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The amount of mathematics discovered has long since surpessedny
individual can master. It would be a feat just to fully absbebpublished
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An Interview with
Tullia Dymarz, Part 1

Tullia Dymarz is Associate Professor of
Mathematics at the University of Wisconsin.
She earned her doctoral degree in
mathematics from the University of Chicago
under the supervision of Benson Farb. She
was awarded an NSF Career Grant in 2016.
In addition to her research and teaching, she
runs a program for high school girls called
Girls Math Night Out!

Ken: | wanted to start by urging our readers
to read the wonderful companion essay by
Isa Barth on page 10, as I'll assume
knowledge of that content and takeoff from
there.

Isa quoted you as saying that in college you
had a friend who you took many classes
with, but that he was, “Never interested in
the beauty of math.” So, the first question |
have for you is, “Could you please give us
an example of mathematical beauty?”

Tullia: Okay. This friend of mine and |
actually also went to high school together,
and in 19 grade, we had a math class that
was for those of us who had finished
calculus and the rest of the high school
curriculum. The teacher showed us the
perfect shuffle where you take your deck of
cards, and you split it in half, and then you
interleave the cards perfectly. Actually,
there are two perfect shuffles, depending on
whether the top card stays on top, which is
called an “outer shuffle,” or the top card
becomes the second card from the top,
which is called an “inner shuffle.” Our
teacher had us do perfect outer shuffles over
and over, and then after eight times, he had
us check the deck again, and we saw it was
back to where it started!

You really have to be
thinking about infinite
objects for quasi-isometry
to be interesting.

| thought this was just like magic, of course,
back then. But then, we learned the math
behind it when we started talking about
permutations, iterating permutations, and
how you could look at it abstractly and
determine exactly how many times you need
to perform the same perfect shuffle before a
deck of any length would come back to its
original order.

| really enjoyed the abstract theory that
came out of card shuffling, whereas, my
friend, would have been like, “Great. Eight
times,” and been ready to move on. Okay,
maybe I'm exaggerating a little bit, but |
thought that was something practical that led
to a lot of abstract beauty.

Ken: That's a great example. Can you
pinpoint what makes it beautiful? Or is that
something of a mystery?

Tullia: Yes, right. Because, of course,
beauty is in the eye of the beholder, and —
I’m not sure. | think for me, it was the way
the card trick was the starting off point for
the general, abstract theory. | found that |
was less interested in the application than
the abstract understanding, or theory, that it
led to.

Later on in my undergraduate years, |
learned about groups and how the card
shuffle was really just one little aspect of
this abstract notion of groups. And so, |
really liked how you could take some
concrete thing, then leave it and go off into
this universe that exists, really, only in your
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head. So, yes, I think it was the abstraction
that drew me and what | found beautiful.

Ken: Is this what motivates you to do
mathematics — a search for mathematical
beauty?

Tullia: Yes. Right now, I think it's like an
exploration of these sort of objects that only
exist in the abstract and in my head. That's
not to say that | don’t try to make concrete
realizations. I'm actually in my office right
now where you can sethat I’'m very much
into working with pipe cleaners to build
models of things. But really, it's exploring
these abstract spaces that others have
defined, or that I've defined, and trying to
understand their properties.

Ken: Wow, what is that pipe cleaner
contraption a model of?

Tullia: This is called a Diestel-Leader
graph. It's actually a very small portion of
it. You have to imagine it goes off to
infinity in both directions. It's part of an
infinite graph or network.

Ken: It's not at all clear to me how that
would continue.

1 Qur interview was conducted over Zoom.

Tullia: So, every yellow node has two edges
going up and two edges going down. Now
imagine the same at the top where the edges
going up from two of the yellow nodes

meet. They actually meet in another yellow
node, although this particular model does
not have the top and bottom nodes colored
yellow yet. But at the top where they meet,
there would be another yellow node with
two edges going up from it, and there’s
already two going down. This continues to
infinity in both directions.

This represents one of the objects that I'm
very interested in studying. Of course, |
can’t make an infinite model, but | can make
small finite chunks of it, and try to help
myself visualize what the whole thing looks
like.

Ken: Would you describe one of your own
favorite discoveries and say something
about how you discovered it?

Tullia: Actually, it was about these objects.
But maybe a better way explain it is to first
talk about metric spaces. A metric space is a
space that has a notion of distance. For
example, on this model the distance between
one yellow node and another can be
computed by finding a path between them
that traverses the fewest number of pipe
cleaners. The distance is then the number of
pipe cleaners traversed. In a network, that's
often how we define the distance between
nodes of the network.

My favorite result is actually not that hard to
state. | showed that there are no bijections
between two of these kinds of metric spaces
that doesn’t distort distance too much. That
is, there’s no way to match up the points of
one with those of the other that doesn’t
distort distance too much.

© Copyright 2021 Girls’ Angle. All Rights Reserved. 4



Let me give you an example. If you just
take the positive integers 1, 2, 3, 4, etc. then
compare them to the positive even integers
2,4, 6, 8, etc., by dividing by two, you get a
matching from the positive even integers to
the positive integers and you've only
distorted the distance by a factor of two. For
example, the points 2 and 4 are a distance 2
apart, and they get mapped to 1 and 2, which
are a distance 1 apart, so they get squished
together by a factor of 2.

So | studied this sort of thing but on the

more complicated space of these infinite
graphs, of which these pipe cleaners model a
small portion.

The way | discovered this was by deciding
that on these Diestel-Leader graphs, you
can’t do anything like this trick of dividing

by 2. It's a basic observation, but somehow,
nobody had thought of it before.

Ken: | saw that you've written a lot about a
concept called “quasi-isometry.” Is what
you're talking about now related to quasi-
isometry?

Tullia: Yes, exactly.
Ken: So, what is quasi-isometry?

Tullia: Well, let me start with something
that people are more used to, although they
might not use the same term in school, and
that’s the notion of isometry. Isometry is
something that preserves distances exactly.
So, for example, if you have two circles of
the same size drawn on a piece of paper,
well, you can kind of slide one to exactly
overlap the other one. Sliding doesn’t
change distance at all. That's an isometry.

In school they're called “equivalent circles,”
and you can try the same thing with squares,
or triangles, or any shape, really. And in

school, you study conditions for when two
shapes are equivalent, such as two triangles
are equivalent if they have the same side
lengths. If two triangles have the same side
lengths, then you can slide, flip, and rotate
one triangle onto the other so that they
overlap exactly.

We say those two triangles are “equivalent,”
but really, we should maybe say that they
are “isometrically equivalent,” because
we’ve matched one to the other, all without
changing distances at all. But then, you
could relax that, and you do in school, too,
when you're talking about similar triangles,
where a similar triangle is one that has the
same angles, but maybe not the same edge-
lengths. So, you're allowed to scale one
triangle to the other.

When you scale, think about what's
happening to distance. You're stretching or
shrinking distances by some factor, and you
can do this not just with triangles, but any
other sort of shape. So, for example, any
two circles are similar because you can scale
one to the other. Any two squares are also
similar.

But a square and a rectangle that’s not a
square, are not similar, because to make
them look alike you might have to stretch
one pair of sides but shrink the other pair.
But maybe you want to even consider
shapes where you stretch in one direction
and shrink in another to also be equivalent
for certain purposes, and so this gives
another notion of equivalence that is getting
close to the notion of quasi-isometry.

Maybe | say, “Okay, I'll allow stretching
different parts differently, but at most by a
factor of ten and at least by a factor of two,”
or something like that. And then you can
say, “Well, the square can be equivalent to
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T I I . D . About the Author: Isa Barth is an undergraduatehermiatics
u Ia yl I larz . student at the University of Wisconsin-Madison.r@atly in their

second year, they humbly acknowledge that theihemagtics

: : education is still, in some sense, in its earlgsta— although they
O n C O n n eCtI O n I n are especially interested in mathematical logic @pdlogy. For
now, though, they are enjoying exploring everythting field has
: : to offer (honoring a certain professor’s advicétédke as many
M ath an d I n L Ifé interesting classes as possible”). They look fedaa a future in

which they can work in research and discover evererabout

by Isa Barth | edited by Jennifer Sidney Silvi math and our world.

Tullia Dymarz claims that she never made a proper decision to statyematics; for her, it was
“always the obvious thing to do.” Perhaps this is because matksrhati always surrounded
her: raised in Edmonton as the daughter of a physicist, she wasagemby her father to
explore mathematics growing up. He gave her private lessons, ardsivdiadmits that she was
never particularly fond of her father’'s teaching style, his memjofestered a deep appreciation
for mathematics in her from early on.

After breezing through her high school’s mathematics curriculumawtar to spare before
graduation, she was presented with a unique opportunity. In the compasynafl handful of
peers, she took a special course curated by her 12th grade teaamepliag of college-level
math concepts, from linear algebra to basic group theory. Shespesally fond of one lesson,
in which methods of shuffling cards were analyzed using permutatitingasn’t until later that

| learned the more abstract math behind the concepts,” sheaggeftad there were so many
really cool projects at the time.” The class showcased matie afnusual ways mathematics
dictates everyday life, and gave many reasons for Dymarz to féethier love with it.

Dymarz stayed close to home for her undergraduate studies, optitigeritonors mathematics
program at the University of Alberta at the start of het fiemr. This was common for many
students at the time, and there were several draws to goindepecol the area where you grew
up. “If you go to [university] where you went to high school, you keep thaselghips through
college,” she explains, “especially if they're interested in wioatre interested in.”

Dymarz does cherish the many connections she has made with her peéns gears; indeed,
she has always been able to find a place among her classmatesvelrf even when bonding
with others interested in math, she found through high school and her aulletgryears that
few of them appreciated math in quite the same way she dithd“dbne high school friend, we
were always competing.... We took some of the same honors matsdassiversity
together, but he was never interested in the beauty of math. Hedwardo something
practical.” Even in her honors program, she was the only one amtak group of students with
her sights set on graduate school.

It should come as no surprise that ditemanage to find others who appreciated the “beauty of
math” in her graduate program at the University of Chicago. Asdahs not the only change
graduate school presented: in a class size of twenty-four stuslemtsas one of eight girls — a
far cry from the male-dominant ratios she was so familidr. w

As she and her peers tackled countless “impossible” problems tog#tédound herself relying
more on her fellow females than ever before. Yet this was ealyndue to the rigor of the
curriculum; there was also a change in the gender dynamic she was taniglplore. “If you had

L A version of this essay was submitted to the AWM/Mf#s&y Contest in 2021.
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two guys talking, most often they would talk math. But when a guydatkea girl, oftentimes
the conversation drifted away from math,” she admits. “Yaltbde more forceful with them.
And if there were fewer women there, | believe it would have baster to give up.” With the
increasing need for collaboration that graduate school demanded, the sdiygofemale peers
proved to be integral, and they created an environment in which theymotiigte and
challenge each other.

Perhaps the greatest connection Dymarz feels she has been agketowas with her advisor.

In fact, in some ways she cared more about her advisor’'s petgdhah their specialization.
She opted to develop her thesis outside of her original area of intesésad choosing a mentor
who could match her abundance of enthusiastic energy. For Dymara#m¥ @ sacrifice; in
her eyes all mathematics is interesting, thus fascinatieguas prospects abound.

She ended up selecting geometric group theory as her main area of\8tuely.she’s in a bar
and is asked what she does for work, she likes to explain her gpecaimewnhat jokingly — in
terms of the fundamentals. “I tell them I study triangles,”dhekles, before eventually going
on to draw several comparisons to things like social networks and @istaacelled in a car.
Her description, ultimately, proves itself fitting — and itngs to light many instances in which
pure mathematics intersects with reality.

As a professor at the University of Wisconsin-Madison, Dymarz mwoesi her “study of
triangles” and to foster a love of mathematics in others. Oaftbpr duties as a professor and
researcher, she runs the universifgigds Math Night Out!program, which presents a unique
opportunity to high school girls interested in engaging in STEM rese&wctording to Dymarz,
the main goal of the program is to provide teens with an alterretiieonment to math meets
or other typical mathematics programs, which tend to be purely cimgett offers a chance
for teens to experience the same female-centric environmena2yxperienced in graduate
school, one which emphasizes discovery and camaraderie.

While Dymarz does laugh that she “keeps a good work-life balance” amébaisfelt
particularly overwhelmed by mathematics, she remains mindfhleoivays math surrounds us
and connects to our world in unexpected ways. Indeed, one of her favoaile from a student
details a rather unorthodox case of this: while teaching a proaf-basese at Chicago through
her graduate program, she received a note from a student in the hesnariio claimed that
learning proofs had made her “completely upend” the way she wrote .e&aysrz well
understands the student’s sentiment. “It creates a unique wawnlkihthi’ she notes about
proofs, “an abstract way of thinking. | think that’s the power,dhis system of thinking about
arguments... it can be really useful, no matter what you do.”

That email details one of many stories that show the breadthtbématics’ reach — and the
depth of Dymarz’s impact on her own students. As someone helping tioeniing next
generation of mathematicians, she remains confident that opportdoitescess in the field
are plentiful. After all, she has seen firsthand many of teswthat math stays

relevant — through the sheer abundance of connections to our world, as always it
connects people to one another.
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Mathematical Buffet: Creativity Counts
Curated by Ellen Eischen

Like many art forms, mathematics can be strikifgdautiful. In 2021, the Jordan Schnitzer MuseurArbin Eugene, Oregon host@teativity Countsan exhibit
that Professor Ellen Eischen organized to shareative side of mathematics with the broader conitydnin the next few pages, you can get a taste ofxihbit,
which features mathematical artwork produced byetits and faculty at the University of Oregon. €kplore further, check out
pages.uoregon.edu/eeischen/CreativityCounts/

Figure 1. Minotaur's Paradise, by Cruz Godar

Ever wanted to make your own maze? If you've tyedi might find it's not as easy as you mightkhibraw just one long path, and it's too easywdiats of small
ones and you'll often run into the same problerevéin a small maze is tricky to make, a massiveseeens downright impossible -- and yet pick up puzle book
for children and you'll see pages upon pages ohthidow do they do it? Enter Wilson's Algorithrit's a method that makes maze-making as easylaw/fiog a
recipe, and what's more, it produces a truly randam— every single possible maze of a fixed sizetfsame chance of being drawn.

1 Many thanks are due to consultant Heather Bamo@s fmprov@Work, whose workshops helped the artisttured irCreativity Countsstrengthen their skills to communicate effectively
about mathematics with people of all mathematieakigrounds. This project was supported by NSF CAREEant DMS-1751281 and the Williams Fund.



Figure 2. Engineered for Success, by Cruz Godar

Have you ever looked at a fern up close? Thel@ayes are exactly the same shape as the big @hésis an example of something called a
fractal, and while it may seem firmly an artifa¢tloe physical world, it's just as naturally a puotiof math. Placing a tiny green dot on a
canvas, repeatedly applying a simple kind of fuorctialled an affine transformation to it, and dragva new dot in every place it visits, we wind
up with the Barnsley fern, named after its creaffine function we apply may have been carefullyieeered, but it's no less remarkable that
something so beautiful and complex can arise fromeghing so simple.

You can watch the fern being generated and alsowith a variety of fractals on Cruz Godar's websitcruzgodar.com/applets/applets.htmi




Figure 3. The Sand Reckoner, by Andy Huchala Figure 4. Zooming in on the center of the image.

This piece attempts to capture the spirit of tHmite and print it on a single page. It uses ihaalled arAbelian Sandpile modelvhich is a fractal that colors "grains of sangl'their slope. A fractal is a kind of
mathematical picture with a repeated motif no nidttev far in or out you zoom. The Abelian Sandpiledel achieves this by stacking a large numbegraihs of sand in the center of a grid, and thepples" it onto

the adjacent 4 tiles. The taller the pile of sahthe start, the more times you can topple, aaclbser to the illusion of infinity you get. Adudj color depicting the different heights of santpbeus visualize the
resulting fractal structure.
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Figure 8. 36 Epicycles, by Martin H. Weissman

Remainders are the cold leftovers of arithmetic¢,tbey are the tastiest morsels for mathematiciamsact, remainders play a fundamental role impater security.
So what are these circles you see here? Zoom theohig circle in the green tile, near the tog:-le€3tarting at the top, the numbers are 1, 2, 46832. But the next
number isn't 64. Since 64 + 37 = 1, with a remeiraf 27, the next number is the remainder: 27enTyou double again to 54. Since 54 + 37 = 1, witBmainder of
17, the next number is 17. And so on— just keegaubling, and every time you see a number biggar 87, divide by 37 and take the remainder. Theclicle
shows you that this process eventually takes yok tml.

On the cover, "Gaussian Fireworks," by Ellen Eischen.

Which shapes can you draw with an unmarked straégfe and compass, if you require all the edgee thé same length and the angles all to be eqedb other?
This question stumped the ancient Greeks and otbe2900 years. UsinGaussian periodghe numbers visualized here, Carl Friedrich GaumsksPierre Wantzel
finally determined when such shapes could be coctetd. Gaussian periods continue to play imporles in mathematics. Because the possibilitsegfing their
large-scale plots is so new, though, many matheraas are not yet aware of their striking visuapmrties.



The Needell in the Haystatk

Getting to the Bottom of It: Gradient Descent and its Variants
by Anna Ma | edited by Jennifer Sidney Silva

Suppose you’re standing at the top of a hill and your goal is to get to a
box at the bottom of the hill. It's a nice, clear day and thexe@a
obstacles in your way. You look out to fhedscapeof the hill and see
the optimal, most direct path to get to the bottom. You takeptithtand open the box to find a
map to a treasure chest. On the second day, you follow the mépdpdurself at the top of
another hill. According to the map, the treasure chest edidttom of this hill. Unfortunately,
it's a very foggy day, so you cannot look out into the landscape to degewhat direction to
follow to get to the bottom of the hill, as you did before. Thisddestop you, though; instead
of using the global landscape, you decide to gdttoad information by looking at the ground
around you. Using that to determine which direction the hill is sloping davdsyyou take
small steps, re-evaluating
periodically the best direction to
move in, until you eventually get to
the bottom of the hill. There, you
open the treasure chest to find one
last map and a blindfold. The last
map leads you again to the top of a
hill, where you find a turkey that
challenges you to get to the bottom
of the hill blindfolded. However, in
addition to being blindfolded, after
every step you take you must spin Figure 1. The landscape for each day.
around to face in a random direction.
Now, how are you going to get to the bottom of the hill?
In each of these examples, we start with the same probleng @iethe top of a hill).
But with each passing day, obtaining our goal becomes more difficnltcashation disappears.
This is typically how we progress through difficult problems: you stéh a simple problem,
and then remove assumptions (such as access to the entire lanttssapayhether you can still
solve it. In this article, we will journey through each probksyan analogy of different ways to
minimize an objective functioR(x). We will then connect this to the previous installment of
The Needell in the Haystack the randomized Kaczmarz algorithm.

Minimizing the Objective Function on a Clear Day

Given a functior(x), suppose we want to find a valkeuch thafF(x) is as small as
possible. In Figure 1, we've placed our hill onxggplane. The graph of the functi&ix) looks
like the hill and if we want to get to the bottom of the hill, wed® findx whereF(X) is as
small as possible. Now, if we're on the first day, we knowethtge landscape of the problem
and we can compute directly the minimizel¢X). We can interpret this as knowing the

! This content supported in part by a grant from MathWorks. Annés ldormer student of Deanna Needell's.
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functionF(x) that describes the hill, and being able to compute a
direct solution. In Figure 2, we ha#x) = (x—c)?. From here

we can deduce that the minimizer will e ¢ asF(c) = 0,
wheread=(x) O for allx, and we proceed directly to the bottom
of the hill.

In higher dimensions, suppose we want to solve a linear
systemAx =y wherex is ann-dimensional vectoA is anm x n
matrix, andy is anm-dimensional vector. To find a solution to
this linear system, we can seek to minimizel#ast squares

error objective functiorF(x)  [Ax—yIP, where|\| = "2,

for vin R™, denotes the squared Euclidean norm. Let

_ _ Xx=min F(x). This objective is referred to as the least semiar
Figure 2. The hill as an x

objective function. error objective because we seek to minimizestheared error,
or the sum of the squares of the differences betwee

measurementg and inner product@“(, a) for an estimatedk, wherea; is theith row of A. On a

clear day, when the entire landscape informati@ceessible to us, we can solve fodirectly.
In particular, we can compute= A"y where A" denotes the Moore-Penrose pseudoinveasd

this will be the minimizer oF(x). In fact, if we assume that our linear systers hanique
solution, thenF (X) =0. Now that we know how to solve our problem orenidear days, let's

move on to foggy days.
Minimizing the Objective Function on a Foggy Day

On foggy days, we can only use local informatiodétermine the direction we move in. Recall
that on this day, our approach was to look at themd around us to determine what direction
was downhill, then take a few steps in that dicettefore looking around again to reevaluate
the direction we should move in. This is exacthaivthegradient descentalgorithm does.

More precisely, the gradient descent algorithmigerative process that updates successive
approximation of minimizers of an objectif#x) and proceeds as follows:

X = % - &N F(X),

wherex; denotes théth approximate minimizer d¥(x), is a user-defined parameter that
controls how drastically the approximations chafige iteration to iteration, anblF (x,) is the

gradient ofF atx;, which is a vector that points in the directioatttocally results in the biggest
increase in the value &(x) and whose magnitude is a measure of how quiekty changes
when you head in that direction. The parametisroften referred to as the learning rate or step
size. In our analogy, you are located at the apprate solutiornx, the learning rate is a proxy
for the length of the steps you're taking, andltdoal information you’re using appears in the
gradient descent update through the gradient eti@tuliF (x,) .
For our example in Figure 2 wifi(X) = (x —c)?, the gradient oF(x) is 2 —c), thus our

gradient descent algorithm prescribes taking tHeviing iteratesx:+1 =X — 2 (x —c). When

=1/2, we can see that. 1 =c. If we pick a smaller step size, it will takemsre iterations to

2 The Moore-Penrose pseudoinverse is a generalization of thig imeerse when the matrix is non-square. When
the matrixA is full rank, the pseudoinverse Atimes itself is the identity matrix.
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get close to the minimizer=c. If we take too large of a step size, we may siveot and misg
= ¢, which can cause a delayed convergence. In sasgscit may even cause the algorithm to
diverge. Figure 3 demonstrates both possibilitieere is chosen to be small (red arrows) and
where is chosen to be large (orange arrows).
This observation brings us to an interesting qaasti
How do you choose the learning rate paramefer
gradient descent? The easiest way to pickto pick a
small, conservative and keep the same, or fixed, for
every iteration. We can also choose to start witdrge
value of and slowly decreaseas the iterations progress.
This would hopefully prevent us from experiencihg t
scenario presented in Figure 3. The learningaatebe
selectecadaptively based on how steep the hill is at each
iteration or other information (such as if you @ubke
Google Maps to gain some additional informationulymur
location). This is by no means an exhaustiveofistays to
select the learning rate, and parameter seledistill an active  igyre 3. Different gradient descent
area of research in the machine learning and cgsinon paths based on a small learning rate
communities. (red) and a larglearning rate (orangt
In the context of the least squares objectivegtadient
can be written a8lF (x) = A" (Ax- y) and gradient descent prescribes the itepatas= x; —
AT(Ax —Yy). As in the 1-dimensional example, we can usértfeemation fromA andy to get a

local approximation of the gradient but no longavéithe resources to compiée What
happens if we have even less information than tihat@articular, what if we only have access to
a single rows; of A and its corresponding measuremgras in the randomized Kaczmarz
algorithm? For this, we turn to our last setting.

Minimizing an Objective Function while Blindfolded

When we are blindfolded, in addition to not beitdeato use local
information around us (i.e., use the entire maijixo determine the
direction the hill slopes downwards, we're alsarigaandomly
chosen directions when making each step. Perhap&ver, we can
feel anapproximatedirection in which the hill slopes downward with
our feet. For any random direction we're facingtédmined by a
randomly selected roa), we will take a small step in the direction
that feels like a downward direction and then cargiwith this
iterative process. This is exactly how #techastic gradient
descent (SGDplgorithm works.
. . .
Figure 4. Example of a path for Instead of using the full gradieht (x) = A (Ax- y), we

stochastic graent descen consider approximations of the gradien¢x). WhenF(x) can be
written as a sum of some component functions,ve.can write

F(x)= ir:l f (x), the iterations of SGD are written &s, = x - a\ f(x), wherefi(X) is a
randomly chosen component of the objective fundipg). If Nf (x) areunbiased
approximations ofF (x) (that is, the expected value &f, (x) is NF(x)), then on average, we
will be moving in the direction of the full gradien
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For the least squares objective function, we catev#(x) = 2  §(X), where

f,(xX)=((a, %) - y)’. Note thafi(x) only depends on a single row of the ma&ixTo visualize

this, we will need to move into a 3-dimensionalfig, as illustrated in Figure 4. Note that in
Figure 4, we do not take the most direct path ta@ée minimum of the function; nevertheless,
our path on average moves us in the directionefmimum.

Connections to Randomized Kaczmarz

Just as with the randomized Kaczmarz algorithm, $&Sgarticularly useful when working with
large-scale linear systems. In order to use gnadiescent, we would need to compute the
gradient ofF(x) and therefore need access to the entire matridowever, due to hardware
constraints on memory, we may not be able to lado our computer’'s working memory all at
once. Alternatively, rows oA representing data points may be streaming in ey, thus we
cannot use the entire matrix at once. The sintiggrbetween the randomized Kaczmarz
algorithm and SGD are not superficial. In facgytlstem from the fact that we can think of the
randomized Kaczmarz algorithm as a special instahtiee SGD algorithm in which the
objective function is the least squares objective the learning rate is proportional to the row
norm of the randomly selected row. That is, ifpiek the component functidi(x) with

probability |a|” /|| 4]’ and set the learning rate= 1/|f|P, then the SGD iterate becomes

1

la

this is exactly the same iterate as used in th@oraized Kaczmarz algorithm! This connection
allows us to leverage theoretical guarantees tiegtraown about SGD to better understand the
randomized Kaczmarz algorithm, and vice versawhAls the Kaczmarz algorithm, many
variants of the SGD algorithm have been proposkgou’re curious, you might look up one of
the following: the adaptive gradient algorithm (Adad), root mean square error propagation
(RMSprop), adaptive momentum estimation (Adamyge® [2] for an overview. However, these
variations of SGD, unlike the Kaczmarz algorithme aot used just for solving linear systems.

Xa=%-—>(a x)- y)d;

Beyond Least Squares Objectives

In some sense, the objective functions that we’ve
been looking at so far have been fairly well-
behaved. This “well-behavedness” is
characterized by a concept we @ahvexity. A
function is considered to be a convex function if
for anyx; andx., and forany 0 t 1, we have

f(txa + (1 —t)x2) th(x1) + (1 —)f(x2).

Figure 5 illustrates this definition.

Figure 5.Convexity
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Geometrically, this says that if we draw a lineraegt between any two points on a
graph (blue), the graph of the function betweed)(les below the segment. Note that the
functions in Figures 2-4 are examples of convextions. The least squares objective is also an
example of a convex function. The reason convextfans are considered well-behaved is
because their minimum values are global minimuifise beauty of SGD and gradient descent
algorithms is that you can use them to solve maifgrdnt kinds of objective functions; they're
not restricted to the least squares objective @a&#tzmarz algorithm is, nor are they restricted
to convex functions!

A function that is not convex is referred
to as anonconvexfunction. If our function is
convexy, it usually has a single, unique
minimizer, but if we have a nonconvex function,
there could be small valleys that we get stuck in
when using gradient-based methods. Take, for
example, the function illustrated in Figure 6. In
this figure, we have zoomed out of our single hill
and represented the objective as a function of all
three hills we descended upon during our
journey in the introduction. The first two valleys
representocal minima, while the last valley

Figure 6. A nonconvex functic represents our global minimum. We can also see

that the hilly landscape in Figure 6 does not
satisfy the definition of convexity, thus is a nongex objective function. Nonconvexity can
make minimizing problems very difficult, as thedscape of the problem can become quite
complex. Figure 7 shows one such real-world olyject
function that emerges when optimizing a speciat typ
function called a convolutional neural network [3].

Nonconvex optimization brings to light many
interesting problems and questions. In both Figuaad
Figure 7, the minimum we obtain using gradient-dase
methods depends heavily on our starting point. cdghow
we pick an initial point is an important questioAnd what
would we do if we end up at a local minimum inste&a
global minimum? How do we know if we are at thelgll
minimum or a local minimum if we can’t see the sati
landscape? Are local minimums even meaningfula&herigure 7. Nonconvex objective function for
guestions and more are just waiting to be answered! training a convolutional neu network
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Valentine’s Math, Part 3

by Ken Fan | edited by Jennifer Sidney Silva

Emily and Jasmine concocted the equation

JE+yE =141 ik LT

2 X+ y? (714+ y)°

for their Valentine heart design. They remembdéiedl their whole Valentine heart adventure
began with a Valentine heart appeated by Jirgen Richter-Gebert. They decide¢ovhat
equation the app used for its Valentine heart.

Emily: The app designer, Mr. Richter-Gebert, comestty provides the equation for his
Valentine heart. It's

0+ (L +b)y)? + Z2— 1 — 2B —ay’R =0,
wherea andb are parameters. But we’re only interested inctiv@ral cross section.

Jasmine: Actually, what directions &py, andz correspond to? We need to find out so that we
can obtain the correct 2D cross section.

Emily: He doesn’t say.
Jasmine: | guess we’ll have to figure it out.

Emily: The Valentine heart has symmetries that khba reflected in the equation. It has two
planes of mirror symmetry.

Jasmine: Good idea! In fact, the variabiesdy only appear raised to even powers in the
equation. That means thatX ¥, ) is a solution, then so i%X, +y, z) for any choice of plus and
minus signs. In other words, the plames0 andy = O are planes of mirror symmetry.

Emily: And the last two terms in the equation havaised to an odd power.

Jasmine: So thedirection in the app corresponds to gulirection.

Emily: We still have to figure out whether to take cross section of the Valentine heart by the

planex = 0 or the plang = 0. One of these will split the heart into tvabbés, while the other
will yield the cross section we're looking for.

L Emily is looking at the widget &ittps://love.imaginary.orgireated by Jirgen Richter-Gebert. (Note: In Part 1 in
Volume 14, Number 3, we misattributed the app to Aaron Monltérg.Montag designed the ray tracer used by Mr.
Richter-Gebert to create the Valentine heart app.af@étogize for any confusion this may have caused.)
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Jasmine: Let’'s setandy to O in turn to get two equations, and decide tvlnice produces a
heart shape. If we seto O, we get

(L +by)*+Z - 1f —ayZ’ =0,

and if we sey/ to 0, we get
(+Z2-1f-x2=0.

Emily: That's strange! When you seto 0, you end up with an equation that does npedd
on the parameteesandb at all. That means we can take a shortcut todigut which cross
section corresponds to the Valentine heart shagp@vlich corresponds to the lobe separator.
All we have to do is fiddle with the app parametand see which cross section doesn’t change.
The one that doesn’t change will be the one thatsponds to settingto 0!
Emily and Jasmine move the sliders on the app.
Jasmine: It's pretty clear that when you changg#rameters, it's the lobe-separating cross
section that morphs. Whénis really small, the top of the Valentine heaartst to look more
like a Fuji apple!
Emily: In fact, if we seb = 0, the lobe-separating cross section equatioarbes

(Y +Z-1f -ayZ =0,

which only differs from the = 0 cross section in that it has the multiplicatparametea in the
last term and replaceswith y. So whera = 1, the two cross sectionsll be congruent.

Jasmine: If we setto 1 andb to O in the original equation, we get
0C+y2 + 22— 1P X2 —y?2 = 0.

Look! That's rotationally symmetric! Because+ y? is the square of the distance of a point
from thez-axis, and if we make the substituticre x> + y?, the equation becomes

(r?+Z2-1¢-r’2=0.

This shows that ifx, y, 2) is a solution, then so are all the points onhikezontal circle centered
at (0, 0,2, which passes through that point.

Emily: So whera = 1 andb = 0, we get the surface of revolution obtaineddigting the
Valentine heart about timaxis! | guess that means the shape, unlike adpygjie, should still
have a little peak at the bottom.

Emily and Jasmine rotate the object in the apgveal its bottom; sure enough, they see a little
point sticking out.
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Jasmine: Still, we lucked out! The cross secti@revinterested in is the one that corresponds to
settingy to 0, and since that equation does not involveotirametera andb, we don't even
have to be concerned with them.

Emily: Let’s rewrite the cross section correspogdiny = 0, but let's replace with y to bring
the notation into alignment with the notation wegiorally used to produce our Valentine heart.

Jasmine: Okay, then the equation is
(C+y*— 1P -x3®=0.

Emily: It's quite a bit simpler than the equatioe wame up with! It doesn’t have radicals or
absolute values.

Jasmine: In fact, it's the zero set of a polynomhlhy does this produce a Valentine heart?

Emily: Hmm. We can rewrite the equation as
(r’ =1 —x3* =0,

wherer? = x2 + y%; now that we’ve changezitoy, this simply becomes the square of the distance
to the origin. Sor€ — 1) is a kind of measure of the deviation from the aincle centered at

the origin. Whenr€ — 1) is 0, the point is on the unit circle. A poirty) will be inside or

outside this unit circle depending on whethér(1) is negative or positive, respectively.

Jasmine: This is not so different from what we wawgng. We also started with a unit circle and
modified it to make it look more like a Valentinedrt, although we were more direct. Our
equation can be written

r-1:1 2y|><12(1+ ! =)
2X°+y (7/14+y)

If we had simplyr — 1 = 0, then we would have an equation whosehgsaghe unit circle
centered at the origin, so all the stuff on thétdgand side of this equation expresses how the
Valentine heart shape deviates from the unit circle

Emily: By contrast, the app’s equation can be @mitt? — 1) = x?°. So instead of specifying
how the more directr*— 1” is modified, the app is specifying the deiaatfrom the unit circle
with the more complicated function of the “deviatidistance” 2 — 1).

Jasmine: The deviatiorty® hasx raised to the even power 2, which means thatef@tion is

symmetric about thg-axis, thus producing a Valentine heart with bilaksymmetry. That's
good!
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Emily: If we fix x and lety vary, ther?y?® strictly increases asgoes from negative infinity to
positive infinity, going through 0 whenis 0.

Jasmine: That's also similar to our equation! Trhatns the app’s Valentine heart will bulge
from the unit circle in the upper half-plane and pufrom the unit circle in the lower half-
plane. And becauséy® is 0 on the axes, the app’s Valentine heart ljstours, will intersect
the unit circle on the axes.

Emily: | think it might be fruitful to convert evething to polar coordinates.
Jasmine: Okay, let’'s do that!

Emily: Since the Valentine heart is symmetric altbety-axis, let's use for the distance from
the origin; but let’s let be the angle as measured clockwise from the pesgHaxis, instead of
using the usual convention thais the angle measured counterclockwise from tisgtige
X-axis.

Jasmine: Okay. In that case, the relationship é&tvk, y) and ¢, ) would bex=r sin and
y =r cos (instead of the conventional=r cos andy =r sin ). Substituting these into the
equation, we get

(r?=1F =(r sin )r cos )®=r°sir* cos .
Emily: By symmetry, we can restrict our attentionvalues of between 0° and 180°.

Jasmine: For those values,%sirstarts off flat at = 0°, rises to 1 at = 90° — where it is again
flat — then symmetrically returns to O at 180°. The profile is like that of a gentle hill

Emily: Meanwhile, co$ starts off flat at = 0°, then decreases until it flattens out asgses
through 0 at =90°, then symmetrically decelerates until itctess -1 at = 180°, where it is
flat again.

Jasmine: So when we multiply to get%sincos , we will get two identical, gentle hill profiles:
one will be between 0° and 90°, and the otherlvdlbetween 90° and 180° — though the one
between 90° and 180° is a flipped version of tiiebletween 0° and 90°.

Emily: The values of sih coS do not directly measure to the deviations fromuhit circle.
This is because on each radial line, the locatibare/the Valentine heart intersects the radial
line occurs at the distancdrom the origin that satisfies(— 18/r> = sirf cos . At least we
know that the bigger sin cos is, the farther out from the unit circle this irsiection will be;
and the more negative $incos s, the farther in from the unit circle the intecton will be.
So it makes sense that the result will have themgéiValentine heart-shape look.

Emily and Jasmine modify their computer prograrplti the shape.
Jasmine: It's nice, but | think | prefer more tapethe bottom.
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Emily: We know how to fix that!
Jasmine: You're right!

Emily: We can multiply that deviation by the factee devised to increase the concavity of the
taper in our design.

Jasmine: Let’s do that! So the equation would bexo

1

(7/4+y)6): 0

¢ +y2- D% Ky

Emily and Jasmine plot this version of a Valentueart flanked by the one in the app and the
one that they created.

1 1 y|¥ 1
242 1P 2B = X+ y - 1% Xy 0 I +y?=
(+Z2-1F-x£=0 (X+y*-1) y( (7/4+y)6): Xty l+2x2+y2(l+(7/4+y)6)

Emily: I’'m not sure which one I like best.
Jasmine: Me neither. | guess it depends on my mood
Emily: Anyway, everybody’s heart is unique!

If you come up with an equation for a Valentinerheae’d love to know. Please email it to us
atgirlsangle@gmail.com
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Notes from the Club

These notes cover some of what happened at GinigleAmeets. In these notes, we include
some of the things that you can try or think alaidtome or with friends. We also include some
highlights and some elaborations on meet matekiass than 5% of what happens at the club is
revealed here.

Session 29 - Meet 1 Mentors: Mandy Cheung, Cecilia Esterman, Jenny Kaufmann,
September 9, 2020 Bridget Li, Kate Pearce, AnaMaria Perez,

Vievie Romanelli, Sakshi Suman,

Rebecca Whitman, Rachel Zheng

It's been inspirational to us that our membergioole to want to do math despite our
having to continue meeting virtually. Doing matithe best way to learn math, and to do it,
find, or, better, ask math questions that intrigoe and for which you feel you can act upon. If
you have a math question that doesn’t intriguegoyou cannot act upon, try to adjust it and
make it something that you enjoy thinking about.

Also, a huge Thank You to all our mentors for pi@g on in this very challenging virtual
environment.

Session 29 - Meet 2 Mentors: Mandy Cheung, Bridget Li, Yuyuan Luo,
September 16, 2020 Vievie Romanelli, Sakshi Suman, Jane Wang,
Angelina Zhang, Rachel Zheng

There are so many variants on the task of creatipematical expressions involving
given numbers that evaluate to some target valiree variant which arose led to the following
guestion: Given positive integeksandT, what is the least number of copiedNofieeded in an
expression that involves addition, subtraction,tiplitation, division, parentheses, and only the
numberN that evaluates t6? Even whemN = 1, the answer is not so straightforward and is
related to another variant on this sort of questiirch Allie explored and wrote up in her article
The Greatest Number From N Or@s pages 22-25 of Volume 11, Number 4 of the Giigyle
Bulletin.

Session 29 - Meet 3 Mentors: Mandy Cheung, Jenny Kaufmann, Yuyuan Luo,
September 23, 2020 Kate Pearce, AnaMaria Perez, Vievie Romanelli,
Sakshi Suman, Rebecca Whitman, Angelina Zhang

Exploring geometric sequences modnics a wonderful way to begin exploring modular
arithmetic. Such sequences are necessarily peridtlhat are the periods? What is the longest
period, and when is this longest period achieved?

Session 29 - Meet 4 Mentors: Mandy Cheung, Cecilia Esterman, Jenny iKanh,

September 30, 2020 Bridget Li, Tina Lu, Yuyuan Luo, Kate Pearce,
AnaMaria Perez, Vievie Romanelli, Sakshi Suman,
Rebecca Whitman, Angelina Zhang

Related to the expression forming of Meet 2, saomenbers set the goal of writing the
smallest positive number they could muster usirfiyes, addition, subtraction, multiplication,
division, exponentiation, and parentheses, forousrvalues oN. ForN =5, can you beat
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Session 29 - Meet 5 Mentors:  Mandy Cheung, Cecilia Esterman, Jenny Kaufmann,

October 7, 2020 Bridget Li, Tina Lu, Kate Pearce, AnaMaria Perez,
Vievie Romanelli, Sakshi Suman, Rebecca Whitman,
Angelina Zhang
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Session 29 - Meet 6 Mentors:  Cecilia Esterman, Jenny Kaufmann, BridgeTina Lu,
October 14, 2020 Kate Pearce, AnaMaria Perez, Vievie Romanelli,
Sakshi Suman, Jane Wang, Rebecca Whitman

Working with mentor Kate, some members are crgajgometric designs using Python’s
turtle graphics library.

Session 29 - Meet 7 Mentors: Cecilia Esterman, Jenny Kaufmann, Bridget Li,

October 21, 2020 Kate Pearce, AnaMaria Perez, Vievie Romanelli,
Sakshi Suman, Jane Wang, Rebecca Whitman,
Rachel Zheng
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Session 29 - Meet 8 Mentors: Cecilia Esterman, Bridget Li, Tina Lu, Kate Pearce,

October 28, 2020 AnaMaria Perez, Laura Pierson, Vievie Romanelli,
Sakshi Suman, Rebecca Whitman, Angelina Zhang,
Rachel Zheng

One of our members explored the standard rulegfefential calculus to understand the
rules better and gain intuition for them. For epénconsider the quotierax + b)/(cx + d),
wherea, b, ¢, andd are constants. Applying the formula for an irtBrgeometric series, this can
be rewritten a®/d + (ad —bc)/d’Xx + higher order terms. We claim that looking & tloefficient
of x gives us all we need to know to be able to wrae/nl the quotient rule. Do you see?
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Calendar

Session 29: (all dates in 2021)

September 9  Start of the twenty-ninth session!
16
23
3C
October 7
14
21
28
November 4
11 Karia Dibert, University of Chica(
18
25 Thanksgiving- No mee
December 2

Session 30: (all dates in 2022)

Januar 27  Start ofthe thirtiett sessior
February 3
10
17 No meet
24
March 3
10
17
24  No mee
31
April 7
14
21 No mee
28
May 5

Girls’ Angle has been hosting Math Collaboratiohsahools and libraries. Math Collaborations
are fun math events that can be adapted to ayafigiroup sizes and skill levels. We will soon
have versions available that are designed for reatticipation. For more information and
testimonials, please vistww.girlsangle.org/page/math_collaborations.html

Girls’ Angle can offer custom math classes overitibernet for small groups on a wide range of
topics. Please inquire for pricing and possilaiiti Emailgirlsangle@gmail.com
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fliout the Club Enrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Pleass &but your relationship to
mathematics. If you don’t like math, what don't you like? If you Imagh, what do you love? What
would you like to get out of a Girls’ Angle Membership?

The $50 rate is for US postal addresses ohlyr international rates, contact us before applying.
Please check all that apply:

Enclosed is a check for $50 for a 1-year Girls’ Angle Membership.

I am making a tax free donation.

Please make check payable®rls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending enwilstangle@gmail.com

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and exditg math can be! Make new friends!

The club is where our in-person mentoring takes place. At thegitisoyork directly with our mentors
and members of our Support Network. To join, please fill out andrére Club Enrollment form.
Girls’ Angle Members receive a significant discount on cluerathnce fees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each mamhba individual and design
custom tailored projects and activities designed to help the memjerve at mathematics and develop
her thinking abilities. Because we believe learning follows niiusdien there is motivation, our
mentors work hard to motivate. In order for members to see mailti\ang, creative subject, at least one
mentor is present at every meet who has proven and published otigioi@ms.

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the memberswdder avhat they use math. Each
member of the Support Network serves as a role model for the nemitmgether, they demonstrate that
many women today use math to make interesting and important contribotsosety.

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We bétiaireshen our members’ efforts are
actually used in real life, the motivation to learn math in@gas

Who can join? Ultimately, we hope to open membership to all women. Cuyrend are open primarily
to girls in grades 5-12. We welcorakk girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math far$tdm math anxiety, math is worth
studying.

How do | enroll? You can enroll by filling out and returning the Club Enrollment form.

How do | pay? The cost is $20/meet for members and $30/meet for nonmembensbekéeget an
additional 10% discount if they pay in advance for all 12 meetsassion. Girls are welcome to join at
any time. The program is individually focused, so the concept aftiicef up with the group” doesn’t

apply.

Where is Girls’ Angle located?Girls’ Angle is based in Cambridge, Massachusetts. Forigecur
reasons, only members and their parents/guardian will be giveratiel@cation of the club and its
phone number.

When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendailsleplease
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will béke? Girls’ Angle activities are tailored to each
girl’'s specific needs. We assess where each girl is matieaity and then design and fashion strategies
that will help her develop her mathematical abilities. Everybedynks math differently and what works
best for one individual may not work for another. At Girls’ Angle,are very sensitive to individual
differences. If you would like to understand this process in mhetal, please email us!

31



Are donations to Girls’ Angle tax deductible?Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we rely
on public support. Join us in the effort to improve math educaticedsBIlmake your donation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has.B.P
in mathematics from MIT and was a Benjamin Peirce assigtaféssor of mathematics at Harvard, a
member at the Institute for Advanced Study, and a National Sdiencelation postdoctoral fellow. In
addition, he has designed and taught math enrichment classes at 8bkisalim of Science, worked in
the mathematics educational publishing industry, and taught at HC3&Nhas volunteered for
Science Club for Girls and worked with girls to build large modatagami projects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle reafies its goal of helping girls develop their
mathematical interests and abilities?Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, founder and director of the Exploratory

Yaim Cooper, Institute for Advanced Study

Julia Elisenda Grigsby, professor of mathematics, Bostondeolle

Kay Kirkpatrick, associate professor of mathematics, Unityeodilllinois at Urbana-Champaign

Grace Lyo, assistant dean and director teaching & legr8tagford University

Lauren McGough, postdoctoral fellow, University of Chicago

Mia Minnes, SEW assistant professor of mathematics, WDisgo

Beth O’Sullivan, co-founder of Science Club for Girls.

Elissa Ozanne, associate professor, University of Utabdof Medicine

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Liz Simon, graduate student, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, associate professor, University of Washington

Karen Willcox, Director, Oden Institute for Computationalgiheering and Sciences, UT Austin

Lauren Williams, professor of mathematics, Harvard Unitsersi

At Girls’ Angle, mentors will be selected for their dgth of understanding of mathematics as well as
their desire to help others learn math. But does it re} matter that girls be instructed by people
with such a high level understanding of mathematicsWe believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tacklg/field regardless of the level of mathematics
required, including fields that involve original research. Over ¢éinéucies, the mathematical universe
has grown enormously. Without guidance from people who understand a lohptimeatsk is that a
student will acquire a very shallow and limited view of math&satnd the importance of various topics
will be improperly appreciated. Also, people who have proven originaitehes understand what it is
like to work on questions for which there is no known answer andHmhvithere might not even be an
answer. Much of school mathematics (all the way through collegelves around math questions with
known answers, and most teachers have structured their teachingemdogtsciously or not, with the
knowledge of the answer in mind. At Girls’ Angle, girls willleatrategies and techniques that apply
even when no answer is known. In this way, we hope to help gidsngesolvers of the yet unsolved.

Also, math should not be perceived as the stuff that is done inataath Instead, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can showa@ulmath is relevant to their
daily lives and how this math can lead to abstract structuremaneus interest and beauty.
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Girls’ Angle: Club Enrollment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following people will be altb¥eepick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, such as alletigas/ou’d like us to know about?

Photography ReleaseOccasionally, photos and videos are taken to document andipaiblic program in all media forms. We will
not print or use your daughter's name in any way. Do we haweigston to use your daughter’s image for these purposée® No

Eligibility: Girls roughly in grades 5-12 are welcome. Although we waltkahard to include every girl and to communicate with you
any issues that may arise, Girls’ Angle reserves theatisn to dismiss any girl whose actions are disruptiveub attivities.

Personal Statement (optional, but strongly encouraged!}We encourage the participant to fill out the
optional personal statement on the next page.

Permission:| give my daughter permission to participate in Girls’ Angl@ave read and understand
everything on this registration form and the attached information sheets.

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
Enclosed is $216 for one session | will pay on a per meet basis at $30/meet.
(12 meets) _ ;
I’'m including $50 to become a member,
| will pay on a per meet basis at $20/meg and | have selected an item from the left.

I am making a tax free donation.

Please make check payable®rls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending enwiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with yothe first meet.
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Personal Statement (optional, but strongly encouraged!)this is for the club participant only. How
would you describe your relationship to mathematics? What would yotoldget out of your Girls’
Angle club experience? If you don’t like math, please tell us whyou love math, please tell us what
you love about it. If you need more space, please attach anothier shee

- . 1.0 1 -
Liability Waiver

I, the undersigned parent or guardian of the Yalg minor(s)

do hereby consent to my child(ren)’s participaiioirls’ Angle and do forever and irrevocably ide Girls’
Angle and its directors, officers, employees, agesnd volunteers (collectively the “Releaseesiirfrany and
all liability, and waive any and all claims, fofjuny, loss or damage, including attorney’s feesang way
connected with or arising out of my child(ren)’stpapation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissidGols’ Angle or any of the Releasees. | forevalease,
acquit, discharge and covenant to hold harmlesRéheasees from any and all causes of action aimd<slon
account of, or in any way growing out of, direatlyindirectly, my minor child(ren)’s participatian Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further idicig all
claims or rights of action for damages which my onichild(ren) may acquire, either before or afteron she
has reached his or her majority, resulting fronsamrnected with his or her participation in Girlidle. | agree
to indemnify and to hold harmless the Releasees &b claims (in other words, to reimburse the Bsées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdine cost of
defending any claim my child might make, or thagjhtibe made on my child(ren)’s behalf, that isasézl or
waived by this paragraph), in any way connectetl witarising out of my child(ren)’s participatiamthe
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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