for C. Let k be the number of elements in B. We 
will construct a regular edge coloring on a connected graph with 2s – k

 vertices and s colors. The 
way we do this is to start with a “base vertex” v, and build out from it subject to the existence of 
certain cycles specified by the codewords. To associated a cycle with a codeword, we fix an 
association between the colors and the digit positions. Then, for each codeword, we get a color 
sequence by noting the positions of the 1s. We then build out the graph insisting that these color 
sequences be relations, where a relation is a color sequence in which any path starting at v and 
moving along edges according to the color sequence forms a cycle. (We shall illustrate this 
process below.) 
 
In general, we want restrictions on our codewords. For instance, a codeword with a single 
nonzero entry would correspond to a loop (one color), and a codeword with two nonzero entries 
would correspond to a multiple edge (two colors), so we disallow such codewords because we 
desire only simple graphs (i.e., graphs with no loops or multiple edges). 
 
For constructing examples, it is enough to use relations in the following way:   
 
Proposition: Suppose the graph is connected. If the color sequence R forms a cycle at the base 
vertex v, then R forms a cycle at any other vertex u. That is, every cycle corresponds to a 
relation, and, once its color sequence is reduced and ordered, a codeword. 
 
Proof. Let P be a color sequence that forms a walk between v and the final vertex u, and let P′ be 
the reverse sequence. If we form the walk associated to P′ with initial vertex u, then the final 
vertex is v. If R is the color sequence that forms the cycle for a relation, then P′RP is a loop that 
goes from u to v, back to v, then back to u. By the walk reduction lemma, we can reduce P′RP to 
R which starts and ends at the same place P′RP starts and ends, namely, at u. Thus, R forms a 
cycle at u. □ 
 
Exercise: Prove that concatenation of cycles at v corresponds to addition of codewords. 
 
Exercise: Prove that, if the code is even, then the resulting graph is bipartite. Recall that a graph 
is bipartite if and only if every cycle in the graph has an even number of edges. 
 
For a non-trivial linear code, we consider the regular edge coloring associated to 
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C1 = {00000, 11100, 00111, 11011}. 
 
The graph of C1 has five colors and eight vertices, but, since it has odd codewords, it is not 
bipartite. Let’s order the five colors as 
 

Red (R), Blue (B), Green (G), Purple (P), Orange (O) 
 
A triangle condition on the graph is given by the relations RBG and GPO; that is, for instance, if 
a red and blue edge are adjacent, then these edges form a triangle with some green edge. 
 
To proceed, we start with vertex 1. Around vertex 1, we add an 
edge for each color and name the new vertices 2 through 6. 
Then we include the remaining edges using the 4-cycle 
property. By the relation RBG, vertex 4 must be at the top of 
the graph, and vertex 2 must be on the right. Likewise, the 
relation GPO also identifies the bottom vertices as 4 and 6 
(which we replicate there instead of using a long curve to attach 
it to the already existing vertices labeled 4 and 6; we just 
recognize that all the vertices labeled by the same number are 
to be considered the same vertex). See the figure at right. 
 
Exercise: Prove that the remaining vertex cannot be one of the vertices 1 through 6. 
 
Exercise: Label the remaining vertex 7. Set up the adjacency list for C1, and fill in the entries 
based on the above graph. The table should have five rows and eight columns. 
 
Exercise: Fill in the remaining entries using the Latin rectangle property, the adjacency list 
property, and the 4-cycle property. Then draw the graph of C1 with the regular edge coloring. 
The solution for the adjacency list is given at the end of this article. 
 
We can follow color sequences directly in the adjacency list. Given an initial vertex v, we start in 
the v column, find the row with the first color, record the entry, and repeat the process with each 
new entry until the sequence is exhausted. For a relation, the last entry is v. 
 
Let’s compare how RBG and BGR form cycles at vertex 7 in the adjacency list solution at the 
end of this installment. For RBG applied to 7, 6 is in the red row and column 7, then 8 is in the 
blue row and column 6, and finally 7 is in the green row and column 8, closing the triangle 7-8-
6-7. For the relation BGR, this method gives the walk 7-5-6-7. 
 
Exercise: With the graph of C1, verify that the 4-cycle property holds by drawing the bicolor 
cycles for each pair of colors. Verify that the triangle relations hold at the vertex 1 both by 
inspecting triangles in the graph and by tracing each relation in the adjacency list. 
 

Exercise: Find the adjacency list and regular edge coloring for the linear code 
 

C2 = {00000, 11110, 10101, 01011}. 
 
If you repeat the work from C1, explain why the three unused vertices cannot be labeled 1 
through 6. Then use the Latin rectangle property to place labels 7 and 8 in the partial graph. 
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Next, we consider the linear binary code 
 

d6 = {000000, 111100, 001111, 110011}. 
 

The graph has six colors and 16 vertices. Although we have more vertices and an extra color, this 
graph is at the same level of difficulty as C1. Since each codeword is even, the graph is bipartite, 
and the halved adjacency list has six rows and eight vertices. We order the colors as 
 

Red (R), Blue (B), Green (G), Orange (O), Purple (P), Black (K), 
 

and separate the vertices into parts 1 through 8 and 9 through 16. 
 
In addition to the 4-cycle property, we 
also have the 4-cycle relations RBGO, 
GOPK, and RBPK. In the partial graph 
below, assume the vertices 1 and 2 are 
joined by red-blue paths. By the 
relations, we can extend the graph in 
four directions until the colors at 
vertices 1, 2, 11, and 12 are exhausted. 

 

Exercise: Prove that, unlike the diagram 
for C1, the vertices in this partial graph 
must have distinct labels. 
 
We now have enough information to 
complete the regular edge coloring. 
 
Exercise: Set up the adjacency list for 
d6 and fill in the entries based on the 
partial graph. 
 
In the red row, vertices 7 and 8 are 
missing. Likewise, the missing entries in the column for vertex 10 are 7 and 8 since the Latin 
rectangle property rules out 5 and 6. Vertices 7, 8, 15, and 16 are still unused, and there are 
several valid options to place the 7s. 
 
Exercise: Complete the adjacency list and draw the regular edge coloring in valise form. That is, 
arrange the vertices of the graph along separate rows according to the bipartition. 
 
The solution for half of the adjacency list is at the end of this article. 
 
Exercise: One advantage of the bipartite case is that only half of the adjacency list is required to 
describe the graph. Determine how to adapt the process for tracing a color sequence in half of the 
adjacency list. Find the 4-cycle determined by the relation BORG starting at vertex 8. 
 
Exercise: What happens for the linear code C = {00 … 00, 11 … 11}? What happens if we add 
the codeword 11 … 11 to C1 or d6? 
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As a final example, we consider the linear binary code e7, which is generated by the codewords 
1111000, 0011110, and 1010101. The graph for e7 has seven colors and 16 vertices. 
 
Exercise: Find all eight codewords for e7. Is the graph of e7 bipartite? 
 
If we remove the last digit from their bitstrings, then the first two generating codewords of e7 are 
the generators of d6, so we should try to build the graph of e7 from the graph of d6. It turns out 
that this attempt succeeds. 
 
Let the new color be Yellow (Y). The new relations, corresponding to the codeword 1010101, is 
RGPY. Since the graph of e7 is bipartite, we need only add another row to the halved adjacency 
list for d6. 
 
Exercise: To fill in the last row of e7, either use the relation RGPY on the graph of d6 or trace 
this relation in the adjacency list. Then verify that the 4-cycle property holds with yellow edges. 
Finally, draw the graph of e7 in valise form by adding the yellow edges to the graph of d6. 
 
As before, the solution for the last row is given below. 
 

Solutions: 

 

C1 1 2 3 4 5 6 7 8 

Red 2 1 4 3 8 7 6 5 
Blue 3 4 1 2 7 8 5 6 

Green 4 3 2 1 6 5 8 7 
Purple 5 8 7 6 1 4 3 2 
Orange 6 7 8 5 4 1 2 3 

 

 
C2 1 2 3 4 5 6 7 8 

Red 2 1 7 6 8 4 3 5 
Blue 3 7 1 8 6 5 2 4 

Green 4 6 8 1 7 2 5 3 
Purple 5 8 6 7 1 3 4 2 
Orange 6 4 5 2 3 1 8 7 

 
 

d6 9 10 11 12 13 14 15 16 

Red 6 4 2 1 3 5 7 8 
Blue 5 3 1 2 4 6 8 7 

Green 7 1 3 4 2 8 6 5 
Orange 8 2 4 3 1 7 5 6 
Purple 1 7 5 6 8 2 4 3 
Black 2 8 6 5 7 1 3 4 

 
 

e7 9 10 11 12 13 14 15 16 

Yellow 4 6 8 7 5 3 1 2 
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In the previous issue, we presented the 2025 Summer Fun problem sets. 
 
In this issue, we give solutions to many of the problems.  Our solutions may be terse and, in 
some cases, are more of a hint than a solution.  We prefer not to give detailed solutions before 
we know that most of the members have spent time thinking about the problems.  The reason is 
that doing mathematics is very important if you want to learn mathematics well.  If you haven’t 
tried to solve these problems yourself, you won’t gain as much when you read these solutions. 
 
If you haven’t thought about the problems, we urge you to do so before reading the solutions.  
Even if you cannot solve a problem, you will benefit from trying.  By working on the problem, 
you will force yourself to think about the associated ideas.  You will gain familiarity with the 
related concepts and that will make it easier and more meaningful to read other’s solutions. 

 
With mathematics, don’t be passive!  Be active! 

 

Move your pencil and move your mind – you might discover something new. 

 
Also, the solutions presented are not definitive.  Try to improve them or find different solutions. 
 
Solutions that are especially terse will be indicated in red.  
Please do not get frustrated if you read a solution and have 
difficulty understanding it.  If you run into difficulties, we are 
here to help!  Just ask! 
 
Please refer to the previous issue for the problems. 
 
  

Members: Don’t forget that 

you are more than welcome 

to email us with your 

questions and solutions! 
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by Elisabeth Bullock | edited by Jennifer Sidney 
 
1. We have 
 

f(t) + g(t) = 2t3 – 12t2 + 22t – 12 = 2(t – 1)(t – 2)(t – 3), 
 
so the claw machine should pass over the teddy bear three times as intended. The nth time the 
claw passes over the bear under the instructions f(t) + g(t) is between the nth times for f(t) and 
g(t). 
 
2. The same pattern should hold as in Problem 1. The claw machine will still pass over the bear 
three times, at times in between those for f and g. 
 
3. Let the roots of f be f1 < f2 < f3 and the roots of g be g1 < g2 < g3. Note that these roots 
interlace: f1 < g1 < f2 < g2 < f3 < g3. Following the pattern from Problems 1 and 2, we want to 
show that h(t) = af(t) + bg(t) has roots h1 < h2 < h3 with fi < hi < gi. Now, 
 

h(f1) = af(f1) + bg(f1) = bg(f1) < 0, 
 
since g1 > f1. On the other hand, 
 

h(g1) = af(g1) + bg(g1) = af(g1) > 0. 
 
Using the tool below the problem statement, we see that because h switches signs between f1 and 
g1, it must have a zero h1 in the interval (f1, g1). This argument can be repeated for the other 
intervals (fi, gi) to show that h(f2) > 0 > h(g2) and h(f3) < 0 < h(g3). 
 
4. Let h = f + g. The proof is essentially the same as the one in Problem 3, but we need to be a 
little careful about signs. We will do the case that f and g have the same degree, as the case 
where the degree of f is one less than the degree of g is essentially the same. 
 
First, we assume that the leading coefficients of f and g have the same sign, which we can 
assume to be positive. For simplicity, let f0 = g0 = -∞ and let fd + 1 = gd + 1 = ∞. Then f is positive 
on the intervals of the form (fd – 2i, fd – 2i + 1) for integers 0 ≤ i ≤ d/2, and similarly for g. This is 
represented by the picture below: 
 
 

 
 
 
  

A Real-Rooted Arcade 

f 
t = -∞ t = ∞ 

f1 f2 . . .                         +     fd – 1    –    fd      + 

g 
t = -∞ t = ∞ 

g1 g2 . . .                         +     gd – 1    –    gd   + 
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Following the pattern from the previous problems, we want to show that there is a 
root hj of h between fj and gj for each j = 1, …, d. If j = d – 2i, then h(fj) = g(fj) ≤ 0, 
since gj – 1 ≤ fj ≤ gj. Also, h(gj) = f(gj) ≥ 0, since fj ≤ gj ≤ fj + 1. Thus, h(hj) = 0 for 
some fj ≤ hj ≤ gj. If j = d – 2i + 1, we can apply the same argument to see that  

h(fj) ≥ 0 ≥ h(gj). In summary, we have f ≪ h ≪ g. 
 
Next, we assume the leading coefficients of f and g have opposite signs. By symmetry, we may 
assume that the leading coefficient of f is positive and the leading coefficient of g is negative. 
Further, let’s assume that f + g is degree d. This can be pictured as below in the subcase for 
which d is even and the leading coefficient of h is negative: 
  
 

 
 
 
 
 
 
 
 
 
 
 
In this subcase, we find that h(fd – 2i) ≥ 0 ≥ h(gd – 2i – 1) and h(fd – 2i + 1) ≤ 0 ≤ h(gd – 2i). Thus, h has a 
root hj between gj and fj + 1 for all j = 1, …, d – 1. By the fundamental theorem of algebra, we 
have one more root, which we’ll call hd. We can appeal to the fact that complex roots come in 
conjugate pairs in order to deduce that this last root must be real, but we also want to know 
something about its location. Since the leading coefficient of h is negative, we must have  
hd ≥ hd – 1 in order for h(t) to go to -∞ as t goes to ∞, since the sign of h will alternate between 
roots. Further, in this case we must have hd ≥ gd, since h(gd) ≥ 0. Thus h ≫ f, g. If the leading 
coefficient of h is positive, then the end behavior of h matches that of f (i.e., both h(t) and f(t) go 
to ∞ or they both go to -∞, as t goes to -∞). Thus hd ≤ f1, since h(f1) has the opposite sign of what 
we want for the end behavior of h; so in this case, h ≪ f, g. A final case to consider is when f + g 
is degree d – 1 (i.e., the leading terms cancel). By the same argument as above, we have roots hi 
of h satisfying gi ≤ hi ≤ fi + 1 for all i = 1, …, d – 1, i.e., h ≪ f, g. 
 
5. With just this information, there is no restriction on how many real roots f + g might have. For 
example, consider f(x) = x2d and g(x) = (x – 1)2d, which have roots 0 and 1 with multiplicity 2d, 
respectively. In this example, f(x) + g(x) has no real roots, since x2d + (x – 1)2d > 0 for all real x. 
On the other hand, consider f(x) = (x + 1)(x + 2) ∙ ∙ ∙ (x + d) and g(x) = cx2d for some constant c. If 
we make c sufficiently small, g(x) is very small for all -d ≤ x ≤ d, so f(x) + g(x) will still have d 
roots, very close to -1, -2, …, -d. There are many more examples! 
 
  

f 
t = -∞ t = ∞ 

g 
t = -∞ t = ∞ 

g1            + g2 . . .               gd – 2   –    gd – 1    +    gd   – 

+   f1      – f2 . . .                         +     fd – 1    –    fd      + 

h 
t = -∞ t = ∞ h1 hd – 1 hd – 2 hd 

–              +                                                    +      –       –       +         +      –  – 

opposite 
signs 

– 
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6. First we expand the ai’s in terms of the ri’s. A contribution towards the coefficient 
of xi means we choose i factors of the form (x – rj) to contribute an x, and the 

remaining d – i factors contribute their -rj. Thus ai = (-1)d – i

1

1 ...
d i

d i

j j

j j

r r
−

−
< <

⋅⋅ ⋅ . 

Similarly, we can compute the coefficient of xi – 1 in 
1

( )d

j j

a x

x r
=

−
  as 

 

1

11 ... , 

( 1)
d i

d i k

d
d i

j j

j j j j j

r r
−

−

−

= < < ≠

− ⋅⋅⋅  . 

 

Each product 
1 d ij jr r

−

⋅⋅ ⋅  occurs i times, once for each j = 1, …, d not in the set {j1, …, jd – 1}. Thus, 

we have that the coefficient is equal to iai. 
 
7. We have 
 

( )

d

a x

x r−

 ≪ 
1

( )

d

a x

x r
−

−

 ≪ … ≪ 
1

( )a x

x r−

 ≪ a(x), 

 
and these polynomials’ leading coefficients all have the same sign. Applying the interlacing 
pattern from Problem 5, 
 

( )

d

a x

x r−

 ≪ 
( )

d

a x

x r−

 + 
1

( )

d

a x

x r
−

−

 ≪ 
1

( )

d

a x

x r
−

−

 ≪ 
2

( )

d

a x

x r
−

−

. 

 

Iterating, we have 
( )

d

a x

x r−

 + … + 
( )

k

a x

x r−

 ≪ 
1

( )

k

a x

x r
−

−

, and eventually 

 

( )

d

a x

x r−

 + … + 
1

( )a x

x r−

 = 1

1

d
i

i

i

ia x −

=

  ≪ a(x). 

 
(Calculus note: this is saying that the relative maxima and minima of a occur between its roots.) 
 
8. Either person n can be on a team of two or a team of more than two members. In the first case, 
there are n – 1 options for their partner, and Tk, n – 2 ways to form k teams from the remaining  
n – 2 people. Thus, we get a contribution of (n – 1)Tk, n – 2 x

k + 1. In the second case, we first form 
k teams from n – 1 people; then, there are k options for which team to add person n to, so we get 
a contribution of kTk, n – 1 xk. Adding all these contributions together, we obtain the desired 
recurrence. 
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9. We will do this inductively, while also showing that all roots are nonpositive. 
For our base case we can check that T2 ≪ T3, and both have a single nonpositive 
root at 0. Now we assume Ti – 1 ≪ Ti for all i < n. From Problem 8, we know 
 

( 1)/2
1

, 1

1

n

k

k n

k

kT x

−  
−

−

=

  ≪ Tn – 1(x). 

 
Since Tn – 2(x) ≪ Tn – 1(x) by our inductive hypothesis, we have (n – 1)Tn – 2(x) ≪ Tn – 1(x). Thus, 
we have 
 

( 1)/2
1

, 1

1

n

k

k n

k

kT x

−  
−

−

=

  + (n – 1)Tn – 2(x) ≪ Tn – 1(x). 

 

Because all of the roots of  
( 1)/2

1

, 1

1

n

k

k n

k

kT x

−  
−

−

=

 + (n – 1)Tn – 2(x) and Tn – 1(x) are nonpositive, we 

have 
 

Tn(x) = x(
( 1)/2

1

, 1

1

n

k

k n

k

kT x

−  
−

−

=

  + (n – 1)Tn – 2(x)) ≪ Tn – 1(x), 

 
since multiplying by x just introduces an additional root at 0. 
 
10. There are many cool examples. A particularly well-known one is the “Eulerian polynomials.” 
 
Given an arrangement of the numbers 1, …, n, the descent number is the number of times a 
number is bigger than the number immediately to its right. If σ is an arrangement, we denote its 
descent number by des(σ). For example, des(5764312) = 4 and des(12345) = 0. 
 
We can define polynomials 
 

An(x) = des( )

arrangements  of 1,...,n

x σ

σ

 . 

 
It turns out these satisfy a nice recurrence that can be used to show their real-rootedness. 
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Your Mind on the Mind 
by Hanna Mularczyk | edited by Jennifer Sidney 
 
1. If I draw x, there are 99 possible cards left, which Anna draws from with equal probability. Of 
those, x – 1 of them are < x, and 100 – x of them are > x. So the probability of drawing one with 
a value > x is (100 – x)/99. As a sanity check, if I draw 1, then it is certain that I have the lower 
card, and if I draw 100, it’s certain I have the higher card. 
 
2. (100 – 50)/99 = 0.5050…, while (100 – 51)/99 = 0.4949…, so m = 50 is the largest such value. 
 
3. To get the probability of winning here, it will be easier to calculate the probability that we lose 
and then subtract that from 1. If one card is ≤ 50 and the other > 50, we always win, so we only 
need to consider the cases where either both x, y ≤ 50, or both x, y > 50. Either circumstance has 
a (1/2)(49/99) chance of occurring, in which case we lose half of the time since we place the 
cards at random. So the total probability of losing is 2(1/2)(1/2)(49/99) = 49/198, thus the 
probability of winning is 1 – 49/198 = 149/198 ≈ 0.7525. 
 
4. Anna and I can both start our stopwatches at the beginning of the game, and we each play card 
x when our watch reads x seconds. This means that the lower card will always be played first. 
Note that this strategy can extend to arbitrarily many players. 
 
5. We do a similar calculation as in Problem 3, calculating the probability of losing. There are 
two cases in which we can lose: 
 

• Either both x, y ≤ c or both x, y ≥ 101 – c. In either case, the probability of this occurring 

is 
1

100 99

c c −
, in which case we have 1/2 probability of losing. 

• We both hesitate, so c + 1 ≤ x, y < 101 – c. The probability of this occurring is 
100 2 100 2 1

100 99

c c− − −
, in which case we have 1/2 probability of losing. 

 
Together, our probability of losing is 
 

 1 1 100 2 100 2 1

100 99 2 100 99

c c c c− − − −
+  

= 
1 1

( ( 1) (100 2 )(100 2 1))
9900 2

c c c c− + − − − , 

 
 
so the probability of winning is 1 – (3c2 – 200c + 4950)/9900. 
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6. If you know calculus, you can solve this by taking the derivative of the winning 
probability formula from the answer above, with respect to c, and setting it to 0 to find 
the function’s maximum. Using the power rule, the derivative is -(6c – 200)/9900. To 
find the maximum, we must solve the equation -(6c – 200)/9900 = 0. We find that 

c = 100/3 = 33.3 , so our maximum is either when c = 33 or c = 34. 
 
Plugging c = 33 and c = 44 into the original winning probability formula gives 8283/9900 and 
8282/9900, respectively; so c = 33 is our winning solution, giving a winning probability of 

8283/9900 = 0.836  (an improvement from our last strategy!). Note that this makes the “play 
immediately,” “hesitate,” and “wait indefinitely” intervals all the same size (give or take, 
because of rounding). 
 
If you don’t know calculus, you could also solve this problem by using the fact that this 
quadratic formula corresponds to an upside-down parabola with a unique maximum at its vertex; 
on either side of the vertex, the quadratic decreases as you move away from the vertex.  
 
7. To do this exploration, start by repeating the calculations in Problem 5, but with more cases! 
 
8. For my card, x, to be the lowest, all of the remaining p unplayed cards drawn must have been 
> x. The probability of the first unplayed card being > x is (100 – x)/(99 – i), since there are  
100 – x cards larger than x and 99 – i options for cards larger than the current card on the table 
(99 – not 100 – because I also have my card). The probability of the next unplayed card being  
> x is (99 – x)/(98 – i), and so on, giving probability 
 

100 99 98 100

99 98 97 100

x x x p x

i i i p i

− − − − −
⋅⋅ ⋅

− − − − −

. 

 
Another way to calculate this is to notice that the probability is the number of ways to pick p 
cards from 100 – x cards divided by the number of ways to pick p cards from 99 – i cards, which 
is 

100

99

x

p

i

p

− 
 
 

− 
 
 

 

 
and gives the same expansion. 
 
9. Actually, the smallest value of x where the chances are greater than 1/2 that it is the lowest of 
the unplayed cards is i + 1, so let’s try to find the largest such value of x. Below is an example of 
a rough calculation I came up with. First, note that the actual answer will be between i and 
101 – p, and not too close to either extreme. 
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In the expression for the probability, 
 

100 99 98 100

99 98 97 100

x x x p x

i i i p i

− − − − −
⋅⋅ ⋅

− − − − −

, 

 
there won’t be too much of a difference between the first fraction and the last, assuming that p 
isn’t too big (say, it’s in the single digits); and all the other fractions will be in between these 
extremes. So, we’ll approximate the probability by replacing each fraction with the fraction 
 

100 / 2

99 / 2

p x

p i

− −

− −

, 

 

which gives us the approximation 
100 / 2

99 / 2

p

p x

p i

 − −

 
− − 

 for the probability. 

 
Setting this equal to 1/2 and solving for x yields x ≈ 100 – p/2 – (1/2)1/p(99 – p/2 – i). (For 
example, if p = 4 and i = 18, then x = 31 and our approximation gives 31.569…) 
 
10. Correction: in this question, the second instance of “cutoff value” should say “probability.” 
This singular round is won if exactly one player has a card before the cutoff value (otherwise, the 
round can still be won if there is a tie and it happens to be played in the correct order, but we will 
ignore these smaller terms in this calculation). Set c = 100 – p/2 – (1/2)1/p(99 – p/2 – i). The 
probability that one of the drawn cards with value > i is ≤ c is (c – i)/(100 – i). Then the 
remaining cards with value > i must have value greater than c, which has probability 
 

100 99 98 100

100 100 100 100

c c c p c

i i i i

− − − − −
⋅⋅⋅

− − − −

. 

 
Multiplying these all together gives the probability, though in this form it is not very 
illuminating. 
 
11. My random number generator picked 5, 40, 78, and 93. At the beginning of the game i = 0 
and, in the eyes of each player, p = 3. Plugging this into the solution to Problem 9, the cutoff 
value is about 21. So the player with card 5 will play, and none of the other players will. Now, 
i = 5 and p = 2, so plugging this in again gives a new cutoff of about 33. Since 40 > 33, the 
player with card 40 won’t play right away; eventually, someone will give in at random, so now 
the chances of winning are diminished to 1/3. In the case that the next card is put down correctly, 
we have cards 78 and 93 remaining, with i = 40 and p = 1, and the new cutoff is about 70. Since 
78 > 70, the player with 78 won’t play right away, and again it’s a tossup which of the two 
remaining players will play first. So in the end there is only a 1/3 × 1/2 = 1/6 chance of winning. 
Upgrading to a c-hesitation strategy in this setting could help fix this. That said, this is still an 
improvement over playing the cards in a random order, in which case we only win with 
probability 1/(4!) = 1/24. 
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Calendar 

 
Session 37: (all dates in 2025) 
 

September 11 Start of the thirty-seventh session! 
 19  
 25  
October 2  
 9  
 16  
 23  
 30  
November 6  
 13  
 20  
 27 Thanksgiving - No meet 
December 4  

 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
 
Author Index to Volume 18 

 
Jennifer Balakrishnan 1.03  Erica Klarreich 2.03, 3.03, 4.03 
Elisabeth Bullock 5.24, 6.22  Helena Lai 5.11 

Robert Donley 1.13, 2.07, 3.07, 4.07, 5.16, 6.14  Evelyn Marks 5.08 
Lightning Factorial 2.24, 3.26, 4.26  Hanna Mularczyk 5.26, 6.26 
Ken Fan 1.07, 1.23, 1.24, 1.27, 2.12, 2.27, 3.13,  Greta Panova 6.03 

 3.28, 4.15, 4.27, 5.29, 6.08  Margot Reinfeld 5.11 
Elsa Frankel 6.03  Addie Summer 2.20, 3.17, 4.19 
Staff, Girls’ Angle 1.19, 3.23, 4.25  Amanda Tucker 5.03 
Anna Gorman-Huang 5.08    

     
     

 
Key: n.pp = number n, page pp 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax-free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 

The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 

What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high-level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax-free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


