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An Interview with 

Meike Akveld 

 

Meike Akveld is a Senior Scientist at ETH 

Zürich.  She received her Doctor of 

Philosophy in Mathematics from ETH 

Zurich under the supervision of Leonid V.  

Polterovich and Dietmar Arno Salamon. 

 

On February 9, 2012, Girls’ Angle was 

fortunate to enjoy a visit from her as part of 

our Support Network.  She discussed knots.  

For more details of her visit, see pages 29-

30 of Volume 5, Number 3 of this Bulletin. 

 

Ken: What is your favorite kind of 

mathematics? 

 

Meike: Ah, that’s an interesting question.  

My background is in symplectic geometry, 

so I love (differential) geometry and 

topology.  In particular knots are one of my 

favourite objects.  But I also love certain 

parts of algebra and analysis.  I think what 

makes mathematics interesting to me is the 

beauty.  I don’t like tedious computations, 

but if there is beauty to be had, then I am on 

board. 

  

Ken: What are knots and what do you find 

intriguing about them? 

 

Meike: Let me first answer the first part of 

the question.  What are knots?  Well, 

everyone knows what knots are.  You take a 

piece of rope and you make a knot in it and 

there you go, a knot.  (See the image of three 

knots in the upper right corner.) 

 

They are useful for climbing or in sailing, 

but also for simple daily problems.  And 

they can be beautiful from an aesthetic point 

of view.  That’s the knots mathematicians 

are looking at.  Here are two simple knots 

drawn in an abstract way (in order to deal 

with knots, mathematicians look at so-called 

knot diagrams, which are a projection of the 

knot on a 2-dimensional plane): 

 

 

 

Some knots.  Image modified from a Wikimedia 
Commons image attributed to Matemateca 

(IME/USP)/Rodrigo Tetsuo Argenton. 
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Dear Reader, 
 
We’re committed to producing quality math educational content 
and make every effort to provide this content to you for free. 
We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of this interview with Prof. 
Meike Akveld and other content.   We hope that you consider the 
value of such content and decide that the efforts required to 
produce such content are worthy of your financial support. 
 We know that mathematical interest and talent is unrelated 
to economic status, which is why we provide so much content for 
free.  But we hope that those of you who are comfortable 
financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks to 
our sponsors, subscriptions cost $36/year.  With a subscription, 
you have also gained access to our mentors via email and the 
ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                        Girls’ Angle: A Math Club for Girls  
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at 
checkout.  
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America’s Greatest Math Game: Who Wants to Be a Mathematician. 
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The Needell in the Haystack1 
Large-Scale Stochastic Optimization through Pictures 
by Deanna Needell | edited by Jennifer Sidney Silva 
 
Big data brings many new challenges.  In a recent installment,2 I wrote a 
bit about bias and gave some examples like Simpson’s paradox, which 
can be seen even with small amounts of data.  When the data is large, 

bias becomes still harder to detect; indeed, machine learning methods are used most often 
because the amount of data is so large that it is impossible for humans to go through it all and 
make conclusions.  But if humans cannot go through the data, how can we determine if the 
output is reasonable or biased?  This is but one example of the challenges brought forth by the 
large-scale nature of modern data. 

In this article, I will discuss methods that address another challenge, namely, the problem 
that occurs when the data is so large it can’t even be fully loaded into computer memory.  How 
does one analyze the data in this case? 
 
Parallelization 
 

Our first thought may be to distribute the data over many machines, and to divide the 
workload accordingly.  Indeed, this is a common practice which is known as distributed or 
parallel computing; the process of distributing a task over several machines is known as 
parallelization.  However, it is not always easy to “divide and conquer,” as some methods lend 
themselves easily to parallelization while others do not.  In fact, some problems are coined 
embarrassingly parallel, and – as the name suggests – are quite straightforward to break into 
parallel computing tasks while maintaining efficiency.  The author, while smiling at the coinage, 
disagrees that there is anything “embarrassing” about being able to parallelize oneself; she 
prefers the terms perfectly parallel, delightfully parallel, or even the alliteration pleasingly 

parallel.  If you have recently played a video game that uses a graphics processing unit, you have 
likely experienced an implementation of a pleasingly parallel algorithm for 3D image rendering.  
There isn’t a definitive line separating methods that are easily parallelizable and those that are 
not, but it is believed that there are indeed some that are truly “harder” to make parallel 
efficiently; an example is the “N-body problem,” which asks for the motion of N astronomical 
bodies as they travel under the influence of each other’s gravitational pull. 

If you like Snow White, or are interested in learning more about parallelization, I suggest 
perusing a 2006 report entitled “The Landscape of Parallel Computing Research: A View from 
Berkeley,” by Asanovic et al.  The report details the “13 dwarfs” of parallel computing, which 
are 13 problems believed to be widely applicable and distinct enough to represent classes of 
problems that may or may not lend themselves well to parallelization. 
 
Really BIG Matrices 
 
 In this article, we will consider an example of a situation where the data is so big that 
only pieces of it can be held in the computer’s memory at any given moment.  The example has 
interesting research directions to explore and enjoys a wide array of modern applications.  The 
method also lends itself well to visualization.  The problem consists of solving a linear system of 

                                                 
1 This content supported in part by a grant from MathWorks. 
2 See Volume 13, Number 5. 
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equations Ax = b, but as I mentioned before, we consider the setting in which the matrix A is so 
large that it doesn’t fit into computer memory.  Specifically, let us suppose that the m by n matrix 
A is very overdetermined, so that the number of rows m is far larger than the number of columns 
n, and that m is so large that doing operations on the columns of A – let alone the entire matrix 
itself – is impossible on your machine.  In these circumstances, how do you solve such a 
system?3 
If you have taken a linear algebra course, then you have learned that there are several ways to 
solve such systems, including things like Gaussian Elimination, computing certain factorizations, 
or even computing the (pseudo-)inverse of A and then applying it to b.  So which of these would 
be easiest to do if, for example, you can only access a single row of A at a time? 
 
Kaczmarz Method 
 
A Polish mathematician named Stefan Kaczmarz4 came up with a method in 1937 that would 
turn out to provide a nice approach to this problem (though in 1937, he likely had no idea of its 
role in parallelization or large-scale computing).  Now called the Kaczmarz method, this method 
saw a spark of revival a few decades ago when large-scale computing sought efficient methods 
that were easy to implement without needing to access the full set of data at once. 
Here’s how the method goes: given an initial starting guess x0, select a row ai of A and get a new 

approximation x1 by projecting x0 onto the solution space a1, x = bi given by that row.  Repeat 
this process using another row of A, thereby creating a sequence of approximations x0, x1, x2, ….  
The original method developed by Kaczmarz used the rows of A in a cyclic fashion, namely, first 
projecting onto the space defined by the first row of A and then the second, and so on.  The 
random Kaczmarz method instead randomly selects a row of A in each iteration, and there are 
many ways to make such row selections.  

 By construction, the method produces 
approximations xi, each of which satisfies at least one of the 
linear equations in our system.  But do these iterates 
converge to a solution of the entire system, and how are 
they computed?  Let’s address the latter question first.  
Recall that the orthogonal projection of a point x onto a 
space S is the point PS x in S that is closest (in the 
Euclidean norm) to the point x. The name orthogonal 
projection is appropriate since the vector pointing from x to  
PS x is orthogonal to the space S (see the picture to the left).  

The projection can be computed algebraically as well, leading to the following update rule (the 
initial guess, x0, is chosen arbitrarily, and ik is the index of the row chosen on the kth iteration): 
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We can then verify that the iterate xk satisfies the ikth equation for k > 0, i.e., 
 

,
k ki k i

a x b= . 

  

                                                 
3 In terms of Algebra I, we have a system of m linear equations in n unknowns, where m is much larger than n. 
4 The author does not speak Polish, but believes the pronunciation of Kaczmarz is similar to “Catch-marsh.” 
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Honk!  Honk!, Part 2 
An Introduction to Parking Functions1 
by Kimberly P. Hadaway and Pamela E. Harris2  
 
 We are now ready3 to unravel Pollak’s proof (as presented in [7]) that |PFn| = (n + 1)n – 1.  
Our method is to explain each sentence in more detail, following this with corresponding 
explanations as we work through the n = 3 case, which we discussed in Example 1. 
 
Sentence 1: “Add an additional space n + 1 and arrange the spaces in a circle.” 

 
This sentence instructs us to lengthen our one-way street by adding an additional parking 

spot numbered n + 1.  This sentence also instructs us to reshape our one-way street.  In the 
diagram below, we can see that our original street is represented as a line, like most streets.  
 

 
 

Figure 3.  Straight street model. 

 
At this point in the proof, we have restructured our street to be circular (as in the diagram below), 
and it is still a one-way street. 
 

 
 

Figure 4. Circular street model. 

 
Connection to Example 1:  Instead of having 3 parking spots on a one-way street, we now have 4 
parking spots arranged in a one-way circle.  Here is what our straight street looks like at the 
beginning of this example. 
 

 
 

Figure 5. Straight street with n = 3. 

 

                                                 
1 This content is supported in part by a grant from MathWorks. 
2 Both authors are from the Department of Mathematics and Statistics at Williams College. 
3 For notation and definitions, please see Honk!  Honk!, Part 1 in the previous issue of this Bulletin. 
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After following the instructions in Sentence 1, we have a circular street that looks like the one 
below. 
 

 
 

Figure 6. Circular street with n = 3. 

     
Sentence 2: “Allow n + 1 also as a preferred space.” 

 
Here, we are just saying that we can allow cars to declare parking spot n + 1 as their 

preferred parking spot. 
 
Connection to Example 1:  Each car can now say that they want to park in spots 1 through 4. 
 
Sentence 3: “Now all cars can park, and there will be one empty space.” 

 
Since we have made spot n + 1 a possible parking preference, we know that cars are now 

allowed to park here.  Because the street is circular and there are more parking spaces than there 
are cars, all cars will eventually find an empty spot and park.  Since there is one more parking 
space than there are cars, when all cars have parked, there will be one empty space after all cars 
have parked. 
     
Connection to Example 1: Cars are allowed to park in spot 4.  Since we have 3 cars and 4 spots, 
we know that each car will be able to park. 
 
Sentence 4: “α is a parking function if and only if the empty space is n + 1.” 

 
This sentence restates our definition of a parking function.  Consider α = (a1, …, an).  

This is new notation: α is an arbitrary preference vector, and each ai for i = 1, …, n represents the 
preferred spot of the ith car.  Earlier, we mentioned that α is a parking function if and only if it 
allows all of the cars to park on a street with n spots available.  Thus, if we add an n + 1st spot at 
the end of the street, this new spot must be the empty spot if α is to be a parking function.  If we 
have a car parked in the n + 1st spot of the circle, then that means that that car would not have 
been able to park on the (linear) street with n spots, and thus, α would not be a parking function. 
 
Connection to Example 1: On the linear street, we had 3 cars and 3 spots.  If we had a preference 
vector that allowed all of the cars to park, then it only utilized spots 1, 2, and 3, such as 
preference vector (1, 2, 2).  Note that the preference vector (2, 3, 3) is not a parking function in 
the linear arrangement of the street because the third car would be unable to park.  However, in 
the circular arrangement of the street, the preference vector (2, 3, 3) would allow the cars to park 
in spots 2, 3, and 4, respectively.  But as we noted, this would not be a parking function because 
it would require the third car to park in the fourth spot which did not exist in the linear 
arrangement. 
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Sentence 5: “If α = (a1, …, an) leads to car ci parking at space pi, then (a1 + j, …, an + j) 

(modulo n + 1) will lead to car ci parking at space pi + j (modulo n + 1).” 

 
The first part of this step defines our preference vector α in terms of its entries.  That is, 

for i = 1, …, n, we have that ai represents where car ci wants to park.  Then, using α, we 
determine where car ci actually parks, and call this spot pi. 

Now, we have to use some modular arithmetic.  Let j be an integer such that 0 ≤ j ≤ n.  
We could let j be n + 1, but we are working modulo n + 1, so n + 1 = 0 (mod n + 1), and 0 is a 
nicer number to work with.  Note that this means we can also refer to spot n + 1 as spot 0. 

The second part of this sentence explains the effect of shifting all the preferences by the 
same amount.  We can break it down by understanding the effect of adding 1 (modulo n + 1) to 
all the preferences. 
 
Lemma 3.  Let α = (a1, a2, …, an) be a parking function for a circular street with n + 1 parking 
spaces in which cars park in the following order p = (p1, p2, …, pn) where the pi are all distinct.  
Define α + 1 to be the vector (a1 + 1, a2 + 1, …, an + 1) (modulo n + 1).  The preference vector α 
+ 1, results in the cars parking in order p = (p1 + 1, p2 + 1, …, pn + 1). 
 
Proof.  To prove this, we proceed by contradiction.  Assume that i is the smallest index between 
1 and n, inclusive, such that car ci prefers spot ai + 1 and parks in spot pj + 1 for all j < i, while 
car ci prefers spot ai + 1 and parks in spot q ≠ pi + 1 (mod n + 1), where 1 ≤ q ≤ n + 1.  That is, 
car ci prefers spot ai + 1 and parks in a spot distinct from pi + 1 (modulo n + 1).  Let’s begin by 
discussing the scenarios in which car ci would be unable to park at spot pi + 1 (modulo n + 1). 
 

Case 1: Another car took that spot!  But if this is the case, then there exists some j < i 
such that car cj parks at spot pi + 1 under the parking preference vector α + 1.  However, 
we know that car cj parks at spot pj + 1, by assumption.  This implies that pi + 1 = pj + 1 
(mod n + 1) which implies that pi = pj (mod n + 1).  Hence, i = j.  However, we know that 
i ≠ j because α is a parking function, which means that no two cars can park in the same 
spot.  Thus, we have a contradiction! 

 
Case 2:  Spot pi + 1 was available!  Since car ci does not park there, we know that when 
car ci entered the circular one-way street and started going forward from its preferred spot 
ai + 1 (modulo n + 1), it must have found an empty parking space before reaching spot 
pi + 1 (modulo n + 1).  By assumption, we know that cars c1 through ci – 1 were parked in 
spots p1 + 1 through pi – 1

 + 1 (modulo n + 1) when car ci entered the street.  Since car ci, 
starting at parking space ai + 1 (modulo n + 1) encountered an empty spot (say parking 
space p) before reaching parking space pi + 1 (modulo n + 1), we claim that had all the 
cars used parking function α instead of α + 1, car ci, starting at parking space ai 
(modulo n + 1) would encounter an empty space before getting to space pi, namely, the 
parking space p – 1 (modulo n + 1).  We know this because by our assumption, if the cars 
use parking function α, all cars c1 through ci – 1 would be in spots p1 through pi – 1 
(modulo n + 1), and if one of these spots was parking spot p – 1, then using parking 
function α + 1, spot (p – 1) + 1 = p (modulo n + 1) would be occupied.  This gives rise to 
another contradiction! 

 
Since we have handled all possible cases, the scenario where q ≠ pi + 1 (mod n + 1) does not 
happen.  Therefore, q = pi + 1 as desired.  □ 
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Using Lemma 3, we can iterate the process to establish that this result holds for all j 
(modulo n + 1).  Namely, given a parking function α = (a1, a2, …, an) which results in cars 
parking in the order p = (p1, p2, …, pn), for any 1 ≤ j ≤ n + 1, the parking preference vector α + j, 
which we define to be (a1 + j, a2 + j, …, an + j) (modulo n + 1), on the circular street with spots 
labeled 1 through n + 1, results in the cars parking in order p + j = (p1 + j, p2 + j, …, pn + j) 
(modulo n + 1).  This was the statement of sentence 5. 
 
Connection to Example 1: Say, we considered preference vector (1, 2, 2).  This would result in 
the following: 
 

ci αi pi 

1 1 1 

2 2 2 

3 2 3 

 
Now, we have to shift each ai and pi by j.  Note that j can take all of its assigned integer values 
from 0 to n, which we consider individually (taken modulo n + 1) and present in the table below: 
 

ci ai = ai  + 0 pi = pi + 0 ai + 1 pi + 1 ai + 2 pi + 2 ai + 3 pi + 3 

1 1 1 2 2 3 3 0 0 

2 2 2 3 3 0 0 1 1 

3 2 3 3 0 0 1 1 2 

 
You should now verify that under the new parking preference vectors α + j, the cars c1, c2, 

and c3 actually park in spot pi + j (all considered modulo 4). 
 
Sentence 6.  “Hence, exactly one of the vectors (a1 + k, a2 + k, …, an + k) (modulo n + 1) is a 

parking function, so f(n) = (n + 1)n/(n + 1) = (n + 1)n – 1.” 

 
Now, we study each preference vector that exists for a particular value of n.  So, for any 

given preference vector, we shift the corresponding ai and pi by j, both taken modulo n + 1.  
Studying a single preference vector and the resulting shifted preference vectors, we find that, of 
this set of n + 1 preference vectors, only one is a parking function.  This is because all but one of 
them has a car ci such that pi + j = 0 (mod n + 1) which is problematic because we mentioned 
earlier that we need the 0th parking spot (which is the same as the n + 1st parking spot) to be 
empty in order for α to be a parking function.  Therefore, for each α, we need to take the one 
shifted preference vector α + k that has no pi such that pi + k = 0 (mod n + 1), which will 
guarantee that the n + 1st spot is the empty spot. 

To find the number of parking functions, we count them in groups.  First, recall that there 
are (n + 1)n distinct possible preference vectors α. 

Next, we group these preference vectors in the following way: If α = (a1, …, an) and β = 
(b1, …, bn) are two preference vectors satisfying that (a1, …, an) = (b1 + j, …, bn + j) (mod n + 1), 
then α and β are in the same group.  We next notice that each such group consists of n + 1 
preference vectors as we can generate them from α by taking α + j for any value of j from 0 to n, 
inclusive.  However, for each starting preference vector α, only one of these shifted vectors 
actually results in a parking function for the original linear street.  So, we can pick this one 
parking function from each group of n + 1 preference vectors.  Algebraically, we represent this 
by dividing the total number of preference vectors by n + 1.  Therefore, we have finally 
established that the total number of parking functions is given by 
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|PFn| = (n + 1)n/(n + 1) = (n + 1)n – 1. 

 
Connection to Example 1: Using our example table from Sentence 5 above, we can see that the 
column pi + 0 is the only pi column that does not contain a 0.  That is, the column ai + 0, 
corresponding to the preference vector (1, 2, 2),  is the only preference vector that results in a 
parking function.  Now, we know that for each of the 27 preference vectors that exist, each 
generates 3 + 1 = 4 shifted vectors.  Thus, we have 43 = 64 vectors.  By shifting, we are sorting 
these 64 shifted vectors into groups of n + 1 vectors, and only 1 of the vectors in each group 
works.  Therefore, when we divide by n + 1 = 4, we find that there are 64/4 = 16 working 
parking functions, which we discovered earlier in Example 1!  Observe that 16 groups of 4 is a 
relatively large number of things to list out.  We will work through two interesting examples 
together, and the remaining 14 will be for you to try out on your own. 
        
Example 2.  For the first group, we will consider the vector α = (1, 2, 2) and the vectors that it 
generates.  Using this α, we can fill out our table below with each car’s preferred parking spot 
and actual parking spot.  (This is the same table we generated for Sentence 5.)  We find 
        

ci ai = ai  + 0 pi = pi + 0 ai + 1 pi + 1 ai + 2 pi + 2 ai + 3 pi + 3 

1 1 1 2 2 3 3 0 0 

2 2 2 3 3 0 0 1 1 

3 2 3 3 0 0 1 1 2 

 
as the compilation of this information.  In the pi + 0 column, we see that no car parks in the 0th 
spot.  In the pi + 1 column, we see that car 3 parks in the 0th parking spot.  In the pi + 2 column, 
we see that car 2 parks in the 0th parking spot.  In the pi + 3 column, we see that car 1 parks in 
the 0th parking spot.  Thus, we observe that only one column, namely pi + 0, has no car parking 
in the 0th parking spot.  From our work earlier, we know that this implies that the corresponding 
column of ai + 0 is, indeed, a parking function because the 0th parking spot is vacant.  Therefore, 
of this group of four preference vectors, only (1, 2, 2) is a parking function. 
 
Example 3.  For this group, we will consider the vector α = (2, 3, 2) and the vectors that it 
generates.  Using this α, we can fill out our table below with each car’s preferred parking spot 
and actual parking spot.  We find 
 

ci ai = ai  + 0 pi = pi + 0 ai + 1 pi + 1 ai + 2 pi + 2 ai + 3 pi + 3 

1 2 2 3 3 0 0 1 1 

2 3 3 0 0 1 1 2 2 

3 2 0 3 1 0 2 1 3 

 
as the compilation of this information.  In the pi + 0 column, we see that car 3 parks in the 0th 
spot.  In the pi + 1 column, we see that car 2 parks in the 0th parking spot. In the pi + 2 column, 
we see that car 1 parks in the 0th parking spot.  In the pi + 3 column, we see that no car parks in 
the 0th parking spot.  Thus, we observe that only one column, namely pi + 3, has no car parking 
in the 0th parking spot.  From our work earlier, we know that this implies that the corresponding 
column of ai + 3 is, indeed, a parking function because the 0th parking spot is vacant.  Therefore, 
of this group of four preference vectors, only (1, 2, 1) is a parking function. 
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3. What’s Next? 

 
3.1 How Can I Generate a Research Question? 

 
Wow, that was a lot of cool math!  You might be curious about what else there is to know about 
parking functions, and we hope you will enjoy knowing that the study of parking functions and 
their generalizations fuels a very active area of mathematical research, and there are many 
questions still unanswered.  You might be thinking “How do they come up with these 
questions?”  The answer is: they just ask.  We are sure you had a lot of questions as you read 
through this paper, and some of those would be great research questions if no one knows the 
answer yet.  So, you should always ask questions.  Especially those of the type “what happens 
if …?” 
 If you want to ask more about parking functions, there are two things you need to 
consider about your “parking world” in order to propose your very own research question. 
 

1. What do we know about the cars and parking spots? 

 
By this, we mean that you should explicitly describe any information we have about the 
cars.  How many cars are there?  How many types of cars are there?  Are there 
motorcycles, so two of them can park in the same spot?  How many parking spots are 
there?  Are any of them already occupied?  In the example we studied here, we had the 
same number of cars and parking spots, all of the parking spots were available for 
parking, and all of our cars were identical. 
 

2. What is the parking rule? 

 
By this, we mean that you should explicitly list any existing structures that govern how 
the cars in your scenario are able to park.  In the example we studied here, the parking 
rule was that the cars could only drive one way, the cars would take their preferred spot if 
it was available, and if not, the cars would take the next available spot down the street.  
How would you adapt these rules in your own parking scenario? 

 
3.2 What Are Mathematicians Currently Studying? 

 
The table on the next page lists a few questions that mathematicians are actively researching!  
Most of the questions start out with counting how many preference vectors yield their version of 
parking functions.  There are other things that mathematicians are currently studying, including 
“How do I generate all of the parking functions?” or “What is the probability that a car will get 
its preferred parking spot?” – these last are called lucky cars.  A fun name indeed! 
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Name of Question Brief Summary 
Parking Completions [1] This is a type of parking function where some of the parking spots are occupied or 

otherwise obstructed before we begin to allow the cars in question to start parking.  
Following the same rules as the parking functions in this paper, they enumerate the 
number of parking completions which are the parking preferences that allow the cars 
to park given the initial obstructions. 

Interval Parking 
Functions [2] 

These parking functions follow the same rules as the parking functions that we 
explored in this paper.  However, the major difference is that each car not only has a 
preferred spot, which is listed in the preference vector, but each car also has a 
preference interval.  So, as the cars are parking, if a car has an actual parking spot that 
is outside of its preference interval, then we do not have a parking function. 

k-Naples Parking 
Functions [3, 4] 

In the beginning of the paper, we talked about our one-way street having a dead end.  
That meant that if a car’s preferred parking spot and all of the succeeding ones were 
occupied, the car couldn’t park.  You might have wondered, why can’t the car back 
up?  It turns out that with k-Naples parking functions, the car can reverse to see if 
there were any available parking spots prior to its preferred spot.  These authors were 
studying what changes depending on how many spots the car can reverse to find an 
open spot. 

k-Naples Parking 
Functions Statistics [5] 

This paper does something that many researchers do by taking an existing scenario 
and asking a different question about it.  These authors study the parking world that is 
k-Naples parking functions.  However, instead of asking how many k-Naples parking 
functions there are, they study other information such as the order the cars actually 
park, and we call information of this type statistics about the parking functions. 

 
Table 1.  Some questions of current interest 

 
References 
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Valentine’s Math, Part 1 
by Ken Fan | edited by Jennifer Sidney Silva 
 
Emily: Jasmine, check out this Valentine heart app!1 
 
Jasmine: That’s neat! 
 
Emily: And look, it shows the mathematical formula that’s being graphed.  You can change the 
parameters and vary the shape of the Valentine heart. 
 
Emily adjusts one of the parameters as they watch the dimple at the top of the heart sharpen. 
 
Jasmine: That’s a complicated equation! 
 
Emily: Well, the graph of this equation is a surface in 3D, so it involves x, y, and z. 
 
Jasmine: I never thought to try to find a mathematical equation that describes a Valentine heart.  
Maybe we can come up with one for a 2D Valentine heart.  Do you want to try? 
 
Emily: In other words, you want to find some equation involving the variables x and y for which 
the solutions (x, y), when plotted, form the boundary of a Valentine heart? 
 
Jasmine: Exactly.  Just as the solutions to the equation x2 + y2 = 1, when plotted, yield a circle, 
let’s find an equation whose solutions, when plotted, form the boundary of a Valentine heart. 
 
Emily: Sure, sounds like fun!  I guess we can start with a 
sketch of a Valentine’s heart. 
 
Emily draws the heart shape shown at right. 
 
Jasmine: That’s nicely drawn, Emily!  But I have no idea 
what equation could describe such a shape.  I guess it’s like 
a circle that’s been pinched out at the bottom and has a 
dimple on top.  Maybe we can somehow modify the 
equation that describes a circle, to produce those features. 
 
Emily: Since all circles are similar to each other, we might as well use the circle described by the 
equation x2 + y2 = 1.  But how can we modify it to produce, say, the dimple on top? 
 
Jasmine: Let’s see.  The equation x2 + y2 = 1 says that the square of the distance of the point 
(x, y) from the origin is equal to 1.  If we place our heart in the coordinate plane so that it 
contains the origin and is symmetric about the y-axis, then as we travel around the heart, our 
distance from the origin will vary.  Perhaps we could replace the 1 on the right-hand side of the 
equation with the square of a formula that describes how this distance varies. 
 

                                                 
1 Emily is looking at the widget at https://love.imaginary.org/ created by Aaron Montag. 
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Emily: That sounds like a good plan!  Let’s place the origin of coordinates exactly halfway 
between the bottom of the dimple and the bottom of the pinch.  I’ll add the axes as well as a 
circle so we can more easily guesstimate the distances of points on the heart from the origin.  
And we might as well scale it so that the circle is a unit circle. 

 
Jasmine: If we can figure out the distances from the origin 
to various points on the heart as a function of the angle A, I 
think we’ll essentially have our equation.  All we’d have to 
do is replace the angle A with a function that gives A in 
terms of x and y, then replace the 1 in x2 + y2 = 1 with the 
square of the result. 
 
Emily: Let’s sketch a graph of the distances of points on 
the heart from the origin as a function of the angle A, and 
let’s refer to this function as the “distance function.” 
 
Jasmine: Okay.  When A is 0°, we’re at the bottom of the 

dimple; so the distance will be the radius of the circle, which we’re taking to be 1.  And the 
distance will also be 1 when A is 180°, by construction.  When A is 90°, that’s the x-intercept of 
the right lobe of the heart, and I’d say that the distance is about 7/8? 
 
Emily: That seems about right. 
 
Emily and Jasmine make the following table: 
 

A 0° 30° 45° 60° 90° 120° 135° 150° 180° 

Distance 1 3/2 3/2 11/8 7/8 2/3 5/8 2/3 1 
 
Emily: If we sketch out an 
extrapolation of these values, 
we get something that looks 
more or less like this. 
 
Jasmine: There’s no 
definitive Valentine heart 
shape, so we have some 
leeway.  But the graph looks 
roughly like a sine wave.  
What if we just use a sine 
wave?  What would the 
resulting heart look like? 
 
Emily: I don’t know, let’s try it and see! 
 
Jasmine: Our graph looks something like the graph of 1 + sin(2A)/2, so let’s use that for our 
distance function. 
 
Emily: Okay.  We also have to figure out how to relate A to (x, y).  For points in the first 
quadrant, where x and y are both positive, the angle with measure A is one of the acute angles of 



 

© Copyright 2021 Girls’ Angle.  All Rights Reserved.                                                                23 

a right triangle with legs of length x and y; so if (x, y) is in the first quadrant, then A is the 
arctangent of x/y.  In the second quadrant, where x is positive and y is negative, the arctangent of 
x/y will be something between -90° and 0°, so I think that A = 180° + arctan(x/y). 
 
Jasmine: For quadrants three and four, we’re actually measuring A counterclockwise from the 
positive y-axis.  So I think we can use the same formulas you got for the first and second 
quadrants, except that we have to take the absolute value of x.  In other words, for y ≥ 0, we can 
use the formula A = arctan(|x|/y), and for y < 0, we can use the formula 180° + arctan(|x|/y). 
 
Emily: It bothers me a little that we have to split into cases, depending on whether y is positive or 
negative.  After all, as we travel around the boundary of the heart from the point (0, 1) to the 
point (0, -1), the angle changes continuously from 0° to 180°. 
 
Jasmine: Maybe we can combine them into a single formula, because the basic arctangent 
function goes continuously from -90° at negative infinity to 90° at positive infinity.  Typically, 
angles are measured from the positive x-axis, and not the positive y-axis, so if we revert to the 
typical way of realizing the arctangent, I think that we can get A with the formula 
 

A = 90° – arctan(y/|x|). 
 
In her head, Emily thinks it through: when x > 0, we have arctan 1/x = 90° – arctan x.  So for  

y > 0, we have 90° – arctan(y/|x|) = 90° – (90° – arctan(|x|/y)) = arctan(|x|/y), which agrees 

with our first formula.  And for x < 0, we have arctan 1/x = -90° - arctan x.  So for y < 0, the 

formula 90° – arctan(y/|x|) is equal to 90° – (-90° – arctan(|x|/y)) = 180° + arctan(|x|/y), which 

also agrees with our formula! 
 
Emily: I agree!  So our Valentine heart equation is 
 

 x2 + y2 = (1 + sin(2(90° – arctan(y/|x|))/2)2. (1) 
 
Jasmine: Let’s simplify that. 
 
Emily and Jasmine simplify the equation, using the 
trigonometric identities 
 

sin(2x) = 2sin(x)cos(x) 
 

and 

sin(arctan(x)) = 
21

x

x+

 

 
For details, see the box at right. 
 
Emily: I got 
 

2

2 2

2 2
1

y x
x y

x y

 
+ = + 

+ 
. 

 

Simplification of Equation 1 

x2 + y2 = (1 + sin(2(90° – arctan(y/|x|))/2)2 

= (1 + sin(180° – 2arctan(y/|x|))/2)2 

= (1 + sin(2arctan(y/|x|))/2)2 

= (1 + sin(arctan(y/|x|)) cos(arctan(y/|x|))2 

= 

2

2 2 2 2
1

xy

x y x y

 
 +

 
+ + 

  

= 

2

2 2
1

y x

x y

 
+ 

+ 
. 

 



 

© Copyright 2021 Girls’ Angle.  All Rights Reserved.                                                                24 

Perhaps it can be simplified further by expanding, but I like the way the form of the expression 
exposes our original idea. 
 
Jasmine: Let’s graph it! 
 
Emily and Jasmine use a computer to plot the graph of their equation.  Here’s the output 
superimposed over the unit circle (in blue) and their original heart sketch (in faded red): 
 
 

 
 
Emily and Jasmine let out a laugh. 
 
Jasmine: Yikes!  That does not look like a Valentine heart! 
 
Emily: It kind of looks like a stylized ram’s head. 
 
Jasmine: A ram’s head? 
 
Emily: I don’t know.  Actually, it’s not that far off from our original sketch.  I think it represents 
progress.  It looks like the perturbation from the circle is just a little too much all around.  
Perhaps we should use a smaller amplitude for the sine curve. 
 
Jasmine: Gosh, I wish we used a variable for that amplitude so we wouldn’t have to redo the 
derivation!  Let’s redo it.  But this time, for the distance function, let’s use 1 + a sin(2A). 
 
Emily and Jasmine redo their derivation using a variable for the amplitude of the sine wave. 
 
Jasmine: Okay, I get 

2

2 2

2 2

2
1

ay x
x y

x y

 
+ = + 

+ 
. 

 
Emily: I get that, too.  What value of a would you like to try? 
 
Jasmine: I’m not sure.  I guess we should try several values of a.  We’ve already seen the graph 
for a = 1/2, so why don’t we try the values 1/5, 1/4, and 1/3? 
 
Emily: Sounds good to me. 
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Emily and Jasmine write a quick computer program to plot the equation.  Here’s the output: 
 

     

The graphs of 

2

2 2

2 2

2
1

ay x
x y

x y

 
+ = + 

+ 
 with a = 1/5, 1/4, and 1/3, respectively, from left to right. 

 
Jasmine: The graph with a = 1/5 looks most like a Valentine heart to me, but all of them bulge at 
the bottom instead of tapering there. 
 
Emily: For the top halves, I actually prefer the larger values of a. 
 
Jasmine: I do, too. 
 
Emily: Perhaps we need to abandon the idea of using a simple sine function for our distance 
function.  Let’s try to refine our distance function to look like 1 + sin(2A)/2 for angles A 
corresponding to the upper part of the heart, and more like 1 + sin(2A)/5 for angles A 
corresponding to the lower part of the heart.  It would be nice if we could also make the heart 
taper to a point at the bottom instead of bulging the way it does in all the examples we’ve 
constructed so far. 
 
Jasmine: Yes, but how do we make it taper instead of bulge? 
 
Emily: At the very bottom of the heart, where the angle A is 180°, the distance function returns 1.  
As the angle A decreases, we need that distance function to drop below 1 faster. 
 
Jasmine: If it drops off faster, couldn’t that still result in a bulge?  For example, when our 
amplitude a is bigger, the distance function drops from 1 faster, but we still get a bulge instead of 
a taper. 
 
Emily: You’re right.  It’s got to drop off in a way that makes the curve bend away from the  
y-axis, instead of toward it.  In any case, if we are much more careful about the exact values of 
the distance function for our heart sketch, then build a function that accurately models that, we 
should get a heart that tapers at the bottom. 
 
Jasmine: Hmm.  I bet it’ll be hard to find an explicit function that accurately models the distance 
function associated with our heart sketch.  But at 
the moment, I don’t have a better idea to try. 
 
To be continued... 

Can you come up with an equation that produces a 
nicer-looking Valentine heart?  If you do, please 

share it with us at girlsangle@gmail.com. 
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by Girls’ Angle Staff 
edited by Amanda Galtman 

 

 
Matrices and Linear Equations 
 
An important topic from Algebra I is solving systems of linear equations, like this one: 
 

2x + 3y = 7 
 

4x – 5y = 10 
 
Here, we won’t discuss why these are important or how to find solutions.  Instead, we’ll focus on 
one notation commonly used to express such systems, called matrices. 
 
Matrix notation expresses the above system of equations like this: 
 

2 3 7

4 5 10

x

y

    
=    

−    
. 

 
Let’s take the original system and let everything fade out, except the numbers: 
 

2x + 3y = 7 
 

4x – 5y = 10 
→ 

2x + 3y = 7 
 

4x – 5y = 10 
→ 

2x + 3y = 7 
 

4x – 5y = 10 
 
We end up with an array of numbers.  Why can’t we just use this unadorned array of numbers to 
express our system of linear equations? 
 
Well, for one thing, we’ve lost the variables.  For another, how would we know if this 2 by 3 
array of numbers corresponds to the intended system, or to the system 
 

2 = 3x + 7y 
 

4 = -5x + 10y, 
 

or to something else that has the same numbers used in different ways? 
 
Matrix notation is designed to allow us to specify a system of linear equations precisely. 
 
A matrix is a rectangular array of numbers set off from the surrounding material by a pair of 
parentheses (or square brackets).  The matrix form of our system actually consists of three 
matrices.  In the context of linear equations, the two matrices on the left of the equation can be 
combined using an operation called matrix multiplication into a single matrix. 

Good notation facilitates communication.  To learn notation, use it.  Practice makes perfect! 
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2 3 2 3

4 5 4 5

x x y

y x y

+    
=    

− −    
. 

 
Two matrices are equal to each other if they have the same dimensions and corresponding entries 
are equal.  So our matrix equation, which equates two matrices that each have two rows and one 
column, corresponds to two equations, one for each position in the matrix. These two equations 
are the two equations in our original system of linear equations. 
 

In fact, we can turn the desire to have 
2 3

4 5

x

y

  
  

−  
 represent 

2 3

4 5

x y

x y

+ 
 

− 
 into the definition for 

matrix multiplication!  To see matrix multiplication more clearly, we can replace the coefficients 
with variables: 
 

a b x ax by

c d y cx dy

+    
=    

+    
. 

 
Here’s a system of three linear equations in three unknowns x, y, and z, written using matrices 
and written as a standard system of linear equations: 
 

1 2 3 10

4 5 6 11

7 8 9 12

x

y

z

    
    

=    
    
    

 
x + 2y + 3z = 10 
4x + 5y + 6z = 11 
7x + 8y + 9z = 12 

 
We extend matrix multiplication so that the second factor can have more than one column by 
simply multiplying the first matrix with each column of the second and putting each result in a 
separate, corresponding, column in the result.  We can also extend matrix multiplication in a 
similar way to include products where the first factor has a different number of rows.  All that’s 
needed to ensure that two matrices can be multiplied together is that the number of columns in 
the first factor is the same as the number of rows in the second factor.  Here’s an example: 
 

a b au bx av by aw bz

c d u v w cu dx cv dy cw dz

e f x y z eu fx ev fy ew fz

g h gu hx gv hy gw hz

+ + +   
   

+ + +    
=    + + + 

   
+ + +   

. 

 
The product has as many rows as the first factor and as many columns as the second factor. 
 
Note that we haven't actually defined matrix multiplication in general.  Based on the examples, 
how would you define it? 
 
There are many ways to interpret matrices and many ways to think about matrix multiplication, 
and there are applications galore!  If you are interested in exploring further, see if you can show 
that matrix multiplication is associative, but not commutative.  Also, check out any book on 
linear algebra. 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 28 - Meet 1 
January 28, 2021 

Mentors: Cecilia Esterman, Kimberly Hadaway, Adeline Hillier, 
Bridget Li, Tingyi Lu, Kate Pearce,  AnaMaria Perez, 
Nehar Poddar, Gisela Redondo, Vievie Romanelli, 
Savannah Tynan, Emma Wang, Jane Wang, 
Karissa Wenger, Rebecca Whitman, Annie Yun 

Traditional 3 × 3 tic-tac-toe always ends in a draw if each player plays optimally, but 

what should happen if you play 3 × 3 × 3 tic-tac-toe? 
 

Session 28 - Meet 2 
February 4, 2021 

Mentors: Cecilia Esterman, Kimberly Hadaway, Adeline Hillier, 
Bridget Li, Kate Pearce,  AnaMaria Perez, Nehar Poddar, 
Gisela Redondo, Vievie Romanelli, Savannah Tynan, 
Emma Wang, Jane Wang, Karissa Wenger, 
Rebecca Whitman, Annie Yun 

Several of our members love cats, so naturally, they dreamt up math problems involving 
cats.  For example: What is the optimal size and shape for a cat carrier?  What is the probability 
distribution of paw steps on a stairs as the cat runs up and down one? 

Can you think of any math questions involving your pets? 
 

Session 28 - Meet 3 
February 11, 2021 

Mentors: Cecilia Esterman, Kimberly Hadaway, Adeline Hillier, 
Bridget Li, Kate Pearce, Nehar Poddar, Vievie Romanelli, 
Savannah Tynan, Emma Wang, Jane Wang, 
Rebecca Whitman, Angelina Zhang, Rachel Zheng 

In the previous issue, Bogosian, Catanzaro, Cavatorta, and Danison introduced and 
analyzed the Toblerone game.  It inspired another group to make up their own game to analyze.  
How would you want to modify the Toblerone game?  What are the characteristics of a good 
game?  Can you invent a game that has all the characteristics you want in a good game? 
 

Session 28 - Meet 4 
February 25, 2021 

Mentors: Talia Blum, Cecilia Esterman, Kimberly Hadaway, 
Adeline Hillier, Rebecca Nelson, Kate Pearce, 
AnaMaria Perez, Nehar Poddar, Gisela Redondo, 
Vievie Romanelli, Karissa Wenger, Rebecca Whitman, 
Rachel Zheng 

 A lot of geometric questions arose this session, such as: What shape maximizes area for a 
given perimeter?  What shape maximizes volume for a given surface area?  How can you 
efficiently pack cylinders into a rectangular box?  How does scaling affect area and volume?  
 Do these questions make you think of any questions? 
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Calendar 

 
Session 27: (all dates in 2020) 
 

September 10 Start of the twenty-seventh session! 
 17  
 24  
October 1  
 8  
 15  
 22  
 29  
November 5  
 12  
 19  
 26 Thanksgiving - No meet 
December 3  

 
Session 28: (all dates in 2021) 
 

January 28 Start of the twenty-eighth session! 
February 4  
 11  
 18 No meet  
 25  
March 4 Daina Taimina, Cornell University 
 11  
 18  
 25 No meet 
April 1  
 8  
 15  
 22 No meet 
 29  
May 6  

 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


