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An Interview with 
Karen Lange, Part 2 

 
This is the second part of our four-part 

interview with Prof. Karen Lange of 

Wellesley College. 

 

Ken: I’m fascinated by your answers, and 

I’m very eager to ask you this: What is the 

goal of mathematics, and what is the goal of 

math education, and how are they related? 

 

Karen: Well, I want to know your answers 

to these questions, too.  The goal of 

mathematics?  I would say for me there are 

many very primary goals of mathematics.  

I’m going to borrow some understanding 

from the mathematician Eugenia Cheng’s 

work. 

 One thing that she might say is, 

“Mathematics is about understanding truth 

as determined by logic.”  That truth is 

determined by logical rules of inference 

from basic axioms, which are inspired by 

patterns we see in the real world.  But that 

starts to feel very technical and 

epistemological. 

But a crucial part in that is the 

patterns part: What are the patterns that we 

see about abstracted objects in the world, 

whatever that means, right?  And then, what 

can we say about those abstracted ideals 

using logic?  That, to me, is the goal of 

mathematics. 

And so, at a very meta level, 

mathematics is understanding truth.  Any 

discipline is trying to understand truth, but I 

like Eugenia Cheng’s description about 

using the tools of logic and understanding 

abstracted ideas, things that we see from the 

concrete world, and then applying logic to 

see what’s true via logic. 

And sometimes that can lead you to 

applied math or understanding theoretical 

physics, but sometimes it leads you just to 

its own beauty, because it’s true.  Maybe 

your axioms — your starting places — have 

gotten so generalized away from real 

contexts that now you’re just seeing what 

grows out of those properties.  And as we 

know, sometimes that ties back to the real 

world in ways we didn’t expect up front.  

So, I think that’s the goal of mathematics for 

me. 

 I would also say that working toward 

understanding truth at this meta level is a 

fundamentally human activity.  Humans 

want to know what’s true. For me, there’s 

equal importance in doing mathematics and 

the community together doing mathematics.  

You could have a view of mathematics of, 

“Oh, just understanding truth is all 

mathematics is.”  But for me, it’s also 

understanding and building a body of 

knowledge together with others.  That 

human aspect to it is very fundamental to 

me. 

 After learning something myself, 

what did I do with my discovery?  I went to 

my math teacher, and said, “There’s a 

formula here.  There’s something here!”  

And I think that’s a fundamental part of 

mathematics: the building and finding truth 

via logic in community with others. 

So, what’s mathematics education?  I 

think it’s about giving people who are 

earlier on their mathematical journey — I 

almost don’t like the word “students,” 

because we’re all constantly students, 

especially in mathematics — the tools and 

experiences, an apprenticeship into this 

community. 

 That wording bothers me a little bit, 

because this community is for everyone.  

Everyone is part of it, but sometimes people 

I think that’s a fundamental part of 

mathematics: the building and 

finding truth via logic in 

community with others. 
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who are farther along in their mathematical 

journeys, we don’t always help give people 

earlier on their journeys all the tools that 

they need, and sometimes we do.  

Mathematics education requires thinking 

about how we can give them people tools 

and experiences to help them develop their 

own mathematical agency. 

 

Ken: That’s beautiful.  I love that.  It’s 

inspiring.  Actually, I got a little chill on my 

spine there, when you talked about 

community and that it’s a human endeavor. 

 

Karen: Exactly, and it’s such an honor for 

us in what we do.  It’s such an honor to be 

able to help people on their mathematical 

journeys.  Yes, I learned a lot of math in 

grad school, and that was lovely.  But where 

did I really find my power?  It was really 

earlier in my journey. Those are such special 

moments, and to get to be a part of that with 

other people earlier in their journeys is a 

gift. 

 

 

Ken: Can you recap your own journey to 

being a professional mathematician? 

 

Karen: Sure.  So, I was raised just outside 

Milwaukee, Wisconsin.  In grade school, I 

went to a Catholic school, and I liked math, 

but I liked everything.  I wasn’t “math kid.”   

 Opportunities now are a little 

different from when I was growing up.  

Now, I think math is more of a thing.  We 

 
1 The AMC is short for American Mathematics 
Competition.  There are actually two, the AMC 10 

think kids need to really learn more math.  

But then, in high school, I had this 

wonderful class in ninth grade with Mr. 

Gustafson, and that was my moment where 

he had given me these experiences and these 

tools to realize, “Oh, I can do all this stuff.”  

So, that was when I bought into, “Hey, math 

is really cool.”  But again, I had lots of 

interests.  I loved to do theater.  I loved to 

play tennis.  I loved a lot of other stuff. 

But my high school had some very 

informal math activities — like a quick 20-

minute math competition-y kind of thing 

after school.  And I don’t know why I 

started — I think because it was fun.  It was 

a fun thing to do, and in high school there 

were opportunities to take the AMC.1  But it 

wasn’t an emphasis, it was just, “Oh, these 

are fun problems.”  So, I went and did the 

problems. 

 I was fortunate that they went well 

for me.   That made me feel good and gave 

me more confidence, but I can also totally 

see how if I didn’t do so well in them, I 

would have been less likely to engage.  So, I 

think about that a lot with my students: math 

competitions can be fun for those people 

who like that kind of math, but there are all 

sorts of other math that’s not competition.  

But that was the start for me.  Then, through 

competitions, my teacher started to say, 

“You know, there are more competitions,” 

and I qualified for some next-level things. 

 I admit, that was very eye-opening.  I 

didn’t realize there was a world of math 

competitions.  I went to a state competition 

and met other kids who practiced for these 

things.  It just wasn’t on my radar earlier.  

And so, I did a little bit of that, but I didn’t 

do a lot.  And actually, to be honest, my 

favorite competitions were like what you 

sometimes run, or things like, “Here’s a 

problem of the month.  Send in your 

answer.”  There would be no time bounds,  

and the AMC 12, both organized by the 
Mathematical Association of America. 

Mathematics education requires 

thinking about how we can give 

people tools and experiences to 

help them develop their own 

mathematical agency. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of the content.   We 
hope that you consider the value of such content and decide 
that the efforts required to produce such content are worthy of 
your financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                           Girls’ Angle: A Math Club for Girls 
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America’s Greatest Math Game: Who Wants to Be a Mathematician. 
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A Partial Order for Partitions 
by Robert Donley1 
edited by Amanda Galtman 
 
In the previous installment, we used Young diagrams as a visual aid to study partitions and 
developed methods for counting partitions.  In this installment, we apply the approach for 
compositions from “n-Cubes and Up Operators” (see Volume 16, Number 2 of the Girls’ Angle 
Bulletin) to partitions; in particular, partial orderings, Hasse diagrams, and up operators help us 
organize partition data and give context to path counting problems. 
 
We keep the definitions and notation from previous installments; in particular, recall that 
partitions are denoted by non-increasing strings of numbers (called the parts of the partition).  It 
will sometimes be convenient to denote partitions with trailing zeros in definitions and figures. 
 
Definition: Let P be the set of all partitions.  Let μ = μ1… μk and λ = λ1… λk be partitions with k 

parts.  We define a partial ordering on P by the rule that μ ≤ λ if μi ≤ λi for all i.  When partitions 
are extended by zeros, any two partitions can be compared for some k.  Alternatively, μ ≤ λ if the 
corresponding Young diagram for μ fits inside that for λ. 
 
The partially ordered set (P, ≤) is called the Young lattice.  In fact, our interest lies only in finite 
subsets of the Young lattice. 
 
Exercise: Draw as much of the Young lattice as you can by hand, using either the digit string 
notation or Young diagrams. 
 
Definition: Suppose m, n ≥ 1.  Denote by L(m, n) the subset of all partitions λ with at most m 
parts such that each part λi ≤ n.  Alternatively, the corresponding Young diagrams fit inside a 
rectangle with width n and height m. 
 
To obtain a symmetric Hasse diagram for each L(m, n), we include the empty partition, which we 
denote by 0.  The rank of a partition is the sum of its parts.  The empty partition has rank 0, and 
partitions with the same rank are at the same level of the Hasse diagram of L(m, n). 
 
Definition: Recall that we say λ covers μ if μ ≤ λ and there are no other elements between μ and 
λ.  The partition λ has the same parts as μ except in one entry.  The Young diagram for λ is 
obtained by adding one square to the Young diagram for μ. 
 
Example: L(m, 1) and L(1, n) are simply chains.  Oriented horizontally, the Hasse diagrams for 
L(4, 1) and L(1, 4) are 
 

0 — 1 — 11 — 111 — 1111     and     0 — 1 — 2 — 3 — 4. 
 
In the last installment, we noted the operation of conjugation on partitions, which interchanges 
the rows in the Young diagram with its columns.  For example, the conjugate of 422 is 3311, as 
seen in the following figure: 

 
1 This content is supported in part by a grant from MathWorks. 
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Definition: We denote the conjugate of λ by λ*. 
 
Exercise: Prove that if μ ≤ λ then μ* ≤ λ*.  Note that conjugation preserves rank. 
 
Note that the conjugate of a rectangular Young diagram is another rectangular Young diagram, 
so conjugation interchanges the elements of L(m, n) and L(n, m) while preserving the partial 
orderings.  In particular, conjugation carries L(m, m) back into itself. 
 
Example: Consider the Hasse diagrams for L(2, 1), L(2, 2), and L(2, 3): 

   
 
We encountered L(2, n) before in “Examples of Posets” (see Volume 16, Number 1 of the Girls’ 
Angle Bulletin); these Hasse diagrams are associated with the Catalan numbers.  To obtain 
L(2, n + 1) from L(2, n), we append a chain with n + 2 nodes along the top of the diagram.  This 
construction reflects the recurrence relation on generating functions from the previous 
installment: 
 

Fm, n(t) = Fm, n – 1(t) + tnFm – 1, n(t). 
 

Recall that Fm, n(t) is the generating function that counts partitions in L(m, n); in the language of 
posets, the coefficient of tk counts the number of partitions of rank k in L(m, n).  When m = 2, 
 

F2, n + 1(t) = F2, n(t) + tn + 1F1, n + 1(t). 
 

The second term indicates that the bottom of the chain is placed at level n + 1. 
 
Exercise: Redraw the Hasse diagrams above by replacing each node with the corresponding 
Young diagram.  Then draw the diagram again by replacing each Young diagram with its 
conjugate.  Finally, replace these Young diagrams with the corresponding strings of digits.  How 
does conjugation change the property of having at most two parts? 
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Exercise: Draw the Hasse diagrams for L(2, 5) and L(2, 6).  For n ≤ 6, verify the counts for each 
rank in L(2, n) with the coefficients of F2, n(t) from the previous installment. 
 
Exercise: Describe the first and last three levels of any L(m, n) with m, n ≥ 2.  Verify using 
Young diagrams. 
 
In addition to conjugation, we define another operation on partitions. Unlike conjugation, this 
other operation depends on the choice of L(m, n). 
 
Definition: For the partition λ in L(m, n), the complement of λ is the partition obtained by 
replacing each part λi with n – λi and reversing the order of this string of numbers.  Here we 
include zero as a part if needed. 
 
For instance, the complement of (4, 1, 0) in L(3, 4) is (4 – 0, 4 – 1, 4 – 4) = (4, 3, 0).  To express 
complementation with Young diagrams, we mark the squares of the partition in the rectangle, 
rotate the rectangle by 180°, and remove the marked squares.  With Young diagrams: 
  

 
 
Exercise: In L(3, 5), compute the complements of 543, 411, and 33 
numerically.  Then verify using the procedure for the corresponding 
Young diagrams. 
 
Exercise: In L(m, m), prove that the complement of the conjugate is 
the conjugate of the complement.  How can we extend this result to 
general L(m, n)?  
 
Exercise: What is the complement of the complement?  What 
conditions are necessary for a partition to be equal to its complement?  
To the conjugate of its complement? 
 
Exercise: Fill in the template for L(3, 3) shown at left with both the 
corresponding partitions and Young diagrams.  Identify nodes that are 
fixed under conjugation.  Match nodes that are paired under 
conjugation.  Finally, match nodes that are paired under 
complementation. 
 

Exercise: The recurrence relation suggests that this Hasse diagram splits into two copies of 
L(2, 3).  Express this splitting by coloring the nodes of the diagram based on whether 3 is a part 
in the partition.  Describe the new splitting if we replace each node with its conjugate. 
 
Exercise: Construct the Hasse diagram for L(3, 4) by appending the diagram for L(2, 4) to 
L(3, 3).  Represent L(2, 4) within the L(3, 4) diagram by those partitions with at least one part 
equal to 4; that is, construct L(2, 4) as usual and precede each entry with a 4.  Match 
complements in the diagram.  What happens if we try to match conjugates? 
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Exercise: Verify the coefficients of F3, 3(t) and F3, 4(t) by counting the nodes in each level of the 
Hasse diagrams.  In all of the examples above, verify that the number of elements in L(m, n) is 

m n

m

+ 
 
 

. 

 

The rank numbers of L(m, n) are the beginning of the theory of q-binomial coefficients, defined 
below, also known as Gaussian polynomials.  By tradition, we use the variable q instead of t. 
 
Definition: For N ≥ 1, we define the q-factorial as 
 

[N]q! ≡ (1)(1 + q)(1 + q + q2)∙∙∙(1 + q + . . . + qN – 1). 
 
As with the usual factorial, we define [0]q! = 1.  We define the q-binomial coefficient 

 

[ ] !

[ ] ![ ] !

q

q qq

m nm n

m m n

++ 
= 

 
. 

 

Exercise: What happens to [N]q! and 
q

m n

m

+ 
 
 

 when q = 1?  Give an interpretation of [N]q! as a 

generating function in the variable q. 
 

Exercise: Prove that Fm, n(q) = 
q

m n

m

+ 
 
 

 in the specific cases above and, in particular, F2, n(q) as 

expressed in the previous installment.  Prove this equality in general by showing that 
q

m n

m

+ 
 
 

 

satisfies the same recurrence relation as Fm, n(q). 
 
Exercise: Can you prove the following equality directly? 
 

[m + n]q! = Fm, n(q)[m]q![n]q! 
 
Properties of Fm, n(q) show that the q-binomial coefficients are in fact polynomials in q and that 
their coefficients are symmetric.  For further results on q-binomial coefficients and for partitions 
in general, we highly recommend the book Integer Partitions by George E. Andrews and Kimmo 
Eriksson. 
 

We continue to pursue analogies to compositions with path counting and the up operators for 
L(m, n).  For lattice path counting, we count (saturated) chains from 0 to λ. These are sequences 
from 0 to λ such that each element is covered by the next element in the sequence.  For example, 
here is a chain from 0 to 321: 
 

0 — 1 — 11 — 21 — 211 — 311 — 321. 
 
Definition: Let f λ denote the number of chains from 0 to the partition λ. 

 
Exercise: Find f λ for each λ in L(2, 2) and L(2, 3) by listing all chains. 
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Exercise: Trace the chain to 321 in your picture for L(3, 3).  List as many chains as you can from 
0 to 321.  Can you find f λ for each element in L(3, 3) without listing all chains? 
 
Working with chains directly can be cumbersome.  As a first attempt at 
organization, we simply record the sequence as a list with trailing 
zeros.  Further, we see that any such sequence can be fitted to an 
equilateral triangle by justifying the data to the leftmost diagonal. 
 
We note some properties of such a triangle: each row is non-increasing, as is each diagonal to the 
lower right.  Also, as rows progress downwards, a single entry in each row is reduced by 1 such 
that the non-increasing property is preserved.  Thus the sum of the row entries yields the 
sequence k, …, 2, 1, 0.  Finally, each entry is between the two entries in the row above.  These 
triangles are Gelfand-Tsetlin patterns from the previous installment, although now we include 
zeros as entries. 
 
Exercise: Suppose λ is a partition of k.  Prove that any chain from 0 to λ can be fitted to an 
equilateral triangle as above with side length k + 1.  Can you relate the number of parts of λ to 
zeros in the triangle?  Which zeros in the pattern indicate that the number of parts in the 
sequence has changed? 
 
Exercise: List all such Gelfand-Tsetlin patterns for all chains from 0 in L(2, 2) and L(2, 3). 
 
Exercise: Prove all properties in the paragraph before the preceding 
exercises.  What pattern has the most zeros?  The fewest zeros?  List 
the corresponding chains and draw these chains with the 
corresponding Young diagrams. 
 
Similar to an n-cube, L(m, n) is a graded poset; that is, any chain 
from 0 to λ has the same number of elements.  Then every nonzero 
partition covers an element on the level below it and no partition 
covers an element two or more levels below it. This property allows 
for a uniform approach to chain counting, as seen in “n-Cubes and 
Up Operators.” 
 
If the diagram for L(m, n) is available, then we use the corresponding 
version of Pascal’s identity: to count the number of chains leading to 
λ, we sum f μ over all μ covered by λ. 
 
Exercise: Verify Pascal’s identity for each element of L(3, 3) in the diagram on the right.  Find 
f λ for each element of L(3, 4) using Pascal’s identity. 
 
When the Hasse diagram is not available, we refer to linear algebra and the up operator. 
 
Example: We apply the up operator to recover the first few levels in L(3, 3).  Recall that the f λ 
values for level k are calculated with Uk[000] = U∙∙∙U[000] (k times).  Now U operates by adding 
one to parts only where that addition maintains the non-increasing property.  By applying 
linearity rules as seen in (installment), we obtain 
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U[000] = [100], 

U2[000] = U[100] = [200] + [110], 

U3[000] = U(U2[000]) = U[200] + U[110] 

= ([300] + [210]) + ([210] + [111]) = [300] + 2[210] + [111], 

 
and so on. 
 
Exercise: Complete the calculations of Uk[000] for L(3, 3).  Then use this method to calculate 
each f λ for L(3, 4) and L(4, 4).  Use these values to construct the Hasse diagram for L(4, 4), and 
then verify the q-binomial coefficients and the split into two L(3, 4) diagrams. 
 
Exercise: For L(m, n), prove that f n…n is the sole coefficient in Umn0. 
 
Exercise: Find a formula for f λ if λ has two parts.  How about three parts? 
 
If we record each f λ as a node of the Hasse diagram for L(m, n), we obtain a version of 
 
Chu-Vandermonde convolution in L(m, n): Choose k satisfying 0 ≤ k ≤ mn.  Then f n…n equals 
the sum of all products f λ f μ over all partitions λ of k, where μ is the complement of λ. 
 
To implement the convolution, k indicates a choice of level in the Hasse diagram of L(m, n).  As 
seen in “Examples of Posets,” each chain from 0 to n…n passes through one and only one node 
in level k, so the number of all such chains splits into a sum over the nodes at level k.  On the 
other hand, the number of such chains that pass through λ is the product of the number of chains 
from 0 to λ with the number of chains from λ to n…n.  By the symmetry of the Hasse diagram, 
the latter count is the number of chains from 0 to the complement of λ. 
 
Example: For L(2, 3), complements are paired vertically on levels 
symmetric about the central horizontal axis.  Then we have 
 

5 = 5 × 1 = 2 × 1 + 3 × 1 = 22 + 12. 
 

Example: For L(3, 3), we can arrange that complements again pair 
vertically, so that the diagram for L(3, 3) gives the equalities 
 

42 = 42 × 1 = 21 × 1 + 21 × 1 

 = 5 × 1 + 16 × 2 + 5 × 1 

 = 5 × 3 + 6 × 2 + 5 × 3. 

 
Exercise: Verify the convolution property for L(3, 4).  A key step is to identify the complements 
for each level. 
 

At this point, it is unclear whether we should expect a reasonable general formula for f λ.  On one 
hand, the corresponding numbers for compositions are readily computed.  But we have also seen 
that partitions are far more difficult to work with than compositions.  In fact, such a formula 
exists and, in the next installment, it will be Young diagrams that provide the closed formula for 
f λ in a most unexpected and satisfying way. 
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Follow Your Nose, Part 2 
by Ken Fan | edited by Jennifer Sidney 
 
When you follow your nose in math, not only might you figure out things without consulting any 
books, but you might also come up with something not commonly known … or not known at all! 
 
In the first part, we followed a group of 8th graders who took it upon themselves to figure out a 
way to generate all of the Pythagorean triples.  After they succeeded, I showed how to extend 
their results by identifying when their method produces primitive Pythagorean triples.  In the 
process, we found that in any primitive Pythagorean triple a, b, c with a2 + b2 = c2, the 
differences c – a and c – b give us an odd perfect square and twice a perfect square, in some 
order. 
 
However, their method raises a natural question that we left unresolved.  Their method produces 
each primitive Pythagorean triple twice, in the sense that both the primitive Pythagorean triple a, 
b, c and b, a, c are produced from different parameters.  Can we figure out conditions on the 
parameters so that only one of these closely-related triples is produced? 
 
Before proceeding, let’s review the method: 

 
For example, let’s take x to be 8 and m to be 5.  Then r0 = 4 and (a, b, c) = (28, 45, 53). 
 
But look what happens if we take x to be 25 and m to be 2.  In that case, we find r0 = 10 and 
(a, b, c) = (45, 28, 53), which is essentially the same triple we just found. 
 
What can we do to ensure that of the two triples a, b, c and b, a, c, we only produce one? 
 
A natural way to proceed would be to insist that a < b < c, and then try to determine which 
parameters x and m result in triples that satisfy this inequality. 
 
However, what’s special about these 8th graders’ method is that one of the parameters, x, 
corresponds to the difference c – b; and we saw last time that their method almost effortlessly 
leads to the observation that in any primitive Pythagorean triple, the differences between the 

 
To produce a primitive Pythagorean triple, pick either an odd perfect 
square or twice a perfect square and call it x.  Pick any positive integer 
m that is relatively prime to x. 
 
Let r0 be the smallest positive integer whose square is divisible by 2x. 
 
Then 
 

a = mr0 + x b = mr0(mr0 + x)/(2x) c = b + x 
 

is a primitive Pythagorean triple with a2 + b2 = c2. 
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hypotenuse and each leg length yield an odd perfect square and a number that is twice a perfect 
square.  Switching the leg lengths simply flips which of the numbers c – a and c – b is the odd 
perfect square and which is twice a perfect square. 
 
So all we have to do to ensure that we do not get the same Pythagorean triple with its leg lengths 
flipped is to insist that x be either an odd perfect square or twice a perfect square!  Since “odd 
perfect square” is a little easier to say than “twice a perfect square,” let’s go ahead and insist that 
x be an odd perfect square (it doesn’t really matter which we pick, so long as we stay consistent). 
 
To summarize, rather than take the half of the primitive Pythagorean triples a, b, c where a < b, 
we take the half of the primitive Pythagorean triples where c – b is an odd perfect square. 
 
Since we know x is an odd perfect square, let’s write x = n2, where n is an odd number, and 
rewrite the formulas for our Pythagorean triple in terms of n and m instead of x and m.  (Note 
that m is relatively prime to x if and only if m is relatively prime to n.)  We find that r0 = 2n. 
 
Then a = mr0 + x = 2mn + n2. 
 
And b = mr0(mr0 + 2x)/(2x) = 2mn(2mn + 2n2)/(2n2) = 2m(m + n) = 2mn + 2m2. 
 
And c = b + x = 2mn + 2m2 + n2. 
 
Notice that c – b = n2, as expected, and c – a = 2m2.  That is, because we picked x to be an odd 
perfect square, by design, we know that c – b will be that odd perfect square; but now we also 
know precisely which perfect square c – a is twice of.  Also, the formulas completely eliminate 
r0 from the picture!  That is, all we have to do to generate primitive Pythagorean triples is pick a 
positive odd number n and a positive number m relatively prime to n.  We then compute 2nm, 
then form the three right triangle side lengths by adding to 2nm either n2, 2m2, or the sum of 
both, 2m2 + n2, and we have a primitive Pythagorean triple! 
 
To illustrate, take n = 3 and m = 2.  Then 2nm = 12.  Our triple is 
 

12 + 32, 12 + 2(22), 12 + 2(22) + 32 
 
or 21, 20, 29. 
 
Or take n = 11 and m = 7.  Then 2nm = 154.  Our triple is 
 

154 + 112, 154 + 2(72), 154 + 2(72) + 112 
 
or 275, 252, 373. 
 
Isn’t this a nifty way to generate the primitive Pythagorean triples?  It differs from Euclid’s 
method, which is the standard one that is explained in books, and it doesn’t seem to be in the 
Wikipedia entry, “Formulas for generating Pythagorean triples” (as of December 22, 2023). 
 
The formulas also show us how to decide, for any primitive Pythagorean triple a, b, c, which of 
c – a or c – b is the odd perfect square, for c must be odd and only one of a or b will be even.  
The odd perfect square will be the difference between the hypotenuse and the even leg length. 
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For a fun algebra exercise, verify the algebraic identity 
 

(2mn + n2)2 + (2mn + 2m2)2 = (2mn + 2m2 + n2)2. 
 

a < b < c 

 
Our new way of generating primitive Pythagorean triples makes it straightforward to figure out 
whether a < b or b < a.  We just check to see if n2 < 2m2.  If it is, then a < b; otherwise b < a. 
 

Flips 
 
In order to make this section clearer, let’s introduce functional notation for the 8th graders’ 
method described in the yellow box on the first page of this article.  That is, given x and m as 
explained there, let P(x, m) = (a, b, c) where a, b, c is the corresponding Pythagorean triple. 
 
Let’s figure out how the parameters must change when we flip a, b, c to b, a, c.  That is, we just 
found the Pythagorean triple associated to the parameters x = n2 and m, where n is a positive odd 
integer and m is a positive number relatively prime to n, namely P(x, m).  What parameters x´ 
and m´ correspond to swapping the leg lengths?  (That is, so that P(x, m) and P(x´, m´) differ 
only in that they swap each other’s leg lengths.) 
 
Since x is the difference between c and b, after we flip, the difference between the “new” c and b 
will be the difference between the “old” c and a; so we must take x´ to be 2m2, in which case r0 
will be 2m, and we must pick m´ to be such that 2m´(2m) + 2m2 = 2mn + 2m2.  Solving for m´, 
we find m´ = n. 
 
Thus, P(n2, m) and P(2m2, n) are the flips of each other. 
 
Here's a summary of this flip (we introduce the letters s and t in order to avoid confusion with the 
already used m): 
 

Pick any positive odd number s and any positive number t relatively prime to s. 

 
Parameters: 
 
Let x = s2. 
Let m = t. 
 
Primitive Pythagorean triple: 
 
a = 2st + s2 

b = 2st + 2t2 

c = 2st + 2t2 + s2 
 

 
← Flip! → 

 
Parameters: 
 
Let x = 2t2. 
Let m = s 
 
Primitive Pythagorean triple: 
 
a = 2st + 2t2 
b = 2st + s2 
c = 2st + s2 + 2t2 
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An Iterative Game 
 
Notice that for the parameters n2 and m (where n is odd and m is positive and relatively prime to 
n), we get a primitive Pythagorean triple a, b, c where a is odd and b is relatively prime to a.  
That means we can apply the method again to the parameters a2 and b instead of n2 and m, and 
we can repeat this process over and over again to our hearts’ content! 
 
In other words, our new way of generating primitive Pythagorean triples iterates to give us 
sequences of primitive Pythagorean triples!  Let’s see what sequence of triples we get if we start 
with n = 1 and m = 1: 
 

n, m a, b, c 

1, 1 3, 4, 5 
3, 4 33, 56, 65 

33, 56 4785, 9968, 11057 
4785, 9968 118289985, 294115808, 317012033 

118289985, 294115808 83574429584465985, 242590126064151488, 256582646615451713 

 
The lengths grow quickly! 
 
What can you say about these sequences of primitive Pythagorean triples? 
 
Keep in mind that this is all the result of a group of 8th graders who gave themselves a chance to 
figure something out without looking it up! 
 
Follow Your Nose 
 
Did anything in the above development arouse your curiosity?  If so, get out some scratch paper 
and follow up on that curiosity immediately!  See what you can make of it. 
 
If not, here are some things to think about: 
 
1. Fix a positive odd number n and consider the sequence of primitive Pythagorean triples given 

by P(n2, m), where m takes on all the positive integers relatively prime to n in numerical 
order.  What can you say about this sequence of right triangles?  What do their acute angles 
converge to as m tends to infinity? 

 
2. For a fixed positive odd number n, for which m, relatively prime to n, does P(n2, m) yield a 

right triangle that is closest to being isosceles? 
 
3. Can you devise a method for producing all solutions to the equation 
 

a2 + b2 + c2 = d2 
 
in positive integers a, b, c, and d?  Can you figure out how to produce primitive solutions to this 
equation (i.e., solutions a, b, c, and d such that there does not exist an integer greater than 1 
which divides evenly into all four values)?  What patterns can you find in the primitive 
solutions? 
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Romping Through the Rationals, Part 6 
by Ken Fan | edited by Jennifer Sidney 
 
Jasmine: In my counterexample, we can drop 

the last 4 from both sequences to get the 

smaller counterexample 

 

0, 1, 2, 1, 3, 1 

and 

0, 1, 3, 1, 2, 1. 

 

Emily: You’re right.  Both sequences 

represent the same rational numbers, but 

there’s no way to perform even a single 

splice to either sequence.  To change one into 

the other, we’d want to swap the 2 and the 3.  

Swapping the 2 and 3 is kind of like our 

splice, only instead of moving a sequence 

situated between an x and y to sit between a 

consecutive occurrence of x and y, we are 

swapping the contents of two strings that 

have the same beginning and ending.  

Perhaps if we extend our definition of splice 

to include this kind of swapping operation, 

we can use them to transform any two finite 

rational rompers that represent the same 

rational numbers into each other? 

 

Jasmine: Maybe—let’s see!  So you want to define a splice as follows: Suppose inside the 

sequence there are two nonoverlapping subsequences of consecutive numbers that begin and end 

the same way.  We then swap the contents like this: 

 

…, x, a1, a2, a3, …, an, y, …, x, b1, b2, b3, …, bm, y, … 

↓ 

…, x, b1, b2, b3, …, bm, y, …, x, a1, a2, a3, …, an, y, … 

 

Emily: Yes, although we might as well also include the possibility that x = y and the end of the 

first subsequence is also the beginning of the second: 

 

…, x, a1, a2, a3, …, an, x, b1, b2, b3, …, bm, x, … 

↓ 

…, x, b1, b2, b3, …, bm, x, a1, a2, a3, …, an, x, … 

 

That’s the kind of splice we’d need to transform one of your counterexample sequences into the 

other.  In your counterexample, we would take x = 1, n and m would both be 1, and a1 = 2 and 

b1 = 3. 

Emily and Jasmine are studying sequences an 
of nonnegative integers that have the property 
that consecutive terms are relatively prime 
and every nonnegative rational number is 
equal to an/an + 1 for a unique n.  They have 
dubbed these sequences “rational rompers.” 
 
Last time, they showed that any rational 
romper can be transformed into any other 
rational romper via a sequence of operations 
that they called a “splice.”  They were hoping 
that a similar statement was true of finite 
rational rompers, but they found a counter-
example instead.  Can they salvage their idea? 
 
Recall that a splice modifies a rational romper 
an in the following way: Suppose x, y are 
consecutive terms in the sequence an and 
suppose there is a subsequence disjoint from 
the consecutive terms x, y, but which also 
begins with x and ends with y.  Then one can 
remove the terms between this x and y and 
reinsert them between the consecutive x and y. 
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Jasmine: This is an extension of what we were doing because our original swap corresponds to 

the case where one of n or m is equal to 0. 

 

Emily: You mean “splice…” 

 

Jasmine: You’re right, our original splice, although this more general operation feels a bit like a 

swap to me. 

 

Emily: It does.  So, let’s call it a “swap.”  The question is, if we have two finite rational rompers 

that represent the same rational numbers and end with the same number, can one be transformed 

into the other via a finite sequence of swaps? 

 

Jasmine: Let’s attempt to prove it along the lines of what we’ve been trying and see how far we 

can get. 

 

Emily: Okay.  So suppose we have two finite rational rompers that represent the same rational 

numbers and end with the same number.  And suppose they agree on the first n – 1 terms, but 

differ at the nth term, like this: 

 

a1, a2, a3, …, an – 1, an, …, aN 

 

a1, a2, a3, …, an – 1, bn, …, bN 

 

where an ≠ bn, but aN = bN.  Let’s call the second sequence the “target” sequence. 

 

Jasmine: As before, we know that an – 1, bn must occur consecutively in the first sequence 

somewhere after the nth term—that is, assuming that an – 1 ≠ an, which we can assume without 

loss of generality.  So the sequence goes 

 

a1, a2, a3, …, an – 1, an, …, am = an – 1, am + 1 = bn, …, aN. 

 

Emily: This is where we ran into the problem with the old splice.  We needed to find an 

occurrence of an after the (m + 1)-th term so that we could splice the subsequence from the 

(m + 1)-th term to just before that following an in between the (n – 1)-th and nth terms.  But your 

counterexample shows that there may not be such an occurrence of an. 

 

Jasmine: With the swap operation, we have more flexibility.  What we need is to find any one of 

the terms in positions n – 1 through m repeated after the (m + 1)-th term, for then we could 

perform a swap and get am + 1 = bn to appear right at position n. 

 

Emily: What would force that to occur?  Maybe we can assume that it does not occur and see if 

that leads us to some kind of impossibility? 

 

Jasmine: Okay.  It’s funny, because I can see that the terms in positions n + 1 to m must occur 

after the nth position in the target sequence, which is bn there. 
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Emily: How’s that? 

 

Jasmine: The two rational rompers represent the same rational numbers, and for any k strictly 

between n and m, our first sequence represents ak/ak + 1, so our target sequence must represent 

that rational number as well.  Now it can’t represent that number as a ratio of consecutive terms 

among the first n – 1 terms because the two sequences agree there, and we’re assuming that  

an – 1 ≠ an; so it isn’t equal to an – 1/bn, which is the ratio of the (n – 1)-th and nth term of the target 

sequence.  Therefore, ak, ak + 1 must occur consecutively in the target sequence after its nth term. 

 

Emily: Oh, nice!  Actually, I think that argument also shows that an – 1 and an both appear after 

the nth term in the target sequence.  In fact, they must appear consecutively. 

 

Jasmine: You’re right! 

 

Emily: But how do we get these terms to appear after the (m + 1)-th term of the original 

sequence? 

 

Emily and Jasmine think. 

 

Jasmine: Do the two rational rompers have to have the same quantity of each number that 

appears in them?  I’m wondering, because suppose that an – 1 does not occur in positions n 

through m + 1 in the original sequence.  You just pointed out that an – 1 must occur after the nth 

position in the target sequence.  If the two rational rompers must have the same number of 

occurrences of an – 1, that would force an occurrence of an – 1 after the (m + 1)-th term of the 

original sequence!  If that didn’t occur, the original sequence would have fewer occurrences of 

an – 1 than the target sequence. 

 

Emily: Intriguing!  That sounds plausible.  Let’s see if we can show that.  So forget about the 

notation we’ve set up so far and let’s start anew with two finite rational rompers that represent 

the same rational numbers and have the same last term.  Let’s call them ak and bk, and let’s 

suppose that there are N terms total.  So we know both begin with 0, then 1, and aN = bN. 

 

Jasmine: Suppose x appears n times in the ak sequence.  We want to show that x appears n times 

in the bk sequence.  If x is 0, we already know that 0 only appears once and at the very beginning 

of every rational romper, so let’s assume x > 0.  For the moment, let’s assume that x is not aN, so 

for both sequences every occurrence of x is in the middle of the sequence.  And let’s assume that 

x is not 1 either, so we also know that x is never followed by x (since x is not relatively prime to 

itself when x > 1).  In that case, every occurrence of x will be preceded and followed by numbers 

that are not x, representing 2n rational numbers, with half having x in the numerator and half 

having x in the denominator (when expressed in lowest terms). 

 

Emily: Since those rational numbers are also represented by the bk sequence, x must appear 

exactly n times in that sequence, too! 

 

Jasmine: Super!  Now, what if x is the last term of the sequence aN = bN? 
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Emily: If x > 1, similar reasoning applies.  For then the n – 1 occurrences before the last term 

will each be sandwiched between two numbers, neither of which equals x, so both sequences 

must represent 2(n – 1) + 1 = 2n – 1 rational numbers that have an x in the numerator or 

denominator (when expressed in lowest terms). 

 

Jasmine: So all we have to do is show that both sequences have the same number of 1s. 

 

Emily: The potential hangup that we avoided was if 1, 1 ever occurs.  If 1, 1 does occur, it means 

that the sequence represents 1; and if 1, 1 occurs in the ak sequence, it must also occur in the bk 

sequence, and vice versa.  All other occurrences of 1 cannot be next to another occurrence of 1. 

 

Jasmine: Actually, if 1, 1 does occur, since it must then occur in both sequences, we can just 

temporarily erase the first of these 1s to obtain rational rompers that still represent the same 

rational numbers and end with the same number.  So it suffices to show that both sequences have 

the same number of 1s when 1, 1 does not occur. 

 

Emily: Nice!  So assume 1, 1 does not occur.  Suppose there are n ones.  Then I think that the 

number of rational numbers represented that have a 1 in the numerator or denominator (when 

written in lowest terms) is equal to 2n – 1 or 2n, depending on whether 1 is or is not the last term 

of the sequence, respectively.  Either way, that means that both sequences must have the same 

number of 1s! 

 

Emily: So it’s true! 

 

Jasmine: Yes, that’s a nice fact to know. 

 

Emily: Actually, must the two sequences begin and end with the same numbers?  That is, 

suppose I write down two lists of N nonnegative integers and every pair of consecutive numbers 

that appear in one list also appears in the other.  Do the two lists necessarily have to contain the 

same quantity of occurrences of each number? 

 

Emily and Jasmine think. 

 

Jasmine: Hmm.  I’m afraid that fails.  Consider 1, 2, 1 and 2, 1, 2. 

 

Emily: How about that!  Such a small counterexample! 

 

Jasmine: In any case, let’s see if we can perform swaps to transform one rational romper to 

another, now that we know that the two sequences must contain the same quantity of every 

number. 

 

To be continued … 
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Learn by Doing 
Random Numbers 

by Addie Summer 
 
Probability theory is the mathematical way of handling 
uncertainty.  It’s an important topic because life is full 
of uncertainty. 
 
However, this Learn by Doing will be focused on a narrow subtopic of probability theory: 
random numbers.  We assume some familiarity with probability. 
 
Let’s start with a familiar way in which random numbers are generated: die rolling. 
 
1. A standard die is a cube with the numbers 1 through 6 written on its faces.  When a die is 
rolled, it’ll tumble and bounce, eventually landing with one of its sides facing up.  The number 
on that top face is taken as the outcome of the die roll.  Roll a die several times.  Assuming that 
the die is a perfect cube and that the numbers on its faces do not affect the physical properties of 
the die in any way, what fraction of the tosses would you expect to come up 6? 
 
By symmetry, there’s no reason to expect any outcome of the die to be favored over any other 
outcome.  Since there are 6 possible outcomes, we would expect each to occur on 1/6 of the rolls. 
 
An actual die will not be a perfect cube, and any departure from perfect symmetry might be 
reflected in the frequency with which each number occurs.  If a process produces numbers in 
such a way that all possible outcomes are equally likely, we say that the numbers are produced 
uniformly at random, or that the probability is uniformly distributed, or that the process is 
modeled by a uniform probability distribution. 
 
If you actually role a perfect die several times, it’s in fact not very likely that each number will 
come up the same number of times.  We’ll explore this more in a bit.  For the moment, let’s look 
at two ways of generating more numbers using dice.  Assume that the dice are ideal dice which 
produce the numbers 1 through 6 according to a uniform probability distribution. 
 
2. If you take two dice and roll them simultaneously and take the outcome to be the sum of the 
two numbers on the top faces of both dice, you will get a number between 2 and 12, inclusive.  If 
you do this many, many times, for each number from 2 to 12, determine the fraction of rolls that 
you would expect to come up that number.  In other words, for each possible outcome, what is its 
probability? 
 
(As a check, the probability of getting a 10 is 1/12.) 
 
3. Again, take two dice, with one colored red and the other blue.  Roll them and let R be the 
outcome of the red die and B be the outcome of the blue die.  Instead of taking the number R + B 
as the outcome (as in Problem 2), we take the outcome to be 6(R – 1) + B.  What are the possible 
outcomes?  For each outcome, what is its probability? 
 
(Spoiler alert!)  Problem 3 yielded another uniformly probability distribution.  However, 
Problem 2 describes a process that produces random numbers with a nonuniform distribution. 

Note: Problems vary in level of involvement.  
You’ll find that you can do some quickly, 
but others (in red) are intended to give you 
something to think about for days.  You’re 
always welcome to email us or ask a mentor 
about this at the club. 
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4. Think of at least two more ways to generate random numbers and think about what the 
probability distribution is for each method. 
 
5. If you were having trouble coming up with ways to generate random numbers, consider the 
following, and for each, describe its associated probability distribution as accurately as you can: 
 

A. You create a spinner by dividing a circle into three parts by first dividing it in half 
with a diameter, and then drawing in a single radial line perpendicular to that 
diameter.  You label the two smaller sectors 1 and 2 and the large sector 3.  You tack 
a spinning needle onto the center of the circle and get random numbers by spinning 
the spinner, and after the spinner spins too many times to count, taking the number 
that it points to when it finally comes to rest. 

B. You toss ten quarters high into the air.  When they land and settle down, you count 
the number that show heads. 

C. You throw a dart at a map of the United States and find the nearest city to wherever 
your dart hits the map.  You look up the population of that city and take its leading 
digit.  (Careful with this one—try it, if you can!) 

 
The point of these first problems is to understand that different ways of generating random 
numbers have different probability distributions, and if we are to be able to predict outcomes 
well, we need to know the probability distribution. 
 
7. Role a perfect die 6 times to get 6 random numbers.  Although the probability of each outcome 
is 1/6, it’s not very likely that each of the numbers 1 through 6 comes up when you do this.  
What is the probability that each number comes up once?  What is the probability that this does 
not happen (i.e., that fewer than 6 different numbers come up)? 
 
8. In the setup of Problem 7, for each n from 1 to 6, compute the probability that 6 comes up n 
time(s). 
 
9. In the setup of Problem 7, for each n from 1 to 6, compute the probability that exactly n 
different number(s) come up. 
 
Things get more interesting when there are infinitely many possible outcomes! 
 
10. Explain why it is impossible to pick a random positive integer with a uniform probability 
distribution. 
 
11. Let’s generate a random positive integer in the following way: We flip a coin over and over 
until it comes up heads.  The number of times we had to flip the coin is our random positive 
integer.  What is the associated probability distribution? 
 
12. Suppose a method for produce random positive integers has the property that the probability 
that n occur is 1.01 times the probability that n + 1 occurs.  What is the probability that 1 occurs?  
Can you think of a real-world way to generating positive integers that produces random positive 
integers according to this distribution, at least in theory? 
 
13. Suppose you have a method for generating random positive integers with the property that 
the probability that the outcome is greater than n is equal to 1/(1 + n).  What is the probability 
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that n is the outcome?  Can you think of a real-world way to generating positive integers that 
produces random positive integers according to this distribution, at least in theory? 
 
To specify a random number, all we need to specify is its probability distribution.  We do not 
need to know the mechanism by which the random number is generated.  For a random number 
generator that produces positive integers, that would mean specifying the probability pn that the 
outcome is n, for each positive integer n.  The only conditions that we require of the pn are that 
they are nonnegative numbers which add up to 1. 
 
Now let’s consider a random number generator that produces a real number between 0 and 1.  
We will produce this random number by specifying its binary representation.  Since the number 
is between 0 and 1, the only nonzero binary digits occur after the binary point.  For each place 
after the binary point, we assign a fair coin.  Since there are infinitely many places after the 
binary point, we have infinitely many coins.  We imagine flipping all of them at the same time.  
If a coin comes up tails, we place a 0 in the associated place in the binary number, otherwise we 
place a 1 there. 
 
We will use this method of producing random real numbers for Problems 14-17. 
 
14. Let n be a real number between 0 and 1.  Show that the described method of producing a 
random real number between 0 and 1 produces the number n with probability 0. 
 
Unlike our method for producing random positive integers, the probability of getting a specific 
number is 0.  How can that be?  How can we have something that produces a random number, 
yet the probability that any particular number come up be 0? 
 
15. While the probability of generating a particular number is 0, show that the probability that 
the outcome is between a and b, where 0 ≤ a < b ≤ 1 is b – a. 
 
Because of Problem 15, we call the distribution associated to this random number generator the 
uniform probability distribution on the interval [0, 1]. 
 
16. Show that the probability of producing a rational number between 0 and 1 is 0. 
 
17. Suppose we use this random number generator twice and take the sum of the results.  The 
sum will be a real number between 0 and 2.  If 0 ≤ a < b ≤ 2, what is the probability that the sum 
is between a and b? 
 
18. Instead of using coin tosses to determine the binary digits of a real number, suppose you use 
a spinner that comes up 0 with probability p and 1 with probability q.  To each binary place after 
the binary point, you assign such a spinner.  To get the random real number, all the spinners are 
spun simultaneously.  What is the probability that the real number generated is between k/2m and 
(k + 1)/2m, where k is an integer such that 0 ≤ k < 2m?  What is the probability that the real 
number generated is between 1/3 and 1/2?  What is the probability that the real number generated 
is between 1/2 and 2/3? 
 
19. Can you think of a way to generate a random real number where every real number is a 
theoretical possible outcome (even though nearly all real numbers will come up with probability 
0)?  What is the probability distribution of your scheme?  
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Origami Pentagon 
by C. Kenneth Fan 
 
Some members at the club challenged themselves to figure out how to fold a regular octagon 
with a piece of origami paper.  It’s a wonderful project and a natural follow-up question is, 
“What regular polygons can be folded using origami techniques, and how can they be folded?”  
Here’s one way to fold a regular pentagon.  Can you explain why this fold sequence works?  Can 
you come up with a better way? 
 

Before you begin, try to figure 
out a way to fold an origami 
regular pentagon yourself. 
 
Even if you don’t come up 
with a way, trying yourself 
helps to get your mind familiar 
with the issues involved. 
 
 
 

.  
1. Begin colored side down.  Fold in 
half.  Unfold. 
 

 
2. Fold and unfold 

 

 
3. Fold the right edge in to lie 
along the crease you just made.  
Unfold. 

 

 
4. Fold the left edge in along a 
vertical crease that intersects the 
upper edge at the same place where 
the crease you just made does. 

 

 
5. Fold in half along the existing 
crease. 

 

 
6. Make sure your paper is oriented 
as in the diagram with the raw 
edges at the bottom, not the top.  
Fold the indicated point onto the 
lower edge along a crease that goes 
through the upper right corner.  
Note that this crease falls short of 
the lower left corner. 

 
7. Fold the right side around along a 
crease that lines up with the right 
edge of the near layer. 

 
8. Unfold the near layer. 
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Origami Pentagon Instructions, Continued 
 
 

 
9. Fold the right side over so that 
the crease lies along the edge of the 
hidden layer beneath.  This crease 
should pass directly through the 
lower right corner and the 
intersection of the two diagonal 
creases that already exist. 

 
 

10. Fold both layers along a crease 
that runs along the edge of the 
hidden layer beneath.  The lower 
edge should meet the intersection of 
two creases that already exist. 

 
 

11. (Not all creases are shown.) 
Fold down through all layers along 
a crease that runs along the edge of 
the hidden layer beneath. 

 
 

 
 

12. (Not all creases are shown.)  
Fold the excess strip along a crease 
that runs along the edge of the 
hidden layer beneath.  Note that the 
long edge of the excess strip should 
be parallel to the crease. 

 
 

 
 

13. (Not all creases are shown.) 
Gently unfold back to the original 
square. 

 
 

 
14. Only important creases will be 
shown from now on.  You should 
be able to find a large regular 
pentagon creased into your square. 

 
 

 
15. Fold in along three creases that 
run through three of the five sides 
of the pentagon.  The fold on the 
left should be vertical. 

 
 

 
16. Fold in the upper and lower left 
corners along two more creases that 
run along sides of the pentagon. 

 
 

 
17. Finished Regular Pentagon! 

 

 
What are the measures of the interior angles of a regular pentagon?  If the side length of the 
original square is s, what is the side length of the resulting pentagon?  Is this the largest regular 
pentagon that can be folded from an origami square of given size? 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 33 - Meet 8 
November 2, 2023 

Mentors: Jade Buckwalter, Anushree Gupta, Gautami Mudaliar, 
Hanna Mularczyk, AnaMaria Perez, Padmasini Venkat, 
Jane Wang, Doris Woodruff, Saba Zerefa, 
Angelina Zhang, Jasmine Zou 

 What are the volumes of each of the Platonic solids as a function of the length of one of 
its edges? 
 

Session 33 - Meet 9 
November 9, 2023 

Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Gautami Mudaliar, Hanna Mularczyk, 
Tharini Padmagarisan, AnaMaria Perez, 
Vievie Romanelli, Swathi Senthil, Padmasini Venkat, 
Jing Wang, Dora Woodruff, Saba Zerefa, Angelina Zhang 

 Can you devise a way to fold a regular octagon using origami techniques?  For a regular 
pentagon, see page 26. 
 

Session 33 - Meet 10 
November 16, 2023 

Mentors: 
 
 
 

 

Elisabeth Bullock, Jade Buckwalter, Shauna Kwag, 
Gautami Mudaliar, Hanna Mularczyk, 
Tharini Padmagarisan, AnaMaria Perez, 
Vievie Romanelli, Swathi Senthil, Padmasini Venkat, 
Jane Wang, Jing Wang, Dora Woodruff, Saba Zerefa, 
Angelina Zhang 

 What’s the most efficient algorithm you can come up with to factor a given integer? 
 

Session 33 - Meet 11 
November 30, 2023 

Mentors: Anushree Gupta, Shauna Kwag, Gautami Mudaliar, 
Hanna Mularczyk, Tharini Padmagarisan, 
AnaMaria Perez, Saba Zerefa, Angelina Zhang 

 What’s the general equation for an ellipse in the plane (whose major and minor axes are 
not necessarily aligned with the coordinate axes)? 
 Can you invent your own, personal, way of deriving the quadratic formula? 
 

Session 33 - Meet 12 
December 7, 2023 

Mentors: 
 

Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Hanna Mularczyk, Swathi Senthil, Jane Wang, Jing Wang, 
Dora Woodruff, Saba Zerefa, Angelina Zhang 

 Finite dimensional vector spaces over finite fields have finitely many points.  How many 
k-dimensional subspaces are there of an n-dimensional vector space over a finite field with q 
elements? 
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Calendar 

 
Session 33: (all dates in 2023) 
 

September 14 Start of the thirty-third session! 
 21  
 28 Support Network Visitor: Isable Vogt, Brown University 
October 5  
 12  
 19  
 26  
November 2  
 9  
 16  
 23 Thanksgiving - No meet 
 30  
December 7  

 

Session 34: (all dates in 2024) 
 

February 1 Start of the thirty-fourth session! 
 8  
 15  
 22 No meet 
 29  
March 7  
 14  
 21  
 28 No meet 
April 4  
 11  
 18 No meet 
 25  
May 2  
 9  

 
 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
 
Alphanumerics 3G: 52∙13∙73∙6561193∙4213916273770981695636437 (base 10) or E2

∙M∙LIIGD∙AYVITCNSZKRGRCQZAK (base 27). 
Alphanumerics 4G: 13∙457∙1753∙1574611708888087875794720953687 (base 10) or N∙KB∙YQB∙ZQXCLQRUøXGOZøFQLUEIIN (base 27).  

Here, ø stands for the digit zero in base 27.  
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax-free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 



 

© Copyright 2023 Girls’ Angle.  All Rights Reserved.                                                                31 

Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 

The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 

What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high-level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax-free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


