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An Interview with 

Pamela E. Harris, 

Part 2 
 

This is the concluding half of our interview 

with Associate Professor of Mathematics at 

Williams College, Pamela E. Harris. 

 

Ken: Please tell us about some of the people 

who were influential to you in your journey 

to becoming a mathematician. 

 

Pamela: I’ve mentioned Alejandra and Erik.  

Another influential person has been my PhD 

advisor Jeb Willenbring who has always 

been very supportive of my career choices 

and he encouraged me to pursue them fully.  

Even when I failed my masters exams 

(multiple times) and others in the faculty 

weren’t so supportive, Jeb always reminded 

me that I could do it.  He spent so many 

hours with me working on math and sharing 

his love for the subject.  I have fond 

memories of hanging out in his kitchen as 

Charlotte (his daughter who was a toddler at 

the time) banged on pots and pans all while 

Jeb would tell me the history of math 

theorems and of interesting problems yet 

unsolved.  Jeb has also overcome a lot and 

his own life story gives me so much 

inspiration.  I’m tearing up thinking of it 

because I may never tell him directly (yikes 

he may read this!), but I am proud to forever 

be called his student. 

 

Ken: I’ll make sure he has a copy!  You 

raised a child as a graduate student, which is 

utterly amazing to me.  How did you do it? 

 

Pamela: Akira was born in April and I 

started graduate school that August, both 

occurred while Jamual (my husband) was 

deployed to Iraq.  In fact Jamual was 

stationed out of state during my entire 

graduate schooling (6 years in total).  Since I 

started graduate school as a mom I never 

knew what the experience of being a 

childless grad student was like.  So I just 

assumed we all had it hard and we all would 

work to help each other stay up to date with 

our material.  I was very fortunate that 

UWM supported me with a wonderful 

fellowship that helped me cover expenses 

associated with caring for Akira and my 

mother helped me during the first three 

years of my grad program.  Then as soon as 

I was able to, I enrolled Akira in a full day 

K3 school.  That was emotionally painful to 

do because she was so little.  I remember her 

carrying a book bag that barely cleared the 

ground as she walked in to the school.  I 

spent many days crying in the car after she 

went in, often second guessing the choices I 

was making.  But I pushed through and we 

got through the next three years.  I studied 

when she slept and woke up earlier than her 

to make sure I could take care of things she 

needed for the day.  I took it one day at a 

time and reminded myself that this would be 

worth it in the end. 

 

Ken: Do you have any advice for how to 

best approach learning mathematics? 

 

Pamela: Be curious and ask questions 

constantly.  Always read things and do not 

be discouraged if new words appear.  

Simply make a list and learn new words 

daily.  Math is like any language.  Once you 

know the words you can then start with 

sentence construction.  Once you understand 

The secret to success in 

mathematics is all a simple 

equation of interest, hard 

work, and curiosity. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of this interview with 
Prof. Pamela E. Harris and other content.   We hope that you 
consider the value of such content and decide that the efforts 
required to produce such content are worthy of your financial 
support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                           Girls’ Angle: A Math Club for Girls
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout. 
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Content Removed from Electronic Version 
 
 

 
 
 
 
 
 
 
 
 

America’s Greatest Math Game: Who Wants to Be a Mathematician. 
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The Needell in the Haystack1 
Questions, Lyme Disease Data, and More Questions, Part 2 
by Deanna Needell2 | edited by Jennifer Sidney Silva 
 
We continue our survey of our application of machine learning to the 
study of Lyme disease.  In Part 1, we described the data we used and the 
machine learning methods we applied.  We also revealed some of our 

results.  Here we show more of our results and comment on them. 
 
Entropy/Decision Tree  We measure the information gain produced by each feature by 
calculating the difference of the original entropy of the features and the conditional entropy after 
splitting the data into separate groups based on the responses to the particular feature.  For 
entropy calculations, we do not use the subsampled data because the difference in class sizes 
does not negatively affect performance; we are not performing a classification task that could 
result in poor classification accuracy on underrepresented labels.  Meanwhile, the decision tree 
model, which uses this entropy calculation for classification, does suffer from uneven prediction 
results (e.g., a one-node decision tree degenerates to a majority classifier), so for classification 
we apply the model to the subsampled dataset.  In Figure 4 we list the top entropy gain produced 
by individual features in MLD, sorted in descending order of entropy gain.  
 

 

Figure 4.  Information gain 
of individual features on 
MLD.  Here we display the 
top 30 features by entropy, in 
descending order. 

 
 
                                                 
1 This content supported in part by a grant from MathWorks. 
2 The author thanks her student, Josh Vendrow, her postdoctoral scholar, Dr. Jamie Haddock, and the CEO of 
Lymedisease.org, Lorraine Johnson, for their help with this project. 



 

© Copyright 2021 Girls’ Angle.  All Rights Reserved.                                                                8 

k-Nearest Neighbors  In Figure 5 we display the results of running the KNN model on 
individual features.  To do this, we train our model using only a single feature in place of the 
entire data set.  We can interpret this as projecting each data point onto the axis of that feature, so 
the space we are learning within is one-dimensional.  For each feature, we tune the model on a 
small batch of possible k values.  
 

 

Figure 5.  KNN accuracy 
of individual features on 
Subsampled MLD 
(SMLD).  Here we 
display the top 30 
features by accuracy, in 
descending order. 

 
 
Putting it all together  From the results of our models we now create a ranking of the most 
important features (questions in the survey) in our dataset for predicting GROC labels.  To do 
this, we first define R(m, i) to be the ranking of feature i by model m.  Since we have 215 
features, note that 1 ≤ R(m, i) ≤ 215 for all i, m.  For each, the metric we use to produce the 
ranking is the metric used to order the features in Figures 1-5.  In order to aggregate these 
rankings, we take the simple approach of averaging the ranking of each feature by all of our 
models.  Let S(i) be the average rank of feature i.  Then  
 

5

1

1
( ) ( , )

5 m

S i R m i
=

=  . 

 
This aggregates our rankings into a single score where smaller values indicate more important 
features.  In Table 2, we show the top 30 features sorted by value.  Note that there are many 
quantitative ways to measure the importance of these features, but we omit describing them in 
this article.  That topic could easily take up its very own article. 
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Toblerone Game 
by Eleanor Bogosian, Antonella Catanzaro, 
Elizabeth Cavatorta, and Naomi Danison | edited by Amanda Galtman 
 

 
A Toblerone bar, made by Kraft Foods. 

 
Introduction 

 
Two friends share a Toblerone candy bar.  A Toblerone candy bar is a chocolate bar formed by 
connecting triangular pieces of chocolate.  Each wants as many of the triangles as possible, but 
they don’t want to rudely gobble down the whole bar in one go.  They decide to split the bar by 
playing a game, whose rules are described below.  In this article, we determine how to play this 
game optimally. 
 
Definitions 

 
Triangle A triangular piece of chocolate in a Toblerone candy bar. 

Segment A Toblerone bar consisting of any number of triangles. 

Even segment A segment with an even number of triangles. 

Odd segment A segment with an odd number of triangles. 

Singleton A segment with exactly one triangle 

P1 Player one. 

P2 Player two. 

Score The number of triangles taken by P1 minus the number of triangles 
taken by P2. 

 
Rules of the Toblerone Game 
 
There are two players, P1 and P2.  They take turns either taking a singleton (if one is available) 
or splitting a segment (if one is available with more than two triangles).  P1 goes first. 

At the start of a game, there can be any number of bars with any number of triangles in 
each.  If there is at least one singleton, the player can either take one or split a segment (if one is 
available).  If there are no singletons but there are segments, then a segment must be split into 
two new segments.  The player can choose to split a segment between any two adjacent 
triangles.  

The game ends when there are no more triangles left.  The winner is the player with the 
most triangles at the end of the game. 

Primary guidance and mentorship for this mathematical 

investigation was provided by Laura Pierson. 

Photo by Evan-Amos 
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Sample Game 

 
Here’s an example of a game where the second player wins. 
 

Action Game State P1 P2 

Starting configuration 

 

0 0 

Player 1 splits between 
the 3rd and 4th triangles 

 

0 0 

Player 2 splits between 
the 4th and 5th triangles 

 

0 0 

Player 1 takes the 4th triangle 

 

1 0 

Player 2 takes the 5th triangle 

 

1 1 

Player 1 splits between 
the 2nd and 3rd triangles 

 

1 1 

Player 2 takes the 3rd triangle 

 

1 2 

Player 1 splits between 
the 1st and 2nd triangles 

 

1 2 

Player 2 takes the 2nd triangle 

 

1 3 

Player 1 takes the 1st triangle 

 

2 3 
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Optimal Play 
 
We first prove the following lemma. 
 
Lemma.  No matter which segment is split, there is always a change in the parity of the number 

of even segments and no change in the parity of the number of odd segments.  
 
Proof.  If an even segment is split, there are two possibilities.  The first possibility is that two 
even segments are created.  In that case, there is one more even segment, so the parity of the 
number of even segments changes.  The second possibility is that two odd segments are created.  
In that case, there is one less even, so there is again a change in the parity of the number of even 
segments.  Both possibilities result in no change in the parity of the number of odd segments.  If 
an odd segment is split, there is only one possibility: an odd segment is always split into an even 
segment and an odd segment.  There is one more even segment, so there is yet again a change in 
the parity of the even segments.  There is no change in the number of odd segments.  □ 
 
Theorem.  Given the parity of the numbers of singletons, even segments, and odd segments, one 

can determine the final score of an optimally played game according to the table below. 
 

Table of Optimal Scores 
 

State 

Label 

Parities 
Final Score Next State 

Singletons Evens Odds 

A 0 0 0 0  F C G  

B 0 0 1 -1  E D H  

C 0 1 0 0  H A (E)  

D 0 1 1 1  G B (F)  

E 1 0 0 2  B (G) (C)  

F 1 0 1 1  A (H) (D)  

G 1 1 0 0  D (E) A  

H 1 1 1 1  C (F) B  

 
This table shows the final score for each possibility given the parities of the numbers of singletons, evens, 
and odds in the starting state.  A ‘1’ represents an odd amount and a ‘0’ represents an even amount.  The 
‘Next State’ column shows the only states the game can move to next, listed in the following order: taking 
a singleton, splitting a segment without creating a singleton, and splitting a segment while creating a 
singleton.  Suboptimal choices are enclosed in parentheses. 

 
Proof.  The proof will be a proof by induction with one base case and eight different cases in the 
inductive step.  We will be inducting on the number of moves in the game.  (Note that the total 
number of moves in a game is equal to the total number of triangles and adjacent pairs of 
triangles in all the segments in the starting configuration.) 
 
Base Case 
 
The base case is when there are no triangles, so the score is 0. 
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Inductive Step 
 
In some cases, a player has a choice between states.  Because the proof concerns optimal 
gameplay, we always assume that the player chooses the optimal state. 

To verify the final score the current state produces, we look at the final score the next 
state produces, switch the sign, and add 1 if the player takes a singleton in this turn.  When the 
game moves to the next state, the score switches signs, because P1 and P2 switch places. 

In state A, if a player takes a singleton, state A becomes state F, with a score of 1.  If the 
player splits a segment instead, depending on whether a singleton is created, state A becomes 
state C or state G. Both have a score of 0.  In all cases, state A leads to a final score of 0.  

In state B, if a player takes a singleton, state B becomes state E, which produces a final 
score of 2.  If a player splits a segment, state B becomes state D or state H, which both have a 
score of 1.  In all cases, state B leads to a final score of -1. 

In state C, if the player takes a singleton, state C becomes state H, with a score of 1.  If a 
player splits a segment, state C becomes state A or state E, which has a score of 0 or 2, 
respectively.  The number of even segments is odd, so there must be an even segment.  When 
splitting an even, one can choose whether to create an odd number of singletons.  State A gives 
state C a score of 0, while state E gives state C a score of -2. In optimal gameplay, state C 
becomes state A or state H.  State A and state H both give state C a score of 0. 

In the same manner as state C, state D becomes state G, state B or state F.  These next 
states have scores of 0, -1 and 1, respectively.  In optimal gameplay, state C becomes state G or 
state B, which both give state D a score of 1. 

In state E, if the player takes a singleton, state E becomes state B, with a score of -1.  If 
the player splits a segment, state E becomes state G or state C, which both have a score of 0.  
State B gives state E a score 2, while state G and state C both give state E a score of 0.  State B is 
optimal, so the score for state E is 2. 

In state F, if the player takes a singleton, state F becomes state A, with a score of 0.  If the 
player splits a segment, state F becomes state H or state D.  Both have a score of 1.  State A 
gives state F a score of 1, while state H and state D give state F a score of -1.  State A is optimal, 
so the score for state F is 1. 

In state G, if the player takes a singleton, state G becomes state D, with a score of 1.  If 
the player splits a segment, state G becomes state E or state A. These next states have scores of 2 
and 0, respectively.  State D and state A give state G a score of 0, while state E gives state G a 
score of -2.  State D and state A are equally optimal, so the score for state G is 0. 

In state H, if the player takes a singleton, state H becomes state C, with a score of 0.  If 
the player does not, then it will become state F or state B, which have a score of 1 and -1, 
respectively.  State C and state B give state H a score of 1, while state F gives state G a score 
of -1.  State C and B are equally optimal, so the score for state H is 1. 

This exhausts all the possibilities and completes the inductive step and the proof.  □ 
  
Conclusion 

 
There are usually many possibilities for each step of the game, but they can all be reduced to 
eight different states based on the parity of the singletons, evens, and odds.  The state at the start 
of the game determines the final score.  Here are a few interesting observations we made: 

• Taking a singleton is always an optimal move, although not necessarily the only one. 
• Unless a singleton is created, which bar is split and the way it is split do not impact the 

outcome of the game.  
• An optimal score of 2 is possible, not just -1, 0, or 1.  See state E
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Honk!  Honk!, Part 11 
An Introduction to Parking Functions 
by Kimberly P. Hadaway and Pamela E. Harris2 
 
You have seen a car trying to park before, and that is the perfect introduction to parking 

functions!  Imagine that we are looking at a one-way street with a dead end, and there is parking 
available on only one side of the street.  Suppose there are n parking spots available on the street, 
and they are labeled 1 to n from the start of the street to the end in consecutive order.  We 
illustrate this street in the figure below. 
 

 
 

Figure 1.  Parking function illustration 

 
As part of this scenario, we have a line of n cars waiting to park.  Like most drivers, each 

of these drivers has a favorite parking spot.  We call each driver’s favorite spot their preference.  
Note that preferences are not required to be distinct; that is, multiple drivers can have the same 
favorite parking spot.  In order to keep track of the parking preferences of each driver, we list 
them in a vector in the same order that the cars are lined up to park; that is, the ith car will have 
its preference listed in the ith spot of this vector, which we call a preference vector.  The 
preference vector is important because it allows us to easily document each car’s favorite spot.  
 In this scenario, we want each car to be able to park, using the following parking rule: 
Cars enter the street in the order they are lined up.  Since we know each car has a desired parking 
spot, each car drives down the street to this spot and checks if it is available.  If the spot is empty, 
the car parks in that spot – hooray!  Then, the next car enters the street and repeats the process.   
If instead the car found its favorite spot occupied, then the car continues down the street and 
parks in the next available spot.  We proceed in this way until either a car reaches the dead end 
and cannot park (sad!), or all cars are able to park.  If a preference vector allows all cars to park 
using this parking rule, then we call it a parking function. 

Keep in mind that not all preference vectors will allow all of the cars to park.  This 
happens because the street has a dead end.  For example, if a car’s preferred spot and all of the 
following parking spots are taken, then the car can’t park – based on our parking rule – so this 
particular preference vector would not be a parking function.  Let’s consider two quick 
examples.  The parking preference vector (1, 1, 4, 2) is a parking function because car 1 parks in 
spot 1; car 2 finds spot 1 already occupied and parks in spot 2; car 3 parks in its preferred 
parking spot numbered 4; car 4 finds its preferred parking spot occupied and parks in spot 3.  
The parking preference vector (2, 2, 3, 4) is not a parking function.  Notice car 1 parks in spot 2; 
car 2 finds its preferred parking spot occupied and parks in spot 3; car 3 finds its preferred 
parking spot occupied and parks in spot 4; car 4 reaches its preferred parking spot which is 
occupied and now encounters the dead end.  Since not all cars could park, we have established 
that (2, 2, 3, 4) is not a parking function. 
 There are many preference vectors that do allow all of the cars to park.  For example, any 
permutation provides a parking function.  Recall that a permutation is an arrangement of objects 

                                                 
1 This content supported in part by a grant from MathWorks. 
2 Both authors are from the Department of Mathematics and Statistics at Williams College. 
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where the order matters.  For example, if the objects we can arrange are x, y and z, then we can 
arrange them in 6 different ways: 
 

(x, y, z), (x, z, y), (y, x, z), (y, z, x), (z, x, y), and (z, y, x). 
 
Lemma 1.  There are n! permutations of the numbers 1, 2, …, n, and they are all parking 
functions. 

 
Try to prove Lemma 1 before reading further. 

 
Proof.  First, we show that there are n! permutations.  The first position could contain any of the 
n numbers 1, 2, …, n.  Once we place a number in the first position, then there are n – 1 choices 
of numbers we can place in the second position, and so on until we have only one remaining 
number to place in the last position.  This means that the total number of ways we could arrange 
the numbers 1, 2, …, n is given by n(n – 1)(n – 2)· · ·3·2·1 = n!. 
 Next, we show that every permutation is a parking function.  This requires that we think 
of a permutation as a parking preference vector.  Notice since every car has a unique favorite 
parking spot, then when they enter the street, not only can they park, but they all also get their 
preferred spot.  This means that every permutation is in fact a parking function, as we claimed. □ 
 

Lemma 1 establishes that all of the permutations are parking functions, but what about a 
vector like (1, 1, 1, 1)?  This is a parking function, but it is not a permutation.  So, we know that 
there must be more than n! parking functions, but we do not yet know how many parking 
functions there are.  Hence, we ask:  If n cars enter the one-way street with n parking spots, how 

many parking functions are there?  Let’s continue exploring to discover the answer! 
 

1. When is a preference vector a parking function? 

 
As mathematicians, we are often interested in finding answers to new things.  So, we could start 
by counting how many preference vectors there are. 

 
 Can you figure it out before reading on?  How many preference vectors are there? 

 
Lemma 2.  There are nn preference vectors where n represents the number of cars and the 
number of parking spots. 
 
Proof.  Recall that there are n entries in each vector, representing the favorite parking spots of the 
n cars entering the street to park.  Since we have n parking spots, each car has n choices for its 
preference.  So, we have n choices for the first entry in the vector, n choices for the second entry 
in the vector, n choices for the third entry, and so on until the nth position in the vector.  Thus, nn 
is the number of distinct preference vectors, as we claimed.  □ 
 

Next, we are interested in counting how many of the nn preference vectors are parking 
functions.   We know from Lemma 1 that there are at least n! parking functions.   In fact, we 
know that there must be more than n! because of the parking function (1, 1, 1, …, 1), which is 
not a permutation. 

 
Can you figure out exactly how many parking functions there are?  If you can’t, try to work 

out some examples and guess the formula. 
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Let’s work out a small example.   
 
Example 1.  Let’s consider n = 3. 
 
We already know there are 33 = 27 preference vectors. 

 
Grab a piece of scratch paper and list all 27 preference vectors.  When you’re done, check 

your answer against our list below. 
 

(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1) (1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2) (1, 3, 3) 
(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1) (2, 2, 2) (2, 2, 3) (2, 3, 1) (2, 3, 2) (2, 3, 3) 
(3, 1, 1) (3, 1, 2) (3, 1, 3) (3, 2, 1) (3, 2, 2) (3, 2, 3) (3, 3, 1) (3, 3, 2) (3, 3, 3) 

  
Now, we can check each of these preference vectors to see which ones allow all three 

cars to park.  Together, let’s determine whether (2, 2, 1) and (3, 2, 3) are parking functions.  In 
the case of (2, 2, 1) we have the following occurring: 
 

• The first car enters the street and parks in its preferred spot numbered 2. 

• The second car enters the street and goes to the second parking spot (its preferred spot) 
but finds that car 1 already parked there!  So, it continues down the street and parks in the 
next available parking spot, which happens to be the third spot in the street. 

• The third, and last, car enters the street and parks in spot 1, its preferred spot. 

 
Since all cars were able to park we now know that (2, 2, 1) is a parking function.  Let’s now 
consider (3, 2, 3).  We find the following: 
 

• The first car enters the street and parks in its preferred spot numbered 3. 

• The second car enters the street and goes to the second parking spot (its preferred spot) 
and finds it available, so it parks there. 

• The third, and last, car enters the street and approaches the third parking spot, its 
preferred spot, but finds that car 1 already parked there!  So, it continues down the street, 
but there are no parking spots after the third spot. 

 
Since the third car cannot park, we know that (3, 2, 3) is not a parking function. 

 
Working from your list of parking preference vectors test the remaining preference vectors 

to determine which ones are parking functions.  When you are done, check your work against the 
list provided below and continue on to the next section. 
 

Below is the list of preference vectors which are parking functions. 
 

(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1) (1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2) 
(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1) (2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1) 

 
Note that there are 16 parking functions when n = 3. 
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2. Counting Parking Functions 

 
In this section, we first present a way to generate all of the parking functions recursively.  Then, 
we share a classical proof by Henry O. Pollak (c. 1974) which accounts for the number of 
parking functions of length3 n. 
 
2.1 Enumerating Parking Functions Recursively 

 
What does “recursively” mean?  “Recursively” describes a method by which we start 
somewhere, and we do the same thing over and over again to find new things.  We can think of it 
as a special kind of repetition.  We often use the word recursion to describe a particular pattern 
of repetition. 
 If you have skip counted, you have encountered recursions before!  For example, if we 
were skip counting by 2, and started at 13, that would describe a recursion.  Starting at 13, we 
would add 2 to get 15, and add 2 to get 17, and so on.  By recursively doing this, we would find 
all of the odd numbers greater than 12.  The two important parts of a recursion are: 
 

1. The starting point(s) and 
2. The rule to generate the next element in a sequence of objects. 

 
If we have a starting point without a rule, we will not be able to generate any other elements of 
the set.  If we define a rule without a starting point, we cannot guarantee that somebody else 
following the same rule will generate the same set that we generated.  Thus, both of these parts 
are important and necessary in order for us to properly define a recursion. 
 This article is about parking functions, so let’s think about how we can connect our 
objects to recursions.  Perhaps we could use recursions to help us generate, or list, all possible 
parking functions of a given length n.  That is, if we start with the smallest case, n = 1, we can 
list all of the possible parking functions: (1).  That is our starting point.  Then, we want to 
determine a recursion that we can follow in order to generate all of the parking functions for the 
next case, n = 2.  We will construct such a recursive rule and use it to prove the following 
proposition. 
 In what follows, we let PFn denote the set of all parking functions of length n, and we let 
|PFn| denote the number of parking functions of length n, which is the size of the set PFn. 
 
Proposition 1.  The number of parking functions of length n follows the recursive formula 
 
 

|PFn| = 1

1

1

1

n

i n i

i

n
i PF PF

i
− −

=

− 
⋅ 

− 
 . (1) 

 
Proof of Proposition 1 as presented in [1].  First, recall that we have n cars and n parking spots.  
We assume that we have a parking function, meaning that all of the cars are able to park.  Note 
that when it is time for car cn to park, there is exactly one empty parking spot, which we will say 
is the ith space.  In other words, i represents the number of the first (and only) empty parking 
spot as car cn enters the street.  We illustrate this in the figure below, and we note that i could be 
the first or even the last parking spot. 
 

                                                 
3 Here, we will shorten saying that n is the number of cars and n is the number of parking spots, by simply saying 
that we are considering parking functions of length n. 
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Figure 2.  Parking spots enumerated for recursion. 

 
Since we assume that car cn parks in spot i, this implies that all of the parking spots before spot i 
are occupied; that is, the first i – 1 spots, those numbered from 1 to i – 1, are occupied. 
 Let C be the set of cars c1, …, cn – 1.  We now can create a subset of C consisting of the 
cars which parked in the parking spots numbered 1 to i – 1, inclusive.  Let us call this subset of 
cars the subset S.  Since these cars occupied the first i – 1 spots, the number of ways they could 
have preferred these spots is precisely |PFi – 1|.  This then accounts for the factor of |PFi – 1| 
appearing in the right-hand side of equation 1. 

Now, we study the remaining cars in C that are not in S; we call this subset of cars the 
complement of S, denoted by Sʹ.  Note that no car in Sʹ can park in parking spots 1 to i – 1 since 
those spaces are occupied by the cars in the set S.  Thus, the cars in Sʹ have preferences that form 
a parking function on the parking spots numbered i + 1 to n because we must have that car cn 
parks in spot i.  Now, we can count that there are n – i parking spots in that interval, and we 
know that there are |PFn – i| parking functions on those parking spots.  This then accounts for the 
factor of |PFn – i| appearing in the right-hand side of equation 1. 

Observe that we have now split the first n – 1 cars into two disjoint subsets, S and Sʹ, 
where S contains i – 1 cars which parked in the first i – 1 spaces, while the remaining n – i cars 

which make up the set Sʹ park in the last n – i spaces.  Next, we note that 
1

1

n

i

− 
 

− 
counts the number 

of ways in which we can select the i - 1 cars from the available n – 1 cars in order to create the 
set S.  Once those cars make up set S, then the remaining cars (those not in S) are the cars in the 

set Sʹ.  This then accounts for the factor of 
1

1

n

i

− 
 

− 
 appearing in the right-hand side of equation 1. 

Lastly, we consider the preference of car cn.  Recall our parking rule, which states that if 
a car’s preferred spot is taken, the car must drive down the street and park in the first available 
spot.  Thus, we need to account for the fact that car cn can have a preference of a parking spot 
numbered anywhere from 1 to i, inclusive.  Seeing how the spots 1 through i – 1 are occupied by 
the cars in the set S, this guarantees that car cn will park in spot i.  Observe, there are i possible 
preferences of car cn.  This then accounts for the factor of i appearing in the right-hand side of 
equation 1. 
 Assembling these factors, we determine that the possible parking functions resulting in 
car cn parking in spot i is given by the product of these respective factors.  Note this holds 
because each of these choices is independent of the other.  More specifically, there are 
 

1

1

1
i n i

n
PF PF i

i
− −

− 
⋅  

− 
 

 

possible ways in which car cn can park in spot i.  We end by accounting for the fact that i can be 
1 through n, inclusive.  Thus, we can sum over all possible values of i to find that the total 
number of parking functions is 

|PFn| = 1

1

1

1

n

i n i

i

n
i PF PF

i
− −

=

− 
⋅ 

− 
  

 
as we claimed.  □ 
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2.2 A Formula for the Number of Parking Functions 

 
A shortcoming of only having a recursive formula for parking functions is that in order to 
determine the total number of parking functions of length n + 1, we would need to compute the 
number of parking functions of length 1 through n.  As we saw in our previous examples, that 
can be a lot of work!  So, if we are interested in the total number of parking functions, we might 
not want to first generate them all and then count them.  Instead, we might want to have a 
formula that simply tells us the total number of parking functions.  This is precisely what 
Richard P.  Stanley, Alan G.  Konheim, and Benjamin Weiss did, and (spoiler alert!) we 
summarize in the following result. 
 
Theorem 1 (Pyke, 1959; Konheim and Weiss, 1966).  The number of parking functions of length 
n is |PFn| = (n + 1)n – 1. 
 

Pollak’s proof4 happens to be just six sentences, and we state them shortly.  However, 
this level of “conciseness” can make it difficult to understand as it covers quite a bit of 
mathematical material.  So, in Part 2, we will go through it line by line and provide some 
additional details so that we can make sense of the mathematics together. 
 
Proof of Theorem 1 as presented in [2].  “Add an additional space n + 1 and arrange the spaces in 
a circle.  Allow n + 1 also as a preferred space.  Now all cars can park, and there will be one 
empty space.  α is a parking function if and only if the empty space is n + 1.  If α = (a1, …, an) 
leads to car Ci parking at space p1, then (a1 + j, …, an + j) (modulo n + 1) will lead to car Ci 
parking at space pi + j.  Hence, exactly one of the vectors (a1 + k, a2 + k, …, an + k) 
(modulo n + 1) is a parking function, so 
 

|PFn| = 
( 1)

1

n
n

n

+

+

 = (n + 1)n – 1.”  □ 

 
Before we jump into the proof, let us take a moment to explain modular arithmetic.  You 

have encountered this before too because modular arithmetic is very closely related to how we 
denote time.  In modular arithmetic, we only care about integers up to multiples of a fixed whole 
number called the modulus.  In other words, if we let m be the modulus, then we consider two 
integers x and y to be equal “modulo m” if x and y differ by a multiple of m.  We write this as 
“x = y (mod m)”.  Notice that every integer x is equal, modulo m, to the remainder you get when 
you divide x by m. 
 
 Try to prove that |PFn| = (n + 1)n – 1 before Part 2 appears. 
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4 Sometimes, it is difficult to cite one’s sources.  As a matter of interest, Pollak’s proof is very hard to find.  This 
proof was written in 1974 and is cited as such in many other mathematical articles, yet the original proof, written by 
Pollak himself – not just cited in others’ work – appears to be lost forever. 
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The Saga of Fran and Fred 

  
by Kateri Escober Doran, Violet Freimark, Esmé Krom, 

Molly Roughan, and Viola Shephard 
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THE SAGA OF MATHEMATICAL MATHNESS  

 
Sir Francis III, Esquire, is chasing after his evil twin brother — Sir Frederick III — who is trying 
to take over the estate and lifetime supply of bananas entrusted to Francis, along with the 
Knightdom of the Knightly Knights of ABBABA.  Unfortunately, his fellow knights believe 
Fran is the bad guy, due to Fred’s popularity (and excellent banana smoothie recipe, which made 
him famous among all gorilla-kind).  Now Fred is chasing after Francis, knights in tow.  
Fortunately, Francis has a plan — throw as many banana peels as he can at Fred in the hopes that 
he slips.  Fred will only slip if at least one banana peel sticks to 3 out of his 4 limbs, or if there is 
at least one under each foot.  As a true Mathematical Gorilla Knight of ABBABA, Fran decides 
to predict the outcome with a proof.  What are the chances that Sir Fred will slip and Sir Fran 
will escape? 
 
Problem Statement 

 

This session at Girls’ Angle, we have been working on a probability problem that involves 
throwing banana peels at gorillas — a totally normal thing to do. 
 
The basic assumptions of the problem are as follows: 
 

A gorilla has 2 hands and 2 feet — 4 limbs in total.  We throw a certain number of 
banana peels at him, and he slips if at least 1 banana peel lands on each foot, or if 
banana peels land on at least 3 limbs.  The question is, if we throw n banana peels 
at the gorilla, what is the probability that he will slip? 

 
(Note: In this problem, we assume a) that our banana-throwing aim is perfect, so each banana 
peel we throw will always hit one of the gorilla’s limbs, b) that when a banana lands on a limb, it 
sticks there, and c) that the bananas we throw are the only thing making him slip and, thus, 
contributing to the calculated probability of slippage.) 
 

To make this article easier to 

read, we have come up with the 

color-coding system for 

different segments of the 

problem shown in the box at 

right. 

 
 
Process 
 
We started out solving the problem by manually writing out the number of ways for the gorilla to 
slip for the first few cases — the one in which we throw 2 bananas at the gorilla and the one in 
which we throw 3.  (The 0- and 1-banana cases are easy because the probability of slippage is 
0% in these cases, based on the rules of the problem.) 
 
This involved finding the # ways for the gorilla to slip and the total # ways to throw 2 or 3 
bananas, because the probability of the gorilla slipping is: 
 

# ways to slip ÷ total # ways to throw 

Primary guidance and mentorship for this 
mathematical investigation was provided by 
Jane Wang.  Cover by Esmé Krom. 

# bananas (n) = orange 

# limbs (4) = pink 

total # ways to throw = red 

# ways to slip = green 

# ways not to slip = blue 

# ways to choose 2 limbs that are not both feet (5) = purple 
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For example, the total # ways to throw 2 bananas at the gorilla is 16 because there are four ways 
to throw the first banana and 4 ways to throw the second banana and 4 × 4 = 42 = 16 ways to 
throw 2 bananas. 
 
So the denominator of our probability fraction is 16. 
 
There are only 2 ways for the gorilla to slip if we throw 2 bananas at him, because he can only 
slip if the bananas land on both feet — A and B — in either of the following 2 combinations: AB 
or BA.  (He does not slip if both bananas land on the same limb, as in AA or BB.) 
 
Therefore, the finished fraction for the 2-banana case is: 
 

2 ÷ 16 = 1 ÷ 8 = 12.5%. 
 
By the time we got to the 4-banana case (illustrated below), we realized that it would probably be 
easier to calculate the # ways for the gorilla not to slip, since the direct calculation was getting 
more and more tedious.  We could find the probability by subtracting the # ways not to slip from 
the total # ways to throw. 
 
The 4-Banana Case 

 
If we throw 4 banana peels at the gorilla, the probability of him slipping is: 
 

# ways for gorilla to slip ÷ total # ways to throw 4 banana peels. 
 
In other words: 
 

(total # ways to throw – # ways for the gorilla not to slip) ÷ total # ways to throw. 
 
To find the total # ways to throw, we see that this total is equal to the number of limbs (4) to the 
power of the number of bananas we’re throwing (in this case, also 4): 
 

4 × 4 × 4 × 4 = 44 = 256 ways to throw 4 bananas. 
 
Therefore, we need to compute: 
 

(256 – # ways not to slip) ÷ 256. 
 
Now all we have to do is find the # ways not to slip. 
 
Remember that the gorilla slips if he has at least 1 banana peel on each foot.  This means that 
there are two kinds of ways for the 4 banana peels to land where the gorilla doesn’t slip — if 
they land on 2 limbs (as long as they aren’t both feet), or if they all land on one limb.  Now we 
have to calculate the number of ways for the bananas to land in each of these configurations. 
 
There are 4 ways for all the bananas to land on one limb — all on limb P, all on limb Q (which 
are our two hands), all on limb R, and all on limb S (which are our two feet).  So that’s a check 
on part one of the subproblems! 
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However, finding the number of ways for the gorilla not to slip when the bananas are landing on 
two different limbs is going to be trickier.  First we’ll have to calculate the # ways to choose two 
limbs (6 ways minus the one involving both feet, which would result in slippage, so 5 ways), and 
then we have to multiply that by the number of ways to write 4 A’s or B’s in a row (for example, 
1A and 3B’s, 2A’s and 2B’s, 3A’s and 1B, and vice versa), where there is at least one A and one 
B (to avoid double counting the case where all the bananas land on a single limb). 
 
Originally, we tried to manually write out the combinations.  For example, for 1A and 3B’s, we 
would write out: 
 

ABBB 
BABB 
BBAB 
BBBA 

 
etc., which led to a lot of digression about the Knightly Knights of ABBABA.  But eventually we 
came up with a slicker way to calculate these combinations, like so: 
 
There are 2 × 2 × 2 × 2 = 24 = 16 ways to write a string of 4 A’s and B’s.  Two of these only land 
on one limb (AAAA and BBBB), so there are 16 – 2 = 14 ways. 
 
Therefore, there are 5 × 14 = 70 ways for the gorilla not to slip if the bananas land on two 
different limbs.  Adding this to the 4 ways if the bananas all land on one limb, we get 74 ways 
for the gorilla not to slip. 
 
Plugging this into our formula, we see that the probability of gorilla slipping if we throw 4 
bananas at him is: 
 

(256 – 74) ÷ 256 = 182 ÷ 256 ≈ 72%. 
 
We repeated a similar process for the 5-banana case, by which point we started to notice a 
pattern in the # ways not to slip: 
 

# bananas 2 3 4 5 

# ways not to slip 14 34 74 154 
         
Notice that 
 

14 + 20 = 34, 34 + 40 = 74, and 74 + 80 = 154. 
 
This convenient sequence (+20, +40, +80) doubled every time.  It led to our predicting that the # 
ways not to slip for the 6-banana case is 154 + 160 = 314.  We checked this manually, and, to 
our relief, we got an affirmative result! 
 
By this point, our ABBABAs were getting increasingly longer and more difficult to work with, 
so the logical next course of action was to come up with a simple formula that went straight from 
n (# bananas) to the probability of the gorilla slipping. 
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To do this, we decided to take a closer look at our pattern for # ways not to slip.  We decided to 
add 6 to our numbers (14, 34, 74, etc.) in order to make them more manageable (20, 40, 80, etc.). 
 
This is what we found: 

2: 20 – 6 = 20 × 20 – 6 = 20 × 22 – 2 – 6 
3: 40 – 6 = 20 × 21 – 6 = 20 × 23 – 2 – 6 
4: 80 – 6 = 20 × 22 – 6 = 20 × 24 – 2 – 6 
5: 160 – 6 = 20 × 23 – 6 = 20 × 25 – 2 – 6 
6: 320 – 6 = 20 × 24 – 6 = 20 × 26 – 2 – 6 
 
… etc. 

 
This beautiful discovery was exactly the breakthrough we needed to complete our formula, AKA 
the Banana Conjecture: 
 
The probability of gorilla slipping when n bananas are thrown at him is equal to 

 

(4n – (20 × 2n – 2 – 6)) ÷ 4n. 

 

Great!  So we’re pretty much done, right?  Now all we had to do was prove the formula. 
 

The n-Banana Case 

 

We decided to prove the Banana Conjecture by generalizing the 4-banana case to the n-banana 
case.  We figured out the total number of ways to slip by finding a way that we could follow 
every time.  The formula went as follows: 
 

 
 

Total # ways to throw = denominator = 4n. 
 
There are 2 different ways not to slip — all n on one limb or 2 limbs that are not both feet.  There 
are four ways for all n banana peels to land on one limb.  The number of ways to throw the n 
banana peels so they landed on 2 limbs that were not both feet was 
 

(# ways to choose 2 limbs that are not both feet) × (# ways to combine n A’s and B’s).   
 
There are 5 ways to choose the 2 limbs without picking both feet (if our limbs are P, Q, R, and S, 
where R and S are the feet, then the 5 ways are PQ, PR, PS, QR, and QS).  Then, after we have 
chosen the two limbs (A and B) there are 2n – 2 ways to throw n banana peels so that they land 
on these two limbs. 
 
Then we would take our denominator (4n) and then take our number which we just got and then 
subtract that from the denominator.  That would get you the numerator.  Then you could put the 
two numbers together and you’ve got the n banana case (our answer): 
 

(4n – (5 × (2n – 2) + 4)) ÷ 4n = (4n – (20 × 2n – 2 – 6)) ÷ 4n. 
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Conclusion  

 

We started by trying to figure out the probability of Sir Fred slipping, and while at first it was 
easiest to manually count out the number of ways he could slip — or, as we were increasingly 
beginning to find, not slip — we soon realized that we could come up with a proof through 
conjecture.  This formula will work for any value of n (AKA # bananas): 
  
The probability of gorilla slipping if we throw n bananas at him is equal to 

 

(4n – (20 × 2n – 2 – 6)) ÷ 4n, 

 

or, depending on preference, 

 

(4n – (5 × (2n – 2) + 4)) ÷ 4n. 

 
Our sequence for # ways not to slip (14, 34, 74, 154, 314, etc.) is not currently in the On-Line 
Encyclopedia of Integer Sequences, which means we are probably the first to discover it — 
almost certainly the first to discover it in this manner!  We are all so excited to have gone on this 
journey together with Fran and Fred. 
 
However, the adventure is not over yet.  We are curious about how our functions and sequence 
would be altered if we were to add additional rules — what would happen if the gorilla would 
also slip with, say, 93 banana peels on one limb? — and we may take this project in a new 
direction in the future! 
 

THE SAGA OF MATHEMATICAL MATHNESS (continued and concluded) 

 

The battle was fierce.  Bananas flew everywhere.  Afterwards, when the forest was littered with 
banana peels and Sir Fred had slipped a great many, many times, the two estranged brothers 
looked around and realized that with an infinite supply of bananas, the only thing to do was make 
an infinite supply of banana smoothies. 
 
Sir Fred shared his banana smoothie recipe with the Knightly Knights of ABBABA, and Sir Fran 
decided to open his castle to all the gorilla-knights of the land for the celebration.  But the 
smoothie bar had only just been opened and the first of the guests were still arriving when the 
castle gates swung open and a mysterious hooded figure came riding in on a bananicorn… 
 
It was their long-lost older sister and the TRUE heir to the knightdom, Lady Francesca 
Frannifred the First, came to claim her birthright!  (And to drink banana smoothies.  Adventuring 
travelling bananicorns are very fond of smoothies.)  Sir Fran gladly handed the castle over to 
Francesca, who decided to share the banana smoothie recipe throughout the land.  The castle 
became a twenty-four hour smoothie bar, and Francis, Fred, and Francesca became best friends.  
They lived forever in the smoothie bar, drinking banana smoothies to their heart’s content. 
 
 

The End!!! 
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You Do Math 
by Girls’ Angle Staff 
 
In her Girls’ Angle interview,1 Prof. Elizabeth Meckes said, “... learning math and doing math 
are really the same thing; it’s an active process.  There’s a reason that math teachers assign so 
much homework: there’s a real limit to how much understanding you can gain by watching 
someone else do math.  To really understand something you have to work through it yourself.  
This is not in any way to suggest that teachers can’t help; the insights that math teachers can 
provide about how to think about things can be incredibly valuable, but only in conjunction with 
struggling with it on your own.  And I do mean struggling; understanding math doesn’t come 
easy to anyone (if it has to you so far, don’t worry–if you keep at it long enough you’ll get to be 
as confused as the best of them).” 
 
Doing math is a process of asking math questions and trying to answer them.  A math question is 
a question that can be addressed without appeal to anything but logic.  It takes practice to come 
up with good math questions.  A good math question enables you to further your understanding.  
Typically, this means that you feel that you have some ideas, even if vague, for what to try to do 
to answer the question, and that you can start writing on a piece of scratch paper. 
 
If you find it difficult to come up with a math question, try to actively read math.  Inevitably, you 
will read something that causes you to be confused and makes you wonder about something.  
When you are in that state, articulating what you are confused about will bring you to the verge 
of asking math questions. 
 
For example, consider the Toblerone Game on page 11.  To prove their theorem, the authors had 
to internalize the logic involved and their proof is written from the vantage point of having 
understood.  So if you have not thought about such things before, when you read their proof 
carefully, you will likely wonder about how, exactly, does their induction step prove their 
theorem?  After all, it isn’t a straightforward induction where you can repeatedly apply the same 
inductive step to get to any specific case of the theorem, starting from the base case.  Perhaps 
you might even ask if you can come up with a proof that does not use induction?  Or, does their 
game make you think of a game to analyze?  Perhaps you have a favorite chocolate bar that is 
different from the Toblerone bar.  What game can you invent for sharing your favorite bar? 
 
Or, consider The Saga of Fran and Fred on page 22.  How does their answer change if the 
condition for when a gorilla slips changes?  Or, what slippage conditions could you devise for a 
creature with more than 4 limbs, such as a spider?  Is there a general class of problems into 
which you can fit all animal slippage problems? 
 
What questions does Parking Functions, on page 15, make you think of?  (If you get stuck here, 
the authors explicitly address this in the upcoming Part 2.) 
 
We often see people coming up with great questions, but then they dismiss them.  Thinking takes 
energy, but thinking also yields many benefits.  So when a question occurs to you, don’t drop it.  
Record it in a math journal and give it some thought.  Before long, you’ll be asking and 
answering math questions that nobody has asked or been able to answer before! 

                                                 
1 See Volume 4, Numbers 2 and 3 of this Bulletin. 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 27 - Meet 9 
November 5, 2020 

Mentors: Cecilia Esterman, Kate Pearce, AnaMaria Perez, 
Laura Pierson, Nehar Poddar, Gisela Redondo, 
Melissa Sherman-Bennett, Christine Soh, Jane Wang, 
Rebecca Whitman, Annie Yun 

Here’s a reformulation of the problem described in Systematic Counting, Part 1 in 
Volume 11, Number 6 of this Bulletin, pages 12-13:  Circle Street is, as you might imagine, a 
circular loop.  But what makes Circle Street unusual is that while every resident adores living on 
Circle Street so much that they cannot fathom living elsewhere, nobody on Circle Street likes the 
particular house they are living in.  Consequently, every Monday morning, each household on 
Circle Street packs up and moves to the house S houses over, in the clockwise direction.  If there 
are N houses around Circle Street, how many weeks will it be before each person finds 
themselves back in a house that they’ve lived in before? 
 

Session 27 - Meet 10 
November 12, 2020 

Mentors: Robyn Brooks, Cecilia Esterman, Kate Pearce, 
AnaMaria Perez, Laura Pierson, Nehar Poddar, 
Gisela Redondo, Emma Wang, Jane Wang, 
Rebecca Whitman 

Every positive integer n has a square bedroom with side length 1/n.  If you try to line up 
these bedrooms in a row, you’ll find that they will stretch on and on without bound.  If you drop 
the condition that they be lined up in a row, can you then fit them all into a bounded region of the 
plane?  (Bedrooms must not overlap.) 
 

Session 27 - Meet 11 
November 19, 2020 

Mentors: Cecilia Esterman, Claire Lazar, AnaMaria Perez, 
Laura Pierson, Nehar Poddar, Gisela Redondo, 
Emma Wang, Jane Wang, Rebecca Whitman, 
Angelina Zhang 

Some members have been demystifying the following mystery: Pick a number and write 
down all of its factors (including itself!).  Under each factor list all the numbers less than that 
factor that do not have any common factors with that factor other than 1.  Count how many 
numbers you just listed.  In other words, for each factor F, write down every number x such that 
1 ≤ x < F and the greatest common factor of F and x is 1, and count how many such x are written.  
Do you see any patterns? 
 

Session 27 - Meet 12 
December 3, 2020 

Mentors: Cecilia Esterman, Claire Lazar, Kate Pearce, 
AnaMaria Perez, Laura Pierson, Nehar Poddar, 
Gisela Redondo, Jane Wang, Rebecca Whitman 

 Due to the pandemic, in lieu of our traditional end-of-session Math Collaboration, we 
played a mathematical variant of BINGO. 

Special thanks to our amazing Tech Crew, 
Kaylie Hausknecht and Phoebe Meyerson. 
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Calendar 

 
Session 27: (all dates in 2020) 
 

September 10 Start of the twenty-seventh session! 
 17  
 24  
October 1  
 8  
 15  
 22  
 29  
November 5  
 12  
 19  
 26 Thanksgiving - No meet 
December 3  

 
Session 28: (all dates in 2021) 
 

January 28 Start of the twenty-eighth session! 
February 4  
 11  
 18 No meet  
 25  
March 4  
 11  
 18  
 25 No meet 
April 1  
 8  
 15  
 22 No meet 
 29  
May 6  

 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have run two such “all-virtual” Math 
Collaborations, one at the Buckingham, Browne, and Nichols Middle School and one for the 
PROMYS Girls’ Math Circle.  If interested, contact us at girlsangle@gmail.com.  For more 
information and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


