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From the Founder

Thank you, Google Cambridge, for hosting us. It's wonderful to bk toa
in-person meets, and it's tremendously inspiring to meet in such a
stimulating environment. The math is flowing again afteairg of being
stunted by the virtual environment. - Ken Fan, President and Founder
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An Interview with
Ann Trenk

Ann Trenk is Lewis Atterbury Stimson
Professor of Mathematics at Wellesley
College. She earned her Doctor of
Philosophy in Mathematics from the Johns
Hopkins University under the supervision of
Edward Scheinerman. She joined the
faculty in the mathematics department at
Wellesley College in 1992 and has served as
the chair. She has taught at the Hampshire
College Summer Studies in Math
(HCSSIM).

This interview was conducted by Raegan
Phillips and Ken Fan.

Girls’ Angle: You're an expert on graph
theory. What exactly is graph theory?

Ann: The “graphs” in graph theory consist
of vertices (drawn as big dots), some of
which are joined by edges. Graphs show
relationships between objects. For example,
you could form a friendship graph for a
group of people. Each person would be
represented by a vertex, and we would join
two vertices by an edge precisely when
those two people are friends. Having a
visual representation of relationships can
make it easier to understand what the
relationships are. Another example is airline
routes. The vertices are the cities the airline
services, and there is an edge between two
cities if there is a direct flight from one to

the other. These graphs are often shown as
route maps in the airline magazines you find
in your seat pocket when you fly.

Girls’ Angle: You co-authored a book on
tolerance graphs. What are tolerance
graphs?

I’m a big fan of enrichment
rather than acceleration.
Rather than accelerating to
take calculus early in high
school, | recommend
broadening your exposure
to math

Ann: Before we get to tolerance graphs, |
need to define interval graphs. Interval
graphs are a special kind of graph that you
can think of as arising from time intervals.
Suppose you have 5 events you would like
to attend, and each has a specific meeting
time (e.g., Girls’ Angle meeting, soccer
game, birthday party, movie, ice cream
outing). You can form a graph from these
events by making a vertex for each event,
and putting an edge between two events if
they conflict, that is, if their time intervals
overlap. If the soccer game is 2-3:45 PM
and the birthday party is 3:30-5 PM, they
would conflict and we would put an edge
between those two vertices. Graphs that
arise in this way are called interval graphs.
Because they arise in this particular way,
they have special properties that not all
graphs have.

Tolerance graphs allow for a little more
flexibility. Each event has not only a time
interval, but also an amount of time for
which it allows an overlap with another
event. In the example above, if both the
soccer game and the birthday party have a
tolerance of 15 minutes or more, then they
would no longer conflict. Tolerance graphs
are a larger class of graphs than interval
graphs, so it is interesting to see which of
the special properties of interval graphs still
hold for this larger class of graphs.
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Use market code
GIRLS at checkout
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AMERICAN MATHEMATICAL SOCIETY

The American Mathematical Society is generously offering a 25¢odnt on the two book set
Really Big NumberandYou Can Count On Monsteis readers of this Bulletin. To redeem, go
to and use the code “GIRLS” at checkout.
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COWabU nga| Emily Caputo is a second year at Belmont

] High School. She created these equations
by Emily Caputo for a school math assignme

Graph these equations and inequalities for a nifty surprise! Equatdrisequalities in the
same row are to be satisfied simultaneously, whereas thodéenewnl rows are independent of
each other. For the solution, see page 29.

(Xx— 6P +(y—6F=1
X=6,y=6
(X— 458+ (y— 6 =1,x<5.25y > 6 —/3/2
X=45y=6

X—3.5=2¢—-T7F,x<3.72
x=3.72, 22/3 ¢ < 10.75
y=15%-4.25 + 10y < 10.75
y=15%-5.25| + 10y < 10.75
y=15%-6.25 + 10y < 10.75
y=15%-7.25 + 10y < 10.75
y=15%-8.25| + 10y < 10.75
y—5=23k-8.5),5<y<10.75
(x—8.5f+ (y—4.5f=0.25x>8.3
y=5.26, 4.25 «<5.25
(x—4.25% + (y— 57 + 0.07,x< 4.25
y=4.735, 4.25 x< 4.75
y = 6x— 18, 3.65 « < 3.872
y—3.5=§-5.5%20+0.2y<3.87
y=-X+26,3.75g<4
(x—5.8f + (y—3.75§ = 0.3,x<5.75y < 3.7
x=5.75,2<<3.2
y=-2k+174,2 <4
y—1.9=¢-7.16%20,y< 2
(x—8.5%+ (y—4.5y=0.1,y> 4.65

There is a way to combine all these equations @eglialities into a single equation that
produces the same solution set. Can you figuretba¥o that?

Can you realize one of your favorite drawings &ssblutions to a set of equations and
inequalities?



Romping Through the Rationals

by Ken Fan | edited by Jennifer Sidney

Jasmine: Emily, you're just the person | want telse

Emily: What's up?

Jasmine: | learned this curious fact from sociadliseand | think you’re going to love it!
Emily: Something about piano?

Jasmine: Math!

Emily: What is it?

Jasmine: Definé(x) to be the reciprocal of the quantity 1 plt Here, the symbok is the “floor”

the greatest integer less than or equal tess the fractional  of x, which is the greatest integer
1 less than or equal tq the symbol

part ofx. Thatis, letf (X) =—————— . {x} is the “fractional part” of,
1+ x -{% which is equal ta — x

Emily: That's a peculiar function. What about it?

Jasmine: If you start with O then repeatedly apiply function, you will get every single
nonnegative rational number exactly once!

Emily: Seriously?

Jasmine: Yes, that’s the claim. | haven't figuoed how it works yet. Who knows, maybe it's
just a joke meme and the claim isn’t true. Buiahivto know.

Emily: So do I}

Jasmine: | know that the rational numbers can bénpone-to-one correspondence with the
whole numbers, but I've never seen it done so lgrisp

Emily: So the claim is that @0), f(f(0)), f(f(f(0))), etc., is a list of all the nonnegative ratb
numbers?

Jasmine: Yes.

Emily: Let’'s compute the first few terms. | wantdet a feel for this function.

L1f you don’t get Emily and Jasmine’s excitement about He, page 24.



Jasmine: Starting witk= 0, we have x =0and & =0, sof(x) =1/(1+0-0) = 1.
Emily: Forf(1), we havel =1and {1} =0, sd(1) =1/(1 +1-0) =1/2.
Jasmine: Sincel/2 =0 and{1/2} = 1/2, we gdf1/2) = 1/(1 + 0 - 1/2) = 2.

Emily and Jasmine compute the first 19 terms amdl fi

0,1, 1/2,2,1/3, 3/12, 2/3, 3, 1/4, 413, 3/5, 2B, 5/3, 3/4, 4, 1/5, 5/4, 47, ...
Emily: Amazing!
Jasmine: Maybe it really works!

Emily: While doing the computation, | noticed thia¢ denominatorl+ x - {%, has a nice
interpretation on the number line. If we pkadn the number line, thel+ x - {¥ can be

found by flipping the intervgl x , x +1] around. That's becaude- x is the first integer

you encounter (other thantself) when you move up the number line fremve then subtract
{x}, which is the amount added tx to getx.

[ B

y

0 1 2
D ll. 2- |—| Jr.=i—l!x} .

Emily’s geometric interpretation of the denominatof(gy.

Jasmine: That explains why after the 1, the entrigbe sequence alternate between being
greater than 1 and less than 1; wkesn't O or 1, flipping the unit interval that c@imsx as you
described will not change the property of beingatgethan 1 or less than 1. Reciprocation,
however, swaps the numbers greater than 1 witpdbkitive numbers less than 1. Sa i 1,
thenf(x) < 1, and if 0 <f(X) < 1, therf(x) > 1.

Emily: Unfortunately, this picture doesn’t help meesee that the sequence will contalinof the
nonnegative rational numbers.



Jasmine: But | think it does imply that no numbdl appear twice. For if not, letbe the first
rational number that appears twice in the sequeSagce the reciprocal of a number is never
equal to 0, we know that O cannot appear twice,ismot 0. That means that the first time
appears, it must be preceded in the sequence by sombelp, and the second time it appears,
it must be preceded in the sequence by some numb&lso, it must be thgi g, otherwiser
wouldn’t be the first number that repeats. And thauld mean thaip) =f(q) =r, which is the
same as saying thhis not one-to-one.

But | think your number line interpretation showattf is one-to-one, because that geometric
procedure is reversible, and so is reciprocation.

Emily: Yes, all the steps to gét- x - {® fromx are indeed reversible. So, given 0, we

could reverse the process to find the unigsech thaf(p) =r. Specifically, we reciprocateto
get 1f, and then we can finglby flipping around the interval containing 1being sure to take
the unit interval to théeft of 1k in case I/is an integer).

Jasmine: So at least we know that the sequencelmperiodic, like the decimal digits of a
rational number. Now we can focus on showing évarynonnegative rational number will
appear somewhere in the sequence. Maybe we camghpw that if we reverse the process
starting with any positive rational number, we eMentually get to 0?

Emily: That would prove it.

Jasmine: Hmm, | don’t see how to show that. I6tlike the numbers get closer and closer to O
as we go backward through the sequence, sincedtamces that the numbers are from 0
alternate between being greater than 1 and lessltha

Emily: Actually, | don't think it's possible to lisall the rational numbers so that the numbers
always increase or always decrease, because tieardinitely many rational numbers greater
than any rational number and infinitely many rasionumbers between 0 and any positive
rational number.

Jasmine: You're right. Any list of the rationalmbers is going to have to jump around.

Emily: I'm stuck. | don’t know what to do.

Jasmine: Since we didn’t come up with the ideada@t know what motivated it. Well, we can
always compute more terms; and since we have nerbdeas, why not?

Emily and Jasmine compute more terms:

0,1, 1/2, 2, 1/3, 312, 2/3, 3, 1/4, 4/3, 3/5, 2B, 5/3, 3/4, 4, 1/5, 5/4, 417,
713, 318, 815, 5/7, 712, 2/7, 7/5, 5/8, 8/3, 3//A, Al5, 5, 1/6, 6/5, 5/9, 9/4, ...

10



Emily: Even though the sequence jumps around,dsdeem like the nonnegative integers
appear in increasing order.

Jasmine: That’s curious! | wonder, in what posiialo the nonnegative integers appear? Let's
see, 0 is the first number, then immediately dftat comes 1, then the 2 appears in position 4,
and the 3 appears in position ... 8. The 4 appegrssition ... 16. Hey!

Emily: The powers of 2!

Jasmine: It sure looks like the integewill appear in position2 Let’s rewrite the sequence,
but this time, after every integer, I'll go to améne:

0,

1,

1/2, 2,

1/3, 3/2, 2/3, 3,

1/4, 413, 3/5, 5/2, 215, 5/3, 3/4, 4,

1/5, 5/4, 417, 713, 318, 815, 5/7, 712, 2/7, 7I&,B/3, 3/7, 7/4, 4/5, 5,
1/6, 6/5, 5/9, 9/4, ...

Jasmine: It seems convenient to call the first ‘imw 07; that way, it appears that rowends
with n.

Emily: Okay. Funny that other than row O, rovappears to begin withrl/

Jasmine: From the formula,nfis an integer, it's true théfn) = 1/(h + 1). So when we get to an
integern, we’ll start the next line with i(+ 1). And then ... wait a sec!

Emily: Yeah?
Jasmine: It looks like the rows flip if you recipate the numbers!
Emily: How do you mean?

Jasmine: For example, look at the row that begitts W4 and ends with 4. If we reciprocate
the numbers in that row, we get them exactly irers® order: 4, 3/4, 5/3, 2/5, 5/2, 3/5, 4/3, 1/4!

Emily: | see! That's a cool observation. So i§ a nonnegative rational number, then since
f(r) are consecutive terms in the sequence, you'riegalyat 11(r), 14 would also be
consecutive terms in the sequence. That is, yguaposing thaf(1/(r)) = 1k.

Jasmine: Yes ... althoughcannot be an integer because the flipping ocaulgsamong the
numbers in a row, Not across rows.

Emily: Let’s try to prove this identity.

11



Jasmine: Okay! Let’s writein lowest terms aB/Q, whereP andQ are relatively prime
positive integers an@ is not 1. First of all, what i§P/Q)? Let’s say that if we divide by Q
we get the quotier€ with remaindeR, so thaP = QK + RandR< Q. Then P/Q =K and
{PIQ} = RIQ. Thereforef(P/Q) = 1/K + 1 -R/Q) =Q/(QK+Q —R). IsQ/(QK+Q-R) in

lowest terms?

Emily: Let's see. Suppo$@ andQK + Q —R have a common divis@. ThenD would have to
divide Q(K + 1) - QK+ Q—-R) =R But if D divides bothQ andR, thenD also dividesd?, since
P =QK+R We're assuming th& andQ are relatively prime, so it must be titat 1. Neat!
So, yesQ/(QK + Q —R) is in lowest terms.

Jasmine: Great! Assuming tHatis not 1 (so thatis not an integer), we want to show that
f(LA(P/Q)) = Q/P. We just computet{P/Q), so we know that (P/Q) = (QK +Q—-R)/Q. To
computef((QK + Q —R)/Q), we need to know what(QK + Q- R/ Q and {QK + Q —R)/Q}

are.

Emily: Well, QK +Q -R)/Q =K + 1 —R/Q. SinceR is the remainder we got when we divided
P by Q, we know that 0 R<Q.

Jasmine: In facR cannot be 0 and must be positiveRif 0, it would signify thaQ) divides
evenly intoP, but that would mean thBQ is not in lowest terms.

Emily: Oh, right. Then 0 RQ< 1, so (QK+Q- R/ Q must beK.
Jasmine: And {QK + Q —R)/Q} = { K + 1 —R/Q} must be Q —R)/Q.

Emily: I agree. S&1/£(P/Q)) =1/K+1-Q-R)/Q) =Q/(QK+Q - (Q—-R)) =Q/(QK +R),
but QK + Ris justP! So it’s true f(1/£(P/Q)) = Q/P!

Jasmine: Cool, we were able to prove somethingtah@ifunction!

Emily: Yes, although I’'m not sure if this functigatentity implies your row-flipping observation,
since it's not clear to me that the row that stauitt 1/nh ends withn. Couldn’t it end with some
other integer?

Jasmine: I'm not sure. But this question of whethe row that begins d/ends withn, for
positive integers, is equivalent to showing that the integers appeascending order. After
all, if the row that begins ti/ends withn, the integen + 1 would appear at the end of the next
row sincef(n) = 1/(n + 1); thush + 1 would be the next integer that follows Conversely, if the
integers appear in ascending order, sinoafpears right after the integer 1, the next integer
we encounter after Afvould have to ba. But how are we going to show either fact?

Emily: | think | may see something ...

To be continued ...
12



Examples of Posets

by Robert Donley
edited by Amanda Galtman

In previous installments of this series, path cmgnimethods led to important classes of integers,
such as binomials coefficients, Catalan numbeis Faimonacci numbers. Convolution also
appeared as a theme in various forms: Chu-Vandetenconvolution, Segner’s recurrence, and
the Cauchy product for sequences. Now we generaliz path model in a way that extends our
approach to one of the most important techniquesinbinatorics, partial orderings.

Some years ago, we hosted a chocolate tastinglat Sigle.? Sometimes, a girl had a definite
preference for one chocolate over another. Buesiomes, two chocolates were incomparable.
Which one tasted better? Neither; they were egaallicious, but definitely distinct in their
flavor. Chocolate preferences can provide exanmgfleghat's known as partially ordered set.
We're only partially able to order the chocolatéfswe use the symbol to mean “is not as
yummy as or is the same as,” for any two chocobategly, it may be thak yory x, butit
could also be thatandy are incomparable. However, it is still true teaery chocolate “is not
as yummy as or is the same as” itself, and if yaelthree chocolatesy, andz such thak vy
andy z thenitis surely the case that z What happens ¥ yandy x? Itcan’t be that

is not as yummy agwhile at the same timgis not as yummy as so it must be thatis the
same ay.

These considerations lead to this formal definitba partially ordered set.

Let P be a set. First, we defingelation onP to be a set of ordered pairs ) with x andy in
P. If (x, y) is in the relation, we say that is related tg..” For brevity, we sometimes give the
relation a name, such Rsand then writeXRy whenx is related tgy.

Definition. A setP with relationR is called goartially ordered set (or posetfor short) if the
relation satisfies the following three properties:

Reflexivity: for allx in P, we havexRx
Anti-symmetry: for allx andy in P, if xRyandyRx theny = x.
Transitivity: for allx, y, andzin P, if xRyandyRz thenxRz

Exercise: TheP be the set of integers and Rebe the relation corresponding to the usual
(That is, the relation is the subset of orderedsp@i y) wherex andy are integers ank y.)
Verify the three properties of reflexivity, antiraynetry, and transitivity.

With the less-than-or-equal-to relation, the intsgae not just partially ordered. They are
totally ordered, because in addition to the three propertiesdiatove, for any two integers,
one must be less than or equal to the other. Tdrerao incomparable pairs of integers.
However, in a partially ordered set, we can haeeehts in the set that atet comparable
under the relation. For example, consider thefstibsets of the set {1, 2}, and introduce a
partial order by saying that for subs8tandT of {1, 2}, we haveS T if and only ifSis a

! This content is supported in part by a grant from MathWorks.
2 See page 9 of Volume 2, Number 2 of the Girls’ Angle @il
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subset off. In this example, notice that the subsets {1} &ldare incomparable because
neither is a subset of the other.

When no confusion arises, we denote a relationchraesponds to a partial order byWe
borrow the symbol for “less than or equal to” etfeough the situation may have nothing to do
with comparing numbers.

Definition. We sayx is coveredbyy if x andy are distinct elements such tixat y and there are
no elements betweemandy. (That is, there is npodistinct fromx andy such thak z v.)

Definition. TheHasse diagramof P (or simplydiagram of P) with respect to is the diagram
such that

Each element d? corresponds to a node in the diagram,
a link is drawn ifx is covered by, and
the diagram is oriented such that smaller elemegmpear below larger elements.

Example: LetP ={a, b, ¢, d}. We can turrP into a partially ordered set by defining the
relation onP. We declarethat b,a c¢,b d,c d,anda d. We further declare that

a ab bc candd d. (Please verify that this relation satisfiestivee defining
properties needed to be a partial order.) Thedddsggram oP is shown in Figure 1.

/\
\/

Figure 1. A Hasse diagram.

If we know all covering pairg y, we can reconstruct the partial order. The ttauis
property lets us link consecutive covering relagidior instance, by transitivity bandb d
imply a d. Inthe diagram, we see this implication as aieage of connected links between
the smaller element to the larger one.

Definition. Whenx vy, asaturated chain from x toy in the diagram oP is a sequence of links
of consecutive covering relations. Tleagth of a saturated chain is the number of links. &inc
all chains considered here are saturated, we gballhe word “chain” to mean a saturated chain.
For instance, in the above exampla, {b, b d}is a chain fromatod of length 2.

In P, note thab andc are not related. Neithér cnorc b. In this case, we say thatindc

areincomparable.

14



Example: Supposé® = {0, 1, 2, 3, ...n} for some positive integamn, where corresponds to the
usual less-than-or-equal-to relation. THreis a chain of length.

Example: For nonnegative integers andn, consider the rectangle in tkgplane with corners
at (0, 0), tn, 0), (O,n) and (, n). LetPm n be the set of lattice points contained on or ms$ids
rectangle. That is, I&m n be the set of ordered pairsg withO r mand0 s n. We
now introduce a partial order & n by describing its Hasse diagram. Draw all thezZomtal
and vertical unit length line segments betweencadjblattice points ifPm n. Obtain the Hasse
diagram ofPm, n by rotating this drawing by 45 degrees counteichese. (Figure 1 illustrates
the specific casm = n = 1 if we identifya with (0, 0),b with (0, 1),c with (1, 0), andd with

1, 1))

Exercise: Let (r, s) and &, y) be inPm n. In terms ofr, s, X, andy, when doesx y) cover ¢, )?

Exercise: How many covering relations are there in this phdrder forPm »? How many
chains are there from (0, 0) tm,(n)? If, at each element &, n, you write down the number of
chains from (0, 0) tong, n), do you recognize the resulting arrangement ailrers?

Example: Fix a positive integen. Let's modify the previous example by lettiGg consist of
the pointsi, s) where 0 s r n. Form the Hasse diagram in the same way we dig-{or

but restrict to this isosceles right triangle oiri®. See Figure 2 for an illustration of the Hass
diagram ofCs.

i3.3)

(2. 2) (3.1)
N\ N
A 3

(1.1} (2. )

(0.0
Figure 2. The Hasse diagram@fwhenn = 3.

Exercise: How many nodes are in the Hasse diagra@.8f How many covering relations are
there? How many chains are there from (0, Opto)? Do you recognize the sequence of
numbers whoskth number is the number of chains from (0, Okt in C,?

Example: LetH be the set of points in 3D space whose coordirfatgsz) are nonnegative
integers. Analogously to the construction of thessé diagram d?m », we can describe all the
covering relations i by saying that for any nonnegative integeng andz, each of the points
(x+1,y,2,xy+1,2,and &y, z+ 1) coversX y, 2. We define théaeight of the point

X, y,2tobex+y+z

15



Exercise: How many points are there lihwith a given heighh?

To count the number of chains from (0, 0, O)rtorf, p), wherem, n, andp are nonnegative
integers, we can count words made up of three¢etteich a§ (forward),R (rightwards), and

U (up). A word corresponding to a chain from (00Pto (n, n, p) hasmF’s, nR’'s, andp U’s.
Leth=m+n+p. Then there ar€(h, m) choices for the positions &fin the word. After those
are chosen, there agg¢h —m, n) choices for the positions &in the word. And once the
positions of all thé-’'s andR's are chosen, remaining positions must be therlett By the
Matching Rule, the number of words is

ht  (h-m) (m m P
mi(h- m!  h p minlp

C(h, m)C(h—m, n) =

Exercise: Reformulate the above example and calculationgd-fiples of nonnegative integers
instead of 3-tuples.

If we restrictH to the set of points whose coordinates are 0 eelgbtain an example of a
Boolean poset In general, leh be a positive integer and Bt be the set ofi-tuples with entries
0 or 1. We turmB, into a partially ordered set by declaring thatriieplex is less than or equal
to then-tupley if and only if each coordinate &fis less than or equal to the corresponding
coordinate ofy. See Figure 3 for the Hasse diagrarB£f Notice that points are at the same
height in a Boolean poset if and only if they h#tve same number of coordinates that are 1.

s e

™

/R
) X

(1,0.0) (1.4 (0.0.1)

(1,1,0) (1.0.1) i0.1.1)

[k, O, 1))
Figure 3. The Hasse diagram of the Boolean fset

Exercise: Draw the Hasse diagram Bi. How many elements areBa? How many elements
are at heighh in B,? Describe how to form a chain from (O, ..., 0)Xp.(., 1) inBn.

SupposeX is a set witm elements labelext, x2, X3, ..., Xn. The power set of, denotedP(X), is
the set of all subsets & We can mak®@(X) a partially ordered set if, for any subsegtandV
of X, we declare thdt) V if and only ifU is a subset o¥.

In fact, we’'ve already seen the poBE€X), because it's equivalent Bp!
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Exercise: Show how the elements Bf can be matched with elementsRg§K) in such a way
that whenevex is less than or equal yan By, the element correspondingxan P(X) is a subset
of the element that correspondsyt@nd vice versa.

(Spoiler Alert!) There’s more than one way to de firevious exercise. We’'ll match elements of
P(X) with elements 0B, by representing the subdétf X by then-tuple whoseth coordinate is

0 if x; is not inU and 1 ifx is inU. Thus, the element (0, O, O, ..., 0) correspondee@mpty

set.

Note that the subsét is covered by the subsétif V is obtained by adding one new element to
U.

Exercise: LetU be a subset of. How many chains are there from the empty sef%o

Exercise: List all six chains from the empty setXo= {1, 2, 3} in P(X). Also, list the
corresponding chains ie.

To obtain a general version of Chu-Vandermonde clution for posets, we first note some
common features in our examples of posets withelynimany elements (which do not
necessarily occur in other finite posets):

There exist both minimum and maximum elements.| tGammandM. Then every

x in P satisfiesm x M. In other words, every elemenbccurs in some chain from
mto M.

The poseP is graded, that is, the length of any chain framto M is the same.

The graded property allows us to definetdwek of any elemenk in P, which is the
length of any chain froormto x. (The rank is what we called the height in thegisH
andBn.)

The collection of all elements with rahks called thenth level of P and is denoted by
Pn. The graded property of our poset ensures thiled fannot skip levels.

We can now repeat the argument for the Chu-Vandedengonvolution formula in the poset
context. For a fixed height every chain fronrmto M passes through a unique elemer®ipf

and all such chains pass through some elemd?i of herefore, to count all chains framto M,

we can count the number of chains through eachegleofP, and sum these counts. For a fixed
x in Py, the number of such chains is equal to

(number of chains froomto x) X (number of chains fromto M).
Example: For the Boolean posBhL with O h n, an elemenx of rankh has exacthh ones,
and there arf! chains fromm= (0, ..., 0) toc. Likewise, the number of chains fronto the
maximal elemenM = (1, ..., 1) isff—h)!, so there arél(n —h)! chains througlx. This count is
the same for all elements Bf. Since the number of elements of rénk C(n, h), we verify that
the total number of chains fromto M in B, is given by
C(n, h)h!(n—=h)! =n!.

Example: We use the chain counting formula to obtain tmaiffaof identities
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FmFn+ Fm+1tFn+1=Fm+n+1,

whereFy is the sequence of Fibonacci numbers (Wit F> = 1 andFn+ 1 = Fn + Fn— 1 for all

n> 1). The special case whem=n was given in the previous installment in this agri
Consider the poset of nodesy) in Pn,nsuch thak—2 y x+ 1. We call this the “Fibonacci
poset.” Figure 4 shows the Fibonacci poset ircse wheren = n = 3, alongside the various
chain counts from the minimal element (0, 0) towthgous elements.

(3,3) 13
/ N
(2.3 (3,2) f B
h‘u\ . e ./. \
(2.2) (3,1) |5] [3]
@ By // : 3
(1.2 it | 2 3
L9 By
(1,1 (2.0 |2] [1]
N
(1) (1,0) l |
N .

Figure 4.
Notice that the Fibonacci poset has vertical missagnmetry. By applying the Chu-
Vandermonde convolution formula for counting chdnasn (0, 0) to (3, 3), we get a number of
identities, depending on which level we apply thirfula to. From Figure 4, we get the
following identities:
13=15+18=13+25=22+3 3,

ie.,
F7 = F1Fs + FoFs = FoF4 + FaFs = FaF3 + FaFa.

Exercise: Explain how the Fibonacci numbers give the nunabehains from the minimal
element to the various elements in these Fibormusats.

Exercise: Explain the identitieEmFn + Fm+ 1Fn+1=Fm+n+1in terms of Chu-Vandermonde
convolution for counting chains in these Fibongmsets.

Exercise: Repeat the above analysis for the Catalan numlsarg posets.
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' The Needell in the Haystatk

Classification and the Brain: The Perceptron Alton
by Anna Ma | edited by Jennifer Sidney

i b e o
ﬂul::{‘:;ﬂﬂtﬂ LEUR!

: What do you think of when you hear the words “ai@l intelligence”?

© Perhaps you imagine a realistic robot that can watktalk like a

human. Or maybe you picture a house that cleamsrgom for you,

knows when you're hungry and makes you a snackfiadd your phone when you've

misplaced it. In each of these examples, a maahrieemputer is trained to perform tasks that a
human would/can do: walking, talking, preparingdpand so forth. These applications sound
nice, but how in the world can we expect anythmge able to learn all these tasks? Is this even
feasible? Actually, it already happens: brainscan do all of these tasks and much, much
more. If we want to create artificial intelligeneenhy not start by trying to model the brain?

T

P

Your brain is composed of billions of nerve cebdl@edneurons Each of these neurons is
connected to thousands of other neurons creatnggvéork of neurons, ormeural network.

Very broadly, your neural network works in the éoling way: you take environmental inputs,
process those inputs through your neural netwaoek @rain), and output a response. For
example, when you see and smell your favorite pitese visual and olfactory signals are sent
to your brain, which then triggers an output regeotinat tells your mouth to salivate to prepare
for digestion. Your brain does this so quicklyttiiau probably don’t even think about it!

It's natural to ask whether we can computationally
model our brain’s neural network, essentially givin
a computer a human-modeled brain. The simple
answer is this: not yet. The brain is extremely
complex. Computer scientists, mathematicians,
statisticians, cognitive scientists, and so fotithdo
not have a full understanding of how to accomplisf
such a feat. To build up to this goal, we mighttst
by trying to teach a computer to perform a simple
task known adinary classification, which uses a
single computational neuron.

In machine learning, binary classification — th&kta Figure 1. This machine, called the Mark 1

of classifying data points into two sets — is hBavi Perceptron, was used to model a single neuron in
relied on for a multitude of tasks. Spam filtegsto  the 1950s. Ithad a camera attached to it and was
classify whether an email is spam or not. Facial trained to classify pictures of men and wor
recognition algorithms on phones try to determimeter a person is the owner of the phone or
not. For these tasks, data is used to train aridign to perform the task. In this installment of
“The Needell in the Haystack,” we will present dgosithm that can be used for binary
classification: thgperceptron algorithm. It is a supervised machine learning algorithat tan

be used to find a linear separator for labeled.data

! This content is supported in part by a grant from MathWorks. Mmi a Visiting Assistant Professor at the
University of California Irvine.
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Figure 1 shows a picture of one of the first impdemations of a perceptrénwhich was

designed to emulate a single neuron in our bralis machine had a camera attached to it.
Scientists would show pictures of people throughdamera, then indicate to the machine
whether the picture was of a man or a woman. &mhil a simplified model of a neuron, the
perceptron takes an input, processes that inpdtiream provides an output. You might notice
that this machine is huge! Nowadays, we don’t reeexh a huge machine to run a perceptron
algorithm. In fact, it can be implemented withtjafew lines of code on a smartphone. Before
we can discuss the algorithm used to train thegpdran, let's revisit linear classifiers.

Recap: Linear Separators and Classifiers

Leta= (as, @, ...,ad) 1 ¢ denote a data pointayd { & 1} be its label such thatyf= +1,

then we will say that the data pombelongs to class +1 andyif= -1, we will say that the data
pointa belongs to class -1.

Given data points and their labels, our goal irabjrclassification is teeparate ¢, the space

in which our data points exist, into two regionseaegion containing all the data points labeled
+1, and one region containing all the data pomitelled -1. The object that separates these
points in space is called tkeparator, and we call a separator that is lineéinaar separator.

In ?, alinear separator is a line and in, it's a plane. Figure 2 shows examples of linear
separators in 2 and 3 dimensions, referred toasethmages ds/perplanes In higher
dimensions, hyperplanes become more difficult sn&iize; mathematically, though, they can all
be described as the poinis, (., ..., Xd) which satisfy a linear equation of the form

wixi + WoXo + ... +WgXd =V, where thev andv are constants and not all theare equal to 0.

A

e

A hyperplane in the plane 15 a lne. A hvperplane in 31D space 15 a plane.

Figure 2. Examples of hyperplanes in 2 and 3 dimensions.

To clarify the key features of the algorithm we ab®ut to describe, we shall assume that our
linear separator contains the origin. (This regtn can be overcome using the same algorithm,
but adding a dimension and putting a 1 in the doatd for that dimension in all the data
points.) In other words, we will consider hypernga of the form

WiXy + WoXe + ... +WgXg = O. (1)

2 There’s also a neat video of it available harew.youtube.com/watch?v=cNxadbrN. al
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Using (1) to determine our linear separator, wedsfme dinear classifier. For 2D data, a
linear classifier is a functioffxi, x2) : >  {-1, +1} that outputsa label based on a linear
separator. The function

+1 if wx +w,% 30

f , =
(%) -1 ifwxt w,%< 0

(2)

is a linear classifier, as it assigns an input gaiata = (a1, a2) to a class label of -1 or +1.

For d-dimensional data, this classifier can be equivgtemritten as

(9 = +1 if (W, %)3 0 3
© -1 if (w,x)< 0, 3)
d
wherex, wi ¢ and(w,x)=  wx denotes the inner product.

i=1
The Perceptron Algorithm

The perceptron algorithm is an iterative method tinals the linear separator defined by the
parametersv: andw: in (2). It does so by checking and correcting: algorithm makes a guess
of what it thinks the linear separator should bentuses one of the points in the data set to
check whether it's correct. If it's correct, ieth moves on to another point. If it's not, then it
updates the separator so that it's correct (farahd previous data points). Let’s watch this
algorithm at work!

Consider the following data points, each with gsaxiated label placed underneath:

(-2,-2) (-3,0, (3,3 (2,-1) (2,0 (-3,-3) (1,-4) (1,-1) (1,3 (21 (GB-1) (3,-2)
-1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1

For example, data point (-3, 3) has label -1 and daint (3, -1) has label +1.

When we start the algorithm, we assume no knowledget the data or labels. Since we have
no information, we can randomly choose a line aotsvith. Choosingv: = -1 andw. = 0, our
initial linear separator i%. = 0, as shown in the left subfigure of FigureS3nce this is our

initial guess for the vectav = (w1, w2), we denote in® = (-1, 0), and we’ll continue to use the
notationw* to denote thé-th approximation ofv.

Next, we look at the label and coordinates of dneuo data points. As shown in the middle

subplot of Figure 3, we have selected the pami(-2, 2) with associated labgk -1. This data
point isincorrectly labeledoy our current classifier Eq. (2) with=wP = (-1, 0). Since

(W', a)=((-1,0).¢ 2,2F 2 & ¢

the linear classifier assigns data point (-2, Bbel of +1, whereas its correct labeyis -1.
Thus, we want to update the linear separator basedis new information so thig) = -1. We
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Figure 3. One iteration of the perceptron algorithm stgstrith initial space (left), checking a
point (middle), and updating the linear separator (right).

started with the vectas® = (-1, 0). To update, the perceptron algorithm usasnd its labey
to create the next approximationtow! =wP + ya= (-1, 0) + (-1)(-2, 2) = (1, -2). This ensures
that the point that was previously incorrectly llgdeis now correctly labeled, since

(Wha)=((L-2).¢ 22F- 2 = <6

With w! = (1, -2), Eq. (2) now assigns the point (-2, 2tzel of -1, as desired. To plot the new
linear classifier, we plot the line correspondiagit— 2. = 0 as shown in the right subplot of
Figure 3.

Now consider a data point we haven't usee: (1, 3). This point is associated with the label
y = +1, but our current classifier misclassifiesthoint. We can verify this by checking

(wha)=({1-2),(L3)= 1 6- & L
Thus, the linear separator witiht = (1, -2) incorrectly assigns a label of -1 to aaw point.
This can also be seen in the left subplot of Figusence the new poimt(red star) falls into the
blue region instead of the red region. To addit@sswe perform the same update. Starting
with w! = (1, -2), the perceptron algorithm produces a approximation fom:
w2 =w! +ya=(1,-2) + (1)(1, 3) = (2, 1).
This ensures that the new point will have a latbellg since

(W, a)=((21),(13)= 2+ =5 ¢

The new linear separator, the lirg 2 x> = 0, is shown in the middle subplot of Figure (8).
the right subplot of Figure (3), we see that alhpoare classified correctly now.
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Figure 4. One iteration of the perceptron algorithm chmeckinew point (left), updating the
linear separator (middle), and then checking the remapuoirgs (right).

Notice that with each new misclassified data poiwd,update our approximationwf This is
what makes the perceptron algorithmitenative method. Iterative methods produce a
sequence of steps that aim to improve the apprdgis@ution to a problem. The perceptron
algorithm can be written as follows:

Step 1. Initialize the vecte®T  ° and set = 0.
Step 2. For each data poaéand its associated labgein the data set:

(a) Calculate the labéla) predicted by the current classifier using: Wt in
Eq. (3).

(b) If the classifier is wrong, i.e.,ia) vy, then lem'*1=w!+ya If the
classifier is correct, let** 1 =wt. Increment.

If our data cannot be separated by a linear sepathts perceptron algorithm will not converge.
However, if the data can be separated by a liregzarator, then the algorithm will find a linear
separator!

Now that the algorithm is laid out for you, you daynto implement this algorithm by hand or, if
you're familiar with coding, in a coding languageyour choice. One fun aspect of numerical
algorithms such as the perceptron algorithm isweatan experiment with different variations
of it. Try changing the order of the data. Ddas significantly impact the end result?

Computational neural networks are still of gre&riest to scientists and mathematicians, both
theoretically and from a practical standpoint. fénetworks are used to train self-driving cars,
for image processing and curation, and much méhe linear classification problem is just the
beginning; there’s still so much more to explore!
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Learn by Doing

Listing the Rational Numbers
by Addie Summer

If you're unsure why Emily and Jasmine (see fjgare so excited about the way to list the
nonnegative rational numbers that they learnedorabsmedia, this Learn by Doing is for you.

Rational Numbers

A rational number is a number that can be
expressed as the ratio of two integers.

For example, 1/2, 5/3, and 7 are all rational
numbers. (Note that 7 can be expressed as 7/1.)

We shall denote the set of rational number§by

1. Show that a rational number can be expressed
a ratio of integers in more than one way. In fact,
every rational number can be expressed as a ffatic
integers in infinitely many ways.

There are infinitely many rational numbers. There
are many ways to see this fact. For example, one
way is to note that the rational numbers contagn tr
integers, and there are infinitely many integeos, s
there must be infinitely many rational numbers.

2. For another way, show that the arithmetic meat
of two rational numbers is, again, a rational numb
In particular, ifs andt are distinct rational numbers,
anda = (s +t)/2 is their arithmetic mean, thers
betweers andt. That is, between any two distinct
rational numbers, there is a rational number. Hov
does this imply that there are infinitely many
rational numbers?

3. In fact, show that between any 2 distinct ralon
numbers, there atafinitely manyrational numbers.

Because there are infinitely many rational numbet
they enjoy some properties that wouldn't make
sense for a finite set of numbers.

4. LetF be a finite set of numbers that contains at
least 2 numbers. Lat={2x|xisinF}, thatisTis
the set of numbers that are twice the numbeFs in
For example, iF ={-1, 1, 4}, thenT ={-2, 2, 8}.

Why Rational Numbers?

You have 3 identical cakes and need to share it
among 5 people. How much cake should each
person get? The answer is described by a
rational number. Conceptually, we know that
the answer is an amount of cake that allows
each of the 5 people to get the same, maximum
possible, amount of cake. If we kebe this
amount of cake, then 5 timédgs the total

amount of cake: &= 3 cakes. To solve fe,

we divide both sides of this equation by 5 and
getA = 3/5 cake, an answer that involves a
ratio of integers. It would be convenient if 5
divided evenly into 3, because that would

mean each person would get a whole number
of cakes and you wouldn’t have to cut up the
cakes into smaller pieces to share them. But 5
does not divide evenly into 3, and so we have
to work with the rational number 3/5.

Numbers are often born out of the desire to be
able to provide solutions to some equation. If
all you had were the counting numbers (1, 2, 3,
4, ...), then the equation

5+x=3

would not have a solution. To provide

solutions to such equations, you can expand
the set of numbers to include negative numbers
(-y-3,-2,-1,0,1, 2,3, ...). These numbers are
theintegers But if all you had were the
integers, then the equation

2x=5

would not have a solution. To provide
solutions to such equations, you can expand
the set of numbers again to include ratios of
integers. That’s exactly what the rational
numbers are.

If all you had are rational numbers, then the
equations? = 2 would not have a solution.
How would you expand the rational numbers
so that this equation has a solution?

24



Show thaf~ andT are different sets. In fact, show that therensiaber inF which is not inT
and a number it which is not inF. (Why did we require thdt contain at least 2 numbers?)

5. However, leSbe the set of numbers that are twice a rationadb®i. That is, defin€to be
the set {X | xis inQ}. Show thatS= Q.

6. (This problem is a detour from the main thretthis Learn by Doing problem set.) Instead
of definingSas in Problem 5, consid8r= {x? | x is inQ}. Show thatSis a proper subset .
(A subset of a set is proper if it does not condiithe elements of the set.)

It is well-known in math circles that one can makest (albeit, an infinite one) of all the ratidna
numbers. Another way of saying this is that thee one-to-one correspondence between the
set of positive integers and the set of rationahbers. If you know abowtardinality, this is the
same as saying that the rational numbers haveathe sardinality as the set of positive integers.
(If you have two infinite sets, it is not alwaysssble to establish a one-to-one correspondence
between the elements of the two sets.)

A great way to gain appreciation for somethingigy to do it yourself. With that in mind,

7. Try to make a list of the positive rational numbeFsr this problem, we don’'t mean for you
to explicitly write down a list, because that woblkl impossible! What we mean is for you to
describe what the list is or how it is construgbeecisely enough that you can prove that your
list contains all the positive rational numbersheaxactly once. For example, if we were asked
to do this problem for the positive even integers,might answer as follows: We list the
positive even integers as follows: 2, 4, 6, 8,1),..., where th&th entry in the list, wherkis a
positive integer, is the even integdr ZI'o see that every positive even integer is is ltbt, note
that if n is an even positive integer, thets evenly divisible by 2, that i¥2 is an integer. If we
letm=n/2, thenn = 2m. By construction, theth integer in our list is®. Hencen = 2mis in

our list. Also, note that ifR= 2, thenk =], hence no even integer appears twice in our list.

Let’s look at a classic solution to Problem 7.

We imagine an infinite array whose first row cotssisf all ratios of integers, in ascending order,
with a denominator of 1, whose second row consistl ratios of integers, in ascending order,
with a denominator of 2, whose third row consigtalbratios of integers, in ascending order,
with a denominator of 3, etc.

/1 2/1 3/1 4/1 51 6/1 71
1/2 2/2 3/2 4/2 5/2 6/2 7/2
1/3 2/3 3/3 4/3 5/3 6/3 7/3
1/4 2/4 3/4 4/4 5/4 6/4 7T/4
1/5 2/5 3/5 4/5 5/5 6/5 7/5
1/6 2/6 3/6 4/6 5/6 6/6 7/6
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It won’t work to try to make a list of the ratiomaimbers by going through the fractions in this
array row by row since each row has infinitely mémagctions, so we would never get to the end
of the first row.

However, instead of going through the entries rgwdw, we traverse them diagonally like this:

Note that as we travel through the array, we wii@inter each rational number several times.
For example, the number 1 is met when we passghrthe fractions 1/1, 2/2, 3/3, 4/4, etc.

8. Explain why every positive rational number ighe array.

9. We form a list by writing down the fractions eecounter when we travel through the array
diagonally as indicated. If we come upon a numixehave already visited before, we simply
skip over that number. Explain why every ratiomamber will appear in some finite position in
our list.

While this classic solution does show us how to enakist of the positive rational numbers, it is
unsatisfying in some ways. For one thing, it's cleir where in the list a specific rational
number will occur. For example,

10. In which position does the number 99/100 occuhis list? (We don’t actually intend that
you figure this out. The intention is only thatupymake an attempt so that you realize the
difficulty of determining the answer to the questjo

(If you really must know, 99/100 is the 12,053ranter in this list!)

In the method of listing the nonnegative rationainbers that Emily and Jasmine are
investigating, the two already conjecture thatititegern will be the 2-th term in the list. By
contrast, using the method described above, hertharmositions of the numbers 1 through 20:

1,2,5,6, 11, 12, 21, 22, 31, 32, 45, 46, 63,/8480, 101, 102, 127, 128.

It's not at all clear how to determine the nexntsrof this sequence without going to the trouble
of making the list. However, if you're up for eglhallenge, there is this:

11. Letp(n) be the position afi in the list of positive rational numbers descriladdve (and
whose first 20 terms were just provided). Show #pén)/n? converges to 6.

12. What's the relationship between this topic enr&cover of this magazine?
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Notes from the Club

These notes cover some of what happened at GinigleAmeets. In these notes, we include
some of the things that you can try or think alaidtome or with friends. We also include some
highlights and some elaborations on meet matekiass than 5% of what happens at the club is
revealed here.

Session 31 - Meet 1 Mentors: Elisabeth Bullock, Jade Buckwalter, Cecilia Estemma
September 8, 2022 Tharini Padmagirisan, AnaMaria Perez,
Vievie Romanelli, Emma Wang, Jane Wang,
Rebecca Whitman, Muskan Yadav

Excellent communication is crucial to the way ihieh we handle math education, and
much communication is done via subtle body langudg® one thing, it's much easier to tell if
someone is thinking or disengaged if you can semtibut if their camera feed is turned off and
they are muted in a virtual meeting, there’s no teatell the difference without asking.
However, asking carries the risk of interrupting thought process if the person is thinking. For
reasons such as this, the virtual years of Ginhgjla were difficult. Thanks to Google
Cambridge, we are back meeting in-person! Goodiye button, hello free-flowing
conversations!

All of us at Girls’ Angle thank Google Cambridge hosting us, and especially to
Google employees Cammie Smith Barnes and Andrevet#zdt, and all those who have been
or will be chaperoning our meets there.

Session 31 - Meet 2 Mentors: Jade Buckwalter, Tharini Padmagirisan, Kate Pearce,

September 15, 2022 AnaMaria Perez, Laura Pierson, Vievie Romanelli,
Emma Wang, Jane Wang, Rebecca Whitman,
Muskan Yada

Although we strive to put our members into thevelrs seat of their own math education,
the process of getting there can take some tim@&rder to encourage members to generate
thoughts, we will sometimes engage them with a gathe whose rules practically beg for
modification. One can learn a lot about whereragreis in math by observing the rules that
they invent.

Session 31 - Meet 3 Mentors: Cecilia Esterman, Jenny Kaufmann, Kate Pearce,
September 22, 2022 AnaMaria Perez, Laura Pierson, Jing Wang,
Rebecca Whitman, Muskan Yadav

The concept of the greatest common divisor leadslot of mathematics, and nearly half
of our members are working on math where this qoinglkays a role. At this early stage, these
members form a number of groups that are not anfandat the others are working on. But it
won't be long before they discover each other. \Whaws what synergies might result?

On this issue’s cover, the greatest common digisbpairs of positive integers for
several pairs is depicted. What patterns do yeQ@ se

Let Q ={(x, y) | x andy are positive integer}. For any sub&atf Q, definenSto be the
set of ordered pairsX ny), where K, y) isinS LetG be a subset @ with the following
property:Q is the disjoint union oG, over all positive integers What can you say aboG
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Session 31 - Meet 4 Mentors:  Elisabeth Bullock, Jade Buckwalter, Caddisterman,
September 29, 2022 Tharini Padmagirisan, Laura Pierson, Jane Wang,
Jing Wang, Rebecca Whitman

Some members learned to fold Fujimoto’s hydrangaayrigami model that involves
only horizontal, vertical, and 45°-diagonal folgspducing a model that could, in theory, be
folded ad infinitum. The model illustrates simitgrand geometric series nicely.

Session 31 - Meet 5 Mentors:  Jade Buckwalter, Cecilia Esterman, Tharini Padnsagit
October 6, 2022 Kate Pearce, AnaMaria Perez, Laura Pierson,
Emma Wang, Jane Wang, Jing Wang, Rebecca Whitman,
Muskan Yadav

Here are three properties of the powers of 2. yoanprove them? (1) For any integer
greater than 1, the sequence of remainders obthindd/iding successive powers of 2 thys
periodic. (2) The sum of the firatpowers of 2 (starting with the zeroeth power)ng &ess than
the (0 + 1)-st power of 2. (3) If you take any stringdidits that begins with a digit other than
zero, there exists a power of 2 that begins wist $tring of digits.

Session 31 - Meet 6 Mentors:  Elisabeth Bullock, Cecilia Esterman, JeKayfmann,

October 13, 2022 Tharini Padmagirisan, Kate Pearce, AnaMaria Perez,
Laura Pierson, Jane Wang, Jing Wang, Rebecca Wjtma
Muskan Yada

Some members tried to figure out how a card tniokks. There are many card tricks
that connect neatly with mathematics. Can younheae?

Session 31 - Meet 7 Mentors: Elisabeth Bullock, Jade Buckwalter, Cecilia Estemma

October 20, 2022 Abhilasha Jain, Jenny Kaufmann, Kate Pearce,
AnaMaria Perez, Laura Pierson, Jane Wang,
Rebecca Whitman, Muskan Yadav

If you are familiar with single-variable calculusjt have not yet studied multivariable
calculus, think about this question: Ifet, y) = x? + y2. It's graph is the surface in 3D given by
the points X, y, ) which satisfy the equatian=f(x, y). At the point & b, a? + b?) on its graph,
there is a plane tangent to the graph. This ptanebe specified by an equation of the form
z=Ax+By+C. DeterminéA, B, andC as functions o& andb.

Session 31 - Meet 8 Mentors: Elisabeth Bullock, Jade Buckwalter, Abhilasha Jain,

October 27, 2022 Jenny Kaufmann, Tharini Padmagirisan, Kate Pearce,
AnaMaria Perez, Laura Pierson, Rebecca Whitman,
Muskan Yadav

If you are given the vertices of a parallelogrand3D space by specification of their
coordinates, can you determine the area of thdlgplagram? Note that the parallelogram need
not be parallel to any of the coordinate planes: éxample, consider the parallelogram whose
vertices are (0, 0, 0), (3, 4, 5), (1, 10, 6), &hdl4, 11). What is its area?

Can you figure out all solutions to the Diophaatayuatiora? + b? + ¢2 = n? in integers
a, b, ¢, andn? (This is a generalization of Pythagorean tripde3D.)
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Calendar

Session 31: (all dates in 2022)

September 8  Start of the thirty-first session!

15
22
29
October 6
13
20
27
November 3
10
17
24 Thanksgiving- No mee
December 1

Session 32 (tentative schedule): (all dates in 023

January 26  Start of the thirty-second session!

Februar 2

9

16

23 No meet
Marct 2

9

16

23

30 No mee
April 6

13

20 No meet

27
May 4

Girls’ Angle has run over 150 Math Collaborations
Math Collaborations are fun, fully collaborative,
math events that can be adapted to a variety of
group sizes and skill levels. We now have versior
where all can participate remotely. We have now
run four such “all-virtual” Math Collaboration. If
interested, contact us gitlsangle@gmail.com For
more information and testimonials, please visit
www.girlsangle.org/page/math_collaborations.htn

Girls’ Angle can offer custom math classes for $m
groups on a wide range of topics. For inquires,
email: girlsangle@gmail.com

Cowabunga! solution. See page 4.
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fliout the Club Enrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Pleass &but your relationship to
mathematics. If you don’t like math, what don't you like? If you Imagh, what do you love? What
would you like to get out of a Girls’ Angle Membership?

The $50 rate is for US postal addresses ohlyr international rates, contact us before applying.
Please check all that apply:

Enclosed is a check for $50 for a 1-year Girls’ Angle Membership.

I am making a tax free donation.

Please make check payable®xls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending enwilstangle@gmail.com

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and exdrtg math can be! Make new friends!

The club is where our in-person mentoring takes place. At thegitisoyork directly with our mentors
and members of our Support Network. To join, please fill out andrére Club Enrollment form.
Girls’ Angle Members receive a significant discount on clulndéeace fees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each mamhba individual and design
custom tailored projects and activities designed to help the memjerve at mathematics and develop
her thinking abilities. Because we believe learning follows niiusdien there is motivation, our
mentors work hard to motivate. In order for members to see mailti\ang, creative subject, at least one
mentor is present at every meet who has proven and published otigioi@ms.

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the memberswdder avhat they use math. Each
member of the Support Network serves as a role model for the nemitmgether, they demonstrate that
many women today use math to make interesting and important contribotsosety.

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We bétiaireshen our members’ efforts are
actually used in real life, the motivation to learn math in@gas

Who can join? Ultimately, we hope to open membership to all women. Cuyrend are open primarily
to girls in grades 5-12. We welcorakk girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math far$tdm math anxiety, math is worth
studying.

How do | enroll? You can enroll by filling out and returning the Club Enrollment form.

How do | pay? The cost is $20/meet for members and $30/meet for nonmembensbekéeget an
additional 10% discount if they pay in advance for all 12 meetsassion. Girls are welcome to join at
any time. The program is individually focused, so the concept aftiicef up with the group” doesn’t

apply.

Where is Girls’ Angle located?Girls’ Angle is based in Cambridge, Massachusetts. Forigecur
reasons, only members and their parents/guardian will be given tidaadion of the club and its
phone number.

When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendailsleplease
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will béke? Girls’ Angle activities are tailored to each
girl’'s specific needs. We assess where each girl is matieaity and then design and fashion strategies
that will help her develop her mathematical abilities. Everybedynks math differently and what works
best for one individual may not work for another. At Girls’ Angle,are very sensitive to individual
differences. If you would like to understand this process in mhetal, please email us!
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Are donations to Girls’ Angle tax deductible?Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we rely
on public support. Join us in the effort to improve math educaticedsBIlmake your donation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has.B.P
in mathematics from MIT and was a Benjamin Peirce assigtaféssor of mathematics at Harvard, a
member at the Institute for Advanced Study, and a National Sdiengcelation postdoctoral fellow. In
addition, he has designed and taught math enrichment classes at 8bkisalim of Science, worked in
the mathematics educational publishing industry, and taught at HC3&Nhas volunteered for
Science Club for Girls and worked with girls to build large modatagami projects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle reafies its goal of helping girls develop their
mathematical interests and abilities?Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, founder and director of the Exploratory

Yaim Cooper, Institute for Advanced Study

Julia Elisenda Grigsby, professor of mathematics, Bostondgeolle

Kay Kirkpatrick, associate professor of mathematics, Unityeodilllinois at Urbana-Champaign

Grace Lyo, assistant dean and director teaching & legr8tagford University

Lauren McGough, postdoctoral fellow, University of Chicago

Mia Minnes, SEW assistant professor of mathematics, WDisgo

Beth O’Sullivan, co-founder of Science Club for Girls.

Elissa Ozanne, associate professor, University of Utabdof Medicine

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Liz Simon, graduate student, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, associate professor, University of Washington

Karen Willcox, Director, Oden Institute for Computationalgiheering and Sciences, UT Austin

Lauren Williams, professor of mathematics, Harvard Unitsersi

At Girls’ Angle, mentors will be selected for their dgth of understanding of mathematics as well as
their desire to help others learn math. But does it re} matter that girls be instructed by people
with such a high level understanding of mathematicsWe believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tachlg/field regardless of the level of mathematics
required, including fields that involve original research. Ovecémuries, the mathematical universe
has grown enormously. Without guidance from people who understand a lohptimeatsk is that a
student will acquire a very shallow and limited view of mathé&satnd the importance of various topics
will be improperly appreciated. Also, people who have proven originaitehes understand what it is
like to work on questions for which there is no known answer andHmhvithere might not even be an
answer. Much of school mathematics (all the way through collegelves around math questions with
known answers, and most teachers have structured their teachingemdogtsciously or not, with the
knowledge of the answer in mind. At Girls’ Angle, girls willleatrategies and techniques that apply
even when no answer is known. In this way, we hope to help gidsngesolvers of the yet unsolved.

Also, math should not be perceived as the stuff that is done inataath Instead, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can showa@ulmath is relevant to their
daily lives and how this math can lead to abstract structuremaheus interest and beauty.
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Girls’ Angle: Club Enrollment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following people will be altb¥eepick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, such as alletigas/ou’d like us to know about?

Photography ReleaseOccasionally, photos and videos are taken to document andipaiblic program in all media forms. We will
not print or use your daughter's name in any way. Do we haweigston to use your daughter’s image for these purposée® No

Eligibility: Girls roughly in grades 5-12 are welcome. Although we waltkahard to include every girl and to communicate with you
any issues that may arise, Girls’ Angle reserves theatisn to dismiss any girl whose actions are disruptiveub attivities.

Personal Statement (optional, but strongly encouraged!}We encourage the participant to fill out the
optional personal statement on the next page.

Permission:| give my daughter permission to participate in Girls’ Angl@ave read and understand
everything on this registration form and the attached information sheets.

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
Enclosed is $216 for one session | will pay on a per meet basis at $30/meet.
(12 meets) _ ;
I’'m including $50 to become a member,
| will pay on a per meet basis at $20/meg and | have selected an item from the left.

I am making a tax free donation.

Please make check payable®rls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending enwiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with yothe first meet.
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Personal Statement (optional, but strongly encouraged!)this is for the club participant only. How
would you describe your relationship to mathematics? What would yotoldget out of your Girls’
Angle club experience? If you don’t like math, please tell us whyou love math, please tell us what
you love about it. If you need more space, please attach anothier shee

, - .-1 0 ,
Liability Waiver

I, the undersigned parent or guardian of the ¥alg minor(s)

do hereby consent to my child(ren)’s participaiio®irls’ Angle and do forever and irrevocably iede Girls’
Angle and its directors, officers, employees, agesud volunteers (collectively the “Releaseesiifrany and
all liability, and waive any and all claims, fofjuny, loss or damage, including attorney’s feesang way
connected with or arising out of my child(ren) stpapation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissidGols’ Angle or any of the Releasees. | forevelease,
acquit, discharge and covenant to hold harmlesRéheasees from any and all causes of action aimdslon
account of, or in any way growing out of, direatlyindirectly, my minor child(ren)’s participatian Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further idicig all
claims or rights of action for damages which my onichild(ren) may acquire, either before or afteron she
has reached his or her majority, resulting froncarnected with his or her participation in Girlsidle. | agree
to indemnify and to hold harmless the Releasees &ib claims (in other words, to reimburse the Bsées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdine cost of
defending any claim my child might make, or thagjtibe made on my child(ren)’s behalf, that isasézl or
waived by this paragraph), in any way connectetl witarising out of my child(ren)’s participatiamthe
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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