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An Interview with 
Tanya Leise 

 

Tanya Leise is a Professor of Mathematics 

in the Mathematics and Statistics 

Department at Amherst College.  She 

received her doctoral degree from Texas 

A&M University. 

 

Ken: You study something that pertains to 

every single one of us: circadian rhythms.  

What got you interested in this topic and 

how does it involve mathematics? 

 

Tanya: I’ve always enjoyed applying math 

to intriguing problems.  As an undergrad, I 

worked on a project on capillary surfaces in 

zero gravity.  If you put a straw into water, 

what shape will the surface of the water take 

inside the straw?  If you try this experiment 

here on Earth, you’ll see that it curves, with 

the water appearing to climb up the side of 

the straw.  The curve in zero gravity is a bit 

different.  We tested the model for capillary 

surfaces in zero g using a specially designed 

container that went up on the space shuttle.  

That was very exciting, and the model 

predictions turned out to be quite accurate.  

Later, in graduate school, I turned to 

modeling how cracks propagate through 

materials like metals and polymers, which 

involves a challenging mixed boundary 

value problem and a lot of tricky 

computations. 

When I moved to Amherst, I wanted 

to find a new project to work on with 

someone nearby, so we could work in 

person together.  I talked to people working 

on a variety of projects in areas like physics 

and biology, and decided to jump into 

circadian rhythms after I met Mary 

Harrington in the Neuroscience Program at 

Smith College.  She’s been a great mentor 

and colleague, and we’ve done quite a bit of 

joint work involving undergrads from both 

of our colleges, which has been really fun.  

The circadian rhythms field in general has 

been very welcoming to mathematicians, 

and the biologists are eager to see more 

mathematical modeling and time-frequency 

analysis to help them more fully understand 

their experimental data. 

 

Ken: What kinds of questions are you 

interested in answering about biological 

rhythms?  Could you please describe some 

of the big mysteries of that topic? 

 

Tanya: I focus on circadian rhythms, which 

are the 24 hour patterns observed in most 

organisms, whether bacteria, plants, or 

animals, which persist even in the absence 

of any time cues.  They are generated by 

feedback loops of “clock genes” in our cells.  

The big question is how the expression of 

these clock genes, which happens at the time 

scale of seconds, can lead to a 24 hour 

rhythm, several orders of magnitude longer.  

Mathematical modeling has been crucial in 

deducing how the intricate dance of 

interacting genes and their proteins can lead 

to the observed rhythms.  The interplay 

between experiments and modeling has been 

fantastic, and the studies I most admire have 

been by teams of biologists and 

mathematicians working together to 

creatively combine their approaches. 

 

Ken: Would you please describe one of your 

discoveries that you are most proud of?  

How did you discover it? 

 

Tanya: My work applies existing methods 

to new areas, rather than creating new 

mathematics.  A major contribution I’ve 

made to the analysis of circadian rhythms is 

Give kids lots of experiences, both 

indoor academics and outdoor 

sports and nature camps, so they 

can discover what they like best. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the remainder of this interview 
with Prof. Tanya Leise and some other content.   We hope that 
you consider the value of such content and decide that the 
efforts required to produce such content are worthy of your 
financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
Girls’ Angle: A Math Club for Girls  
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout. 
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Content Removed from Electronic Version 
 
 

 
 
 
 
 
 
 
 
 

America’s Greatest Math Game: Who Wants to Be a Mathematician. 
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Folding In Half1 
by Jade Buckwalter, Milena Harned, Martina Maximovich, and Miriam Rittenberg 
edited by Amanda Galtman 
 
Introduction 
 
We consider the repeated folding of a rectangular strip of paper and the order of the resulting 
layers.  In this problem, there are two methods of folding paper: right folds and left folds.  A 
right fold is a fold in which the right side of the paper is folded over to the left side.  Similarly, a 
left fold is a fold in which the left side of the paper is folded over to the right side (see Figure 1). 
 
 

  
 

A right fold 

 
 

A left fold 

Figure 1.  Right folds versus left folds. 

 
Denote a right fold by R and a left fold by L.  A fold sequence Fn is a sequence A1A2…An where 
each Ak is an R or an L.  Performing the right and left folds in order of the sequence results in a 
model (i.e., a folded strip of paper).  Notice that a sequence of n folds creates creases that split 
the paper into 2n sections (see Figure 2).  From left to right (in the unfolded rectangle), label 
these sections consecutively from 1 to 2n. 
 

1 2 3 4 

 

1 2 3 4 5 6 7 8 

 
Figure 2.  How we are splitting the paper. 

 
Performing the fold sequence Fn creates a model consisting of 2n layers, each layer consisting of 
a single one of the 2n labeled sections.  The numbers labeling the sections, read from bottom to 

top, form a sequence a1, a2, a3, …, 
2na  of section numbers.  Let S be the function from fold 

sequences to sequences of section numbers such that 
 

S(A1A2A3…An) = a1, a2, a3, …, 
2na . 

 

                                                 
1 To the best of our knowledge, these are new results.  Please let us know if you know otherwise.  Thank you! 
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For example, S(RL) = 2, 3, 4, 1.  We also define the function L from fold sequences to sequences 

of layer numbers: L(A1A2A3…An) = b1, b2, b3, …, 
2nb , where bk is the layer number (counting 

from bottom to top) of section number k.  In our previous example, L(RL) = 4, 1, 2, 3.  We will 
refer to sequences S(Fn) as section sequences, and sequences L(Fn) as layer sequences. 
 
In this paper, we will prove some properties of section and layer sequences, and show how to use 
these properties to construct the layer sequence resulting from a given fold sequence.  We will 
then give sufficient conditions for a permutation of the numbers 1 through 2n to be a layer 
sequence. 
 
Most of our conjectures are based on direct observation, using data in the table below. 
 
Data 

 

Fold 
Sequence 

Fn 

S(Fn) L(Fn) 

R 1, 2 1, 2 

L 2, 1 2, 1 

RR 1, 4, 3, 2 1, 4, 3, 2 

RL 2, 3, 4, 1 4, 1, 2, 3 

LR 3, 2, 1, 4 3, 2, 1, 4 

LL 4, 1, 2, 3 2, 3, 4, 1 

RRR 1, 8, 5, 4, 3, 6, 7, 2 1, 8, 5, 4, 3, 6, 7, 2 

RRL 2, 7, 6, 3, 4, 5, 8, 1 8, 1, 4, 5, 6, 3, 2, 7 

RLR 3, 6, 7, 2, 1, 8, 5, 4 5, 4, 1, 8, 7, 2, 3, 6 

RLL 4, 5, 8, 1, 2, 7, 6, 3 4, 5, 8, 1, 2, 7, 6, 3 

LRR 5, 4, 1, 8, 7, 2, 3, 6 3, 6, 7, 2, 1, 8, 5, 4 

LRL 6, 3, 2, 7, 8, 1, 4, 5 6, 3, 2, 7, 8, 1, 4, 5 

LLR 7, 2, 3, 6, 5, 4, 1, 8 7, 2, 3, 6, 5, 4, 1, 8 

LLL 8, 1, 4, 5, 6, 3, 2, 7 2, 7, 6, 3, 4, 5, 8, 1 

RRRR 1, 16, 9, 8, 5, 12, 13, 4, 3, 14, 11, 6, 7, 10, 15, 2 1, 16, 9, 8, 5, 12, 13, 4, 3, 14, 11, 6, 7, 10, 15, 2 

RRRL 2, 15, 10, 7, 6, 11, 14, 3, 4, 13, 12, 5, 8, 9, 16, 1 16, 1, 8, 9, 12, 5, 4, 13, 14, 3, 6, 11, 10, 7, 2, 15 

RRLR 3, 14, 11, 6, 7, 10, 15, 2, 1, 16, 9, 8, 5, 12, 13, 4 9, 8, 1, 16, 13, 4, 5, 22, 11, 6, 3, 14, 15, 2, 7, 10 

RRLL 4, 13, 12, 5, 8, 9, 16, 1, 2, 15, 10, 7, 6, 11, 14, 3 8, 9, 16, 1, 4, 13, 12, 5, 6, 11, 14, 3, 2, 15, 10, 7 

RLRR 5, 12, 13, 4, 1, 16, 9, 8, 7, 10, 15, 2, 3, 14, 11, 6 5, 12, 13, 4, 1, 16, 9, 8, 7, 10, 15, 2, 3, 14, 11, 6 

RLRL 6, 11, 14, 3, 2, 15, 10, 7, 8, 9, 16, 1, 4, 13, 12, 5 12, 5, 4, 13, 16, 1, 8, 9, 10, 7, 2, 15, 14, 3, 6, 11 

RLLR 7, 10, 15, 2, 3, 14, 11, 6, 5, 12, 13, 4, 1, 16, 9, 8 13, 4, 5, 12, 9, 8, 1, 16, 15, 2, 7, 10, 11, 6, 3, 14 

RLLL 8, 9, 16, 1, 4, 13, 12, 5, 6, 11, 14, 3, 2, 15, 10, 7 4, 13, 12, 5, 8, 9, 16, 1, 2, 15, 10, 7, 6, 11, 14, 3 

LRRR 9, 8, 1, 16, 13, 4, 5, 12, 11, 6, 3, 14, 15, 2, 7, 10 3, 14, 11, 6, 7, 10, 15, 2, 1, 16, 9, 8, 5, 12, 13, 4 

LRRL 10, 7, 2, 15, 14, 3, 6, 11, 12, 5, 4, 13, 16, 1, 8, 9 14, 3, 6, 11, 10, 7, 2, 15, 16, 1, 8, 9, 12, 5, 4, 13 

LRLR 11, 6, 3, 14, 15, 2, 7, 10, 9, 8, 1, 16, 13, 4, 5, 12 11, 6, 3, 14, 15, 2, 7, 10, 9, 8, 1, 16, 13, 4, 5, 12 

LRLL 12, 5, 4, 13, 16, 1, 8, 9, 10, 7, 2, 15, 14, 3, 6, 11 6, 11, 14, 3, 2, 15, 10, 7, 8, 9, 16, 1, 4, 13, 12, 5 

LLRR 13, 4, 5, 12, 9, 8, 1, 16, 15, 2, 7, 10, 11, 6, 3, 14 7, 10, 15, 2, 3, 14, 11, 6, 5, 12, 13, 4, 1, 16, 9, 8 

LLRL 14, 3, 6, 11, 10, 7, 2, 15, 16, 1, 8, 9, 12, 5, 4, 13 10, 7, 2, 15, 14, 3, 6, 11, 12, 5, 4, 13, 16, 1, 8, 9 

LLLR 15, 2, 7, 10, 11, 6, 3, 14, 13, 4, 5, 12, 9, 8, 1, 16 15, 2, 7, 10, 11, 6, 3, 14, 13, 4, 5, 12, 9, 8, 1, 16 

LLLL 16, 1, 8, 9, 12, 5, 4, 13, 14, 3, 6, 11, 10, 7, 2, 15 2, 15, 10, 7, 6, 11, 14, 3, 4, 13, 12, 5, 8, 9, 16, 1 
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Lemmas 
 
Note: In lemmas 1-5, {Ak} is a fold sequence, {ak} = S({Ak}), and {bk} = L({Ak}). 
 

Lemma 1.  We have 
kab k=  and 

kba k= .  In other words, the permutations k ↦ ak and k ↦ bk 

are inverse to each other. 
 

Proof.  First, bk is the layer where we find section k, so 
kab is the layer where we find section ak.  

By definition, ak is the section number in the kth layer.  Hence, 
kab k= .  Second, ak is the section 

number sitting in the kth layer, so 
kba is the section number in layer bk.  By definition, k is the 

section number in layer bk, hence 
kba k= .  □ 

 

Lemma 2.  Let {Ak} be a sequence of n folds, and let S({Ak}) = a1, a2, a3, …, 
2na .  Then, for any 

integer 1 ≤ k ≤ 2n, there exists an integer i such that { ka , 
2 1n k

a
+ −

} = {2i – 1, 2i} (as sets).  

Conversely, for any integer 1 ≤ i ≤ 2n – 1, there exists k such that { ka , 
2 1n k

a
+ −

} = {2i – 1, 2i}. 

 
Proof.  Start with a strip with 2n – 1 sections that has been folded into a model according to the 
first n – 1 terms of the fold sequence {Ak}.  We can form the desired model from this model by 
first subdividing the section on each layer into two sections, and then performing the fold An.  
For example, we divide the layer labeled “1” into sections labeled “1” and “2”.  In general, the 
layer with section i is divided into sections labeled 2i – 1 and 2i.  (Sections 1 through i – 1 must 
be relabeled with the section numbers 1 through 2i – 2, and section i is relabeled with the next 
two section numbers, which are 2i – 1 and 2i.)  After we perform the fold An, the sections labeled 
2i – 1 and 2i will make up the layers k and 2n + 1 – k in some order, for some integer k.  
Conversely, every pair of layers k and 2n + 1 – k consists of sections formed by folding in half a 
single layer that was relabeled with section numbers 2i – 1 and 2i for some integer i.  □ 
 
Lemma 3.  For any integer 1 ≤ i ≤ 2n – 1, we have b2i – 1 + b2i = 2n + 1. 
 

Proof.  By Lemma 2, there exists k such that { ka , 
2 1n k

a
+ −

} = {2i – 1, 2i} (as sets).  Since 
kab k= , 

this implies that {b2i – 1, b2i} = {k, 2n + 1 – k}, and the lemma follows.  □ 
 

Lemma 4.  Let An + 1 be a fold and let {bk} = L(A1A2A3…An) and { k
b ′ } = L(A1A2A3…AnAn + 1).  

Then the numbers 1, 2, 3, …, 2n appear in the same order in both sequences {bk} and { k
b ′ }. 

 
For example, the fold sequence RR results in the layer sequence 1, 4, 3, 2.  Meanwhile, RRL 
results in the layer sequence 8, 1, 4, 5, 6, 3, 2, 7, in which the numbers 1, 2, 3, and 4 still appear 
in the order 1, 4, 3, and then 2. 
 

Proof.  Let {ak} = S(A1A2A3…An) and { k
a ′} = S(A1A2A3…AnAn + 1). 

 
The order in which we encounter the numbers 1 through 2n in the sequence {bk} corresponds to 
the order in which we pass through layers 1 through 2n in the model as we traverse the strip of 
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paper from its original left side to its original right side.  Suppose we pass through layer p before 
we pass through layer q, that is, ap < aq.  Now perform the fold An + 1.  As we saw in the proof of 
Lemma 2, the effect of performing this fold is to split the layer labeled i into two sections labeled 
2i – 1 and 2i.  One of these halves is folded into layers 2n + 1 through 2n + 1, while the other half 

remains where it is.  Therefore, 
p

a ′  becomes either 2ap – 1 or 2ap, while
q

a ′  becomes either 

2aq – 1 or 2aq.  Since ap < aq implies 2ap – 1 < 2ap < 2aq – 1 < 2aq, we see that irrespective of 

which half is folded up to the top half of the model, we have
p q

a a′ ′< .  This inequality means that 

when we perform the fold An + 1 and then traverse the model from the original left side to the 
original right side of the strip of paper, we pass through layer p before layer q.  Since p and q 
were arbitrary, the lemma follows.  □ 
 

Lemma 5.  Let b1, b2, b3, …, 
2nb  be the layer sequence L({Ak}), where n > 1.  If b2i – 1 < b2i, then 

b2i + 1 > b2i + 2.  If b2i – 1 > b2i, then b2i + 1 < b2i +2. 
 
Proof.  Fix i.  Let’s observe how the model forms from the unfolded rectangular strip with 2n 
sections labeled 1 through 2n, paying particular attention to the sections 2i – 1, 2i, 2i + 1, and 
2i + 2.  At the beginning, the section numbers 2i – 1, 2i, 2i + 1, and 2i + 2 are all in the same 
layer because there is only one layer.  Suppose that sections 2i – 1 and 2i end up on a different 
layer from the sections 2i + 1 and 2i + 2 for the first time after performing the jth fold.  (Note 
that until the final fold is performed, sections 2i – 1 and 2i are on the same layer, and sections 
2i + 1 and 2i + 2 are on the same layer.)  Prior to the jth fold, the sections 2i – 1, 2i, 2i + 1, and 
2i + 2 are on the same layer and in that order either from left to right (of the model) or from right 
to left.  The jth fold forms a crease between sections 2i and 2i + 1, and after the jth fold is done, 
one of the two section pairs {2i – 1, 2i} and {2i + 1, 2i + 2} increases from left to right, while the 
other increases from right to left (in their respective layers).  Additionally, either both pairs abut 
the left edge of their respective layers, or both pairs abut the right edge (because of the common 
crease between sections 2i and 2i + 1).  Therefore, any further folds before the last will either 
fold both section pairs {2i – 1, 2i} and {2i + 1, 2i + 2} over or leave both in place.  In either case, 
there is still one pair increasing from left to right and one pair increasing from right to left, and 
they are still either both on the leftmost side of their layers, or both on the rightmost side.  When 
the last fold occurs, it either puts 2i – 1 and 2i + 2 in the top half and 2i and 2i + 1 in the bottom 
half, or vice versa.  In other words, of the four numbers b2i – 1, b2i, b2i + 1, and b2i + 2, the numbers 
b2i – 1 and b2i + 2 are either the two largest or the two smallest.  □ 
 

Sequence Construction 
 
We can now use these lemmas to predict what happens when we add a fold, i.e., construct a layer 

sequence { k
b ′ } = L(A1A2A3…AnAn + 1) from {bk} = L(A1A2A3…An).  By Lemma 3, the sequence   

{ k
b ′ } consists of consecutive pairs of numbers that add up to 2n + 1 + 1.  By Lemma 4, these pairs 

are positioned in the same order that their smaller elements took in the sequence {bk}.  By 
Lemma 5, the numbers within each pair must alternate whether the higher or lower number 
comes first.  The only thing left undetermined is the order of the first pair, which depends on the 
nth fold. 
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By definition, 1b ′  is the position of the layer that contains section 1 in the folded model.  If 

section 1 is in the top half of the model, then 1b ′  > 2b ′ .  If section 1 is in the bottom half, then 

1b ′  < 2b ′ .  If we start with an unfolded strip of paper divided into 2n + 1 sections and if n > 1, then 

after n – 1 folds, we have a layer composed of the four sections 1, 2, 3, and 4 in either increasing 
or decreasing order (from left to right in the model).  If they are in increasing order, if the nth 
fold is an L, we now have a layer of the sections 2 and 1 in that order; therefore, another L puts 1 
in the bottom half and an R puts 1 in the top half.  If the nth fold is an R, we have sections 1 and 
2 in that order; therefore, a subsequent L puts 1 in the top half, whereas an R puts 1 in the bottom 
half.  If the sections are in the order 4, 3, 2, 1 instead, an L again results in a layer with sections 2 
and 1 in that order, whereas an R results in a layer with sections 1 and 2 in that order.  So, if fold 

n + 1 is the same type of fold as the nth fold, then ( 1b ′ , 2b ′ ) = (b1, 2n + 1 + 1 – b1).  Otherwise, 

( 1b ′ , 2b ′ ) = (2n + 1 + 1 – b1, b1).  Once we know the order of the first pair, we can fill in 

everything else using the information above. 
 
Examples 

 
We will now give some examples of finding the layer sequence resulting from adding a fold. 
 
Suppose we start with the fold sequence RL, and want to add an L. 
 

L(RL) = 4, 1, 2, 3 
L(RLL) = ? 

 
Because the new fold matches the last fold of the starting sequence, the first number in L(RLL) is 
the same as the first number in L(RL).  We insert a new layer next to each layer in L(RL), 
alternating whether the new layer comes first or second: 
 

L(RL) = 4, 1, 2, 3 
L(RLL) = 4, __, __, 1, 2, __, __, 3 

 
We can fill in the blanks using the rule that b2i – 1 + b2i = 2n + 1: 
 

L(RL) = 4, 1, 2, 3 
L(RLL) = 4, 5, 8, 1, 2, 7, 6, 3 

 
If we had instead added an R to the original sequence, the first number in L(RL) would be the 
second number in L(RLR): 
 

L(RL) = 4, 1, 2, 3 
L(RLR) = __, 4, 1, __, __, 2, 3 __ 

 
We again fill in the blanks using the rule that b2i – 1 + b2i = 2n + 1: 
 

L(RL) = 4, 1, 2, 3 
L(RLL) = 5, 4, 1, 8, 7, 2, 3, 6 
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The two sequences L(RLL) and L(RLR) are very similar, but the order of the two numbers in 
each pair (b2i – 1, b2i) is switched. 
 
Sequence Deconstruction 
 
Now we will consider how to tell if a given ordering of the numbers 1 through 2n is equal to 
L(A1A2A3…An) for some fold sequence {Ak}. 
 

Theorem.  Let b1, b2, b3, …, 
2nb  be a permutation of the numbers 1 through 2n.  There exists a 

fold sequence A1A2A3…An such that {bk} = L(A1A2A3…An) if and only if the following three 
conditions hold: 
 

A. For all 1 ≤ i ≤ 2n – 1, we have b2i – 1 + b2i = 2n + 1. 
B. For all 1 ≤ i < 2n – 1, if b2i – 1 < b2i, then b2i + 1 > b2i + 2, and if b2i – 1 > b2i, then b2i + 1 < b2i + 2. 
C. If n > 1 and we remove the numbers 2n – 1 + 1 through 2n from the sequence {bk}, we are 

left with a sequence of length 2n – 1 that satisfies all three of these conditions. 
 
Proof.  We will prove that these three conditions are sufficient by showing that there are exactly 
2n sequences of length 2n that satisfy the conditions.  Because there are also 2n possible fold 
sequences, and every layer sequence satisfies all three conditions, this will show that every 
permutation that satisfies the conditions can be produced by some sequence of folds.  The proof 
will be by induction on n.  For the base case, there are only two permutations of length two: 1, 2 
and 2, 1.  These sequences are produced by the fold sequences R and L, respectively.  Now 
suppose there are exactly 2n – 1 sequences of length 2n – 1 that satisfy all three conditions.  Then, if 
a permutation {bk} of length 2n satisfies condition C, the order of the numbers 1, 2, 3, …, 2n – 1 
within {bk} must be one of the 2n – 1 fold sequences.  By condition A, each of these numbers i is 
paired with the number 2n + 1 – i.  The first pair can go in either of two orders, after which the 
order within each pair is determined by condition B.  Therefore, each of the 2n – 1 sequences of 
length 2n – 1 results in two sequences of length 2n, so there are 2n sequences total.  
 
Two different fold sequences can never produce the same permutation, because the choice of 
fold k determines the order of the first two numbers in the subsequence of length 2k, so there are 
exactly 2n permutations produced by fold sequences.  That conditions A, B, and C are satisfied 
follows from lemmas 3, 4, and 5, so every layer sequence satisfies them.  □ 
 
If we were to continue studying this topic, we would look at layer sequences resulting from types 
of folds other than R or L, and try to find methods for predicting the resulting section and layer 
sequences. 
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The Needell in the Haystack1 
Colors and Perfect Matches 
by Deanna Needell | edited by Jennifer Silva 
 
In the last article, we learned a bit about graph theory and how it helped 
my father George navigate the globe in an optimal fashion.  Indeed, we 
discussed the “traveling salesperson” problem, which asks for the most 

efficient path through a graph that visits each node exactly once.  Graph theory is such a rich and 
broad subject that I wanted to write a follow-up article discussing other interesting graph 
theoretic problems motivated by real applications.  For example, George uses lots of maps when 
he travels and utilizes different colors to label various cities and attractions.  When coloring a 
map, one typically tries to avoid coloring adjacent regions the same color (otherwise, it’s harder 
to distinguish them from one another).  This leads to the graph coloring problem.  As another 
example, when George and his partner Signe are in a large group of people, George may want to 
match people with their friends.  This type of goal can be formulated as a graph matching 
problem.  
 Let’s quickly review mathematical graphs and their notation, as in the last article.  A 
graph is a discrete object consisting of a set of vertices V and a set of edges E.  The vertex set V 
is simply a set of objects; in the above examples, the vertices could be the regions on a map, or 
the people in the group.  Each edge in E then corresponds to a connection between two vertices; 
in the above examples the edges could represent two regions being adjacent on the map, or two 
people who like one another.  The skeptic asks, “What if one person likes the other but not vice 
versa?”  In an undirected graph, edges are simply pairs of vertices, with no direction 
information; in a directed graph, these edges contain directional information, so can be written 
as ordered pairs.  For example, in a directed graph, the edge (George, Signe) might indicate that 
George likes Signe, while the edge (Signe, George) indicates that Signe likes George.  We may 
abuse notation slightly and refer to edges in an undirected graph as ordered pairs as well, with 
the understanding that the information (u, v) ∈ E is the same as (v, u) ∈ E.  While a graph can be 
defined by listing its vertex and edge sets, it is often easier to visualize them by drawing a 
diagram with vertices drawn as circles and edges drawn as arcs between them.  See Figure 1 for 
an example. 

 
 

Figure 1.  Example of a directed graph with people as vertices and directed connections as edges. 

 

                                                 
1 This content supported in part by a grant from MathWorks. 
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Graph Colorings 
 

Let us now turn to the problem of graph colorings.  As mentioned, the problem is 
motivated by the need to color regions on a map so that no two neighboring regions are the same 
color.  To state this as a graph problem, we create a vertex for each region, and put an edge 
between two vertices if they are neighbors on the map.  We’ll call two vertices “adjacent” if they 
are connected by an edge.  Note that there is no need for edges to have a direction because if 
region A abuts region B, then region B also abuts region A.  So our graph will be undirected.  The 
graph coloring problem is the problem of labeling each vertex with a color so that no two 
adjacent vertices are labeled with the same color.  We refer to this type of color assignment as a 
coloring, and say that the graph is colored. 

Let us pause here and note that if there are |V| = n vertices then we can always color the 
graph using n colors and painting each vertex a different color.  So a more interesting question 
would be this: can we color the graph with fewer than n colors?  For a given number of colors k, 
a coloring of the graph using only these k colors is called a k-coloring of the graph.  (More 
formally, given a graph G = (V, E), we define a k-coloring of G to be a function 
 fk : V → {1, 2, 3, …, k} such that fk(v) ≠ fk(u) whenever (u, v) ∈ E.)  We may also ask what the 
minimal number of colors is to color the graph in this way.  In other words, what is the smallest k 
so that the graph has a k-coloring?  The answer to this latter question for a graph G is called the 
graph’s chromatic number, and is often denoted χ(G). 

There are other interesting things we can associate to a graph.  For example, the 
chromatic polynomial, denoted P(G, k), gives the number of different ways the graph G can be 
colored using at most k colors.  It is an interesting fact that the chromatic polynomial is a 
polynomial in the input k.  We can define the chromatic number using the chromatic polynomial: 
χ(G) ≡ min{k : P(G, k) > 0}. 

In our motivating example of map coloring, the chromatic number of the associated graph 
is the minimum number of colors needed to color the map so that no two neighboring regions are 
the same color.  But graph colorings appear in numerous other applications as well.  For 
example, they appear in scheduling applications, where events need to be allocated to time slots 
in such a way that events requiring the same type of equipment do not occur during the same 
time.  In fact, even the now famous puzzle of Sudoku can be phrased as a graph coloring 
problem.  For the reader familiar with Sudoku, she is encouraged to construct a graph with 81 
vertices so that a 9-coloring of the graph corresponds to a solved 9 × 9 Sudoku puzzle.  But we’ll 
focus on smaller graphs that are easier to draw on paper.  (It is worth a shout-out here to the 
planarity problem, which asks whether a given graph can be drawn on paper without any two 
edges crossing – another fun and related graph problem). 
 

       
 

Figure 2.  Examples of a graph and colorings. 

 
Look at the graph on the left of Figure 2.  It has 6 vertices and 8 edges.  One example of a 

3-coloring of this graph is shown in the center of the same figure.  Since there is a 3-coloring, we 
know that for this graph, χ(G) ≤ 3.  So here is the question: can it be colored using fewer than 3 
colors?  Given that some cities are connected by an edge, the graph cannot be 1-colored.  So we  
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The best way to learn math is to do math.  Here are the 2019 Summer Fun problem sets. 
 
We invite all members and subscribers to the Bulletin to send any questions and solutions to 
girlsangle@gmail.com.  We’ll give you feedback and might put your solutions in the Bulletin! 
 

In the August issue, we will provide some 
solutions.  You could wait until the 
August issue to see the answers, but you 
will learn a lot more if you try to solve 
these problems on your own. 
 
Some problems are quite a challenge and 
could take several weeks to solve, so 
please don’t approach these problems 
with the idea that you must solve them 
all.  Our main goal is to give you some 
interesting things to think about. 
 
If you get stuck, try to formulate a related 
question that you can see a way to 
actively explore to get your mind moving 
and your pencil writing.  If you don’t 
understand a question, email us. 
 
If you’re used to solving problems fast, it 
can feel frustrating to work on problems 
that take weeks to solve.  But there are 
things about the journey that are 

enjoyable.  It’s like hiking up a mountain.  Getting to the top rewards one with a spectacular 
view, but during the journey, there’s a lot to see and experience.  So here’s a meta-problem for 
those of you who feel frustrated when doing these problems: see if you can dissolve that 
frustration and replace it with a relaxed, optimistic sense of adventure! 
 
This is Summer Fun, not Summer Torture!

 
 

The goal may be the lake, but who knows what 
wonders you’ll discover along the way? 
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by Tanya Leise 
 
What are wavelets and why use them to 
study circadian rhythms?  Let’s start by 
thinking about a typical 24-hour activity 
pattern of a mouse.  She’ll run in her wheel, 
push her bedding around, and eat during the 
night, then stay quiet through most of the 
daytime.  The pattern is like a square wave, 
quiet all day then active all night, repeating 
every 24 hours: 
 

 
 
A wavelet captures the basic pattern for a 
single off-on cycle, in this case, a “square 
wavelet”: 

 
 
This pattern is called a Haar wavelet.  We 
can use it as a building block to find the 
different subpatterns contained in an overall 
activity pattern of the mouse, which will be 
more complicated than the simple square 
wave.  Suppose the mouse is sometimes 
more active, sometimes less active, like this: 
 

 
 
Subpatterns happen over a few hours, rather 
than over a full day, so we need shorter scale 
versions of our wavelet to work with: 
 

 
 
 

 
 
To accomplish this scaling mathematically, 
let’s think about the wavelet as a function 
ψ(t) that looks like our basic pattern: 
 

1 if 0   < 12,   

( ) 1 if 12   < 24,

0 otherwise.        

t

t tψ

− ≤


= ≤



 

 
Checkpoint: Plot this function ψ(t). 
 
To shrink the wavelet down to cover 12 
hours instead of 24 hours, we scale it by a 
factor of 2: ψ(2t). 
 
Checkpoint: To see how this scaling works, 
plug values into ψ(2t) like t = 0, 3, 6, etc., 
and then plot ψ(2t). 
 
Checkpoint: What scaled function would 
give the wavelet pattern covering a 6-hour 
interval?  A 3-hour interval? 
 
In general, we can shrink the time interval in 
half k times for the wavelet using ψ(2kt). 
 
We’ll also need to shift the wavelet in time 
to put them at the right places in the overall 
pattern.  A wavelet that starts an hour later is 
ψ(t – 1), which equals -1 for 1 ≤ t < 13 and 1 
for 13 ≤ t < 25 (and zero otherwise). 
 
Checkpoint: Plot the functions ψ(t – 6), 
ψ(t – 12), and ψ(t – 24). 
 
What if we combine the scaling and 
shifting?  For example, ψ(2(t – 12)).  Look 
at the inequalities in the 
definition.  This function 
equals -1 
  

A Peek at Wavelets and Rhythms 
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when 0 ≤ 2(t – 12) < 12.  Divide both sides 
by 2, then add 12 to obtain 12 ≤ t < 18. 
 
Similarly rearrange the second inequality 
and then graph the result: 
 

 
 
Checkpoint: Plot the functions ψ(2(t – 6)), 
ψ(4(t – 6)), and ψ(4(t – 12)). 
 
We can shrink and shift our Haar wavelet 
pattern to create a flexible set of building 
blocks: ψ(2k(t – m)).  These all have a zero 
average, so to capture nonzero daily 
averages, we will also need a companion 
function φ(t) called the Haar scaling 

function: 

���� �  	 1
 0   if 0 � � � 24,

  otherwise.  

 

Checkpoint: Plot φ(t) and φ(t – 24). 
 
We can add together combinations of these 
functions to make more interesting graphs.  
For example, here is the graph of 
 
6φ(t) + 4ψ(t) + ψ(2(t – 12)) + ψ(4(t – 12)): 
 

 
 
A quick way to figure out what the graph 
looks like is to write down the value on each 
3-hour interval for each part, then add 
 
 
 

together those arrays of numbers.  The 1st 
number is for 0 ≤ t < 3, the 2nd is 3 ≤ t < 6, 
and so on. 

t 0 3 6 9 12 15 18 21 

6φ(t) 6 6 6 6 6 6 6 6 
4ψ(t) -4 -4 -4 -4 4 4 4 4 

ψ(2(t – 12)) 0 0 0 0 -1 -1 1 1 
ψ(4(t – 12)) 0 0 0 0 -1 1 0 0 

Sum 2 2 2 2 8 10 11 11 

 
Checkpoint: Use this method to sketch the 
graph of 5φ(t) + 3ψ(t) + ψ(2(t – 12)). 
 
There’s an easy way to work backwards 
from the values in the graph to deduce how 
to express it as a combination of ψ and φ 
functions, which is the essential goal of 
wavelet analysis.  First make an array with 
the value every 3 hours of the Example A 
graph (t is the left end of each interval): 

 

Create a new array s1 by summing each pair 
of numbers and dividing by two.  For 
example, the 3rd entry will be (6 + 10)/2 = 8.  
Similarly, create a new array d1 by taking 
the differences of pairs (2nd number minus 
1st number), divided by two.  This process 
will double the length of the time intervals 
and the new arrays will be half as long: 
 

t 0 6 12 18 24 30 36 42 

s1 0 0 8 8 0 0 9 11 
d1 0 0 2 2 0 0 1 3 

 
Repeat this process on s1 to obtain arrays s2 
and d2, then use s2 to obtain s3 and d3: 
 

t 0 12 24 36  t 0 24 

s2 0 8 0 10  s3 4 5 
d2 0 0 0 1  d3 4 5 

 

  

t 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

Ex. A 0 0 0 0 6 10 6 10 0 0 0 0 8 10 8 14 
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Checkpoint: Why are s3 and d3 the same 
here?  How is it connected to zero activity 
during the daytime? 
 

The �� arrays tell us the coefficients that go 

with the � functions, shifted by the t value.  
In particular, s3 is shorthand for the function 
4φ(t) + 5φ(t – 24), capturing the daily 
average activity.  We only use this last s3 
array, but we’ll use all of the dj arrays. 
 
The dj arrays tell us the coefficients that go 
with the ψ functions, shifted by the t value.  
These capture the details of how activity is 
changing around the average, with finer 
details as the interval repeatedly shrinks in 
half.  Thus, d3 gives 4ψ(t) + 5ψ(t – 24), 
which tells us that there is an off-on cycle in 
activity on both days.  And d2 gives 
ψ(2(t – 36)), where we scale by 2 because 
we have cut the 24-hour intervals in half to 
yield 12-hour intervals.  And d1 gives 
 

2ψ(4(t – 12)) + 2ψ(4(t – 18)) 
+ ψ(4(t – 36)) + 3 ψ(4(t – 42)), 

 
where we scale by 4 because we have cut 
the 24-hour intervals into quarters to yield 6-
hour intervals. 
 
Putting these together, Example A can be 
written as the combination 
 

4φ(t) + 5φ(t – 24) 
+ 4ψ(t) + 5ψ(t – 24) 
+ 2ψ(4(t – 12)) + 2ψ(4(t – 18)) 
+ ψ(4(t – 36)) + 3 ψ(4(t – 42)). 

 
The φ terms set the daily averages as a base.  
The first two ψ terms set the basic day-night 
off-on pattern, then the further ψ terms add 
details at increasingly finer scales.  This type 
of decomposition into functions at different 
scales is called a multiresolution analysis. 
 

 
 
Writing the activity as a combination of ψ 
and φ functions helps us study the mouse’s 
circadian rhythms by letting us focus on 
different time scales in the data.  If we want 
to see the basic day-night pattern in a clean 
form, we use only the terms coming from 
the last scale (s3 and d3 in Example A).  If 
we want to zero-center the activity data, we 
use only the sum of the ψ functions, which 
removes the daily averages from the data.  
To remove high frequency jitter, we can 
discard the ψ terms that come from d1, 
which works best if the data’s time intervals 
are short, e.g., a few minutes long. 
 
In Example A, we may be interested in the 
pattern occurring during each night that is 
indicated by d1 (the last 4 ψ terms): 
 

 
 

Isolating this rhythm from the overall day-
night rhythm lets us see it more clearly.  
This separation also allows us to assess how 
this nighttime rhythm varies from night to 
night.  In general, isolating the terms at 
particular scales can help us see what 
interesting patterns might be 
hidden within the data. 
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Checkpoint: Try out this method on the 
graph of Example B below, calculating the 
arrays s1, d1, s2, d2, s3, and d3, converting 
into the ψ and φ functions, and then plotting 
different subsets of terms to explore what 
features of the data they reveal. 
 

 

 
Real data is more complicated than these 
simple step functions, and so are the wavelet 
functions that we use to analyze them.  
However, the underlying idea is the same, 
and the multiresolution analysis approach 
provides a powerful framework for many 
kinds of data: audio, image, seismic, 
biological, etc. 

 
To analyze data like the mouse wheel-
running activity shown above, I use a 
popular type of discrete wavelet developed 
by Ingrid Daubechies, a world-renowned 
mathematician specializing in wavelets.1  
Wavelet and scaling functions need to 
satisfy certain special properties, so we can’t 
just choose anything as our building block 
pattern.  Fortunately, many wavelet families 
are available to choose from.  I chose the 
particular Daubechies wavelet D8 after 
exploring which did the best job of isolating 
the circadian pattern for all the different 
__________ 
1See www.simonsfoundation.org/2019/06/12/making-wavelets-a-

profile-of-ingrid-daubechies/ 

types of data I use: activity, body 
temperature, and gene expression data.  
 

 
Observe that the Haar ψ and φ satisfy 
 

φ(t) = φ(2t) + φ(2t – 24), 
ψ(t) = -φ(2t) + φ(2t – 24). 

 
This pair of equations is called the two-scale 

relation.  The D8 ψ and φ satisfy a two-scale 
relation with 8 terms on each right-hand 
side, where 8 coefficients hk play a key role 
in computing the sj and dj arrays: 
 

���� �  � ℎ���2� − 24!�,
"

�#$
 

%��� �  � �−1��ℎ"&���2� − 24!�
"

�#$
, 

h ≈ [.33 1.01 0.89 -0.04 -0.26 0.04 0.05 -0.01]. 

 
Where the Haar sj and dj use computations 
on pairs of data values (Haar is also called 
D2), D8 calculates a weighted average of 8 
data values using the hk, then moves over 2 
spots and repeats, creating new arrays sj + 1 
and dj + 1 that are half the length of the 
previous sj.  The halving nature of this 
algorithm requires the data to have length 
equal to a power of 2 – you can add zeros to 
the end if needed to make it such a length. 
 
I hope you enjoyed this brief overview, 
which only scratched the surface of the 
beautiful theory of wavelets and their 
applications – there’s much more 
to learn if you are interested! 

t 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 

Ex. B 0 0 0 0 16 20 12 16 0 0 4 4 16 20 16 20 
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Sine and Cosine 
by Whitney Souery 
 
This Summer Fun problem set is intended for people who haven’t learned about the sine and 
cosine function and are up for a challenging way to learn about them through problem solving. 
 
In the coordinate plane, consider a ray emanating from the origin.  
Suppose that the ray makes an angle x as measured counterclockwise 
from the positive horizontal axis.  Let P be the point where this ray 
intersects the circle of radius 1 centered at the origin.  By definition, 
the Cartesian coordinates of P are (cos x, sin x). 
 
1. Sketch graphs of the functions cos x and sin x. 
 
2. Determine the exact values of cos x and sin x for the following angles x: 
 A. 0°  B. 90°  C. 180° D. 270° E. 360° F. -90° 
 G. 45°  H. 225° I. 60°  J. 300°  K. 30°  L. 72° 
 
3. Explain why cos2 x + sin2 x = 1. 
 
4. How are sin x and sin(-x) related?  How are cos x and cos(-x) related? 
 
A function f is said to be periodic if there exists p > 0 such that f(x + p) = f(x) for all x.  The 
period of a periodic function f is the smallest p > 0 such that f(x + p) = f(x). 
 
5. What are the periods of cos x and sin x? 
 
6. For each of the following functions, determine if it is periodic, and if so, determine its period. 
 A. sin(x/2)  B. cos(3x + 1)  C. sin(x2)  D. cos2(x) 
 
7. Exploit the symmetry of a circle to prove that cos x = sin(90° –  x), where x is measured in 
degrees. 
 
8. Express cos(x + y) and sin(x + y) in terms of cos x, sin x, cos y, and sin y. 
 
9. Use your answer to Problem 8 to give formulas that express cos(2x) and sin(2x) in terms of 
cos x and sin x. 
 
10. Let a and b be constants.  Determine values of c and d so that a sin x + b cos x = c sin(x + d). 
 
11. Let P = (x, y).  Let Pʹ be the image of P under counterclockwise rotation about 
the origin by A degrees.  What are the coordinates of Pʹ in terms of x, y, and A? 
 
12. Suppose that x + y + z = 180°.  Prove that 
sin(2x) + sin(2y) + sin(2z) = 4 sin x sin y sin z. 
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How High Can You Count? 
by Laura Pierson and Matthew de Courcy-Ireland 
 
What are ordinals? 

 
You probably know that if you start counting 0, 1, 2, 3, 4, …, you could go on forever.  But what 
if after forever, you keep going?  This give rise to the ordinals. 
 
Let’s call the next number after all the positive integers ω (omega, the last letter of the Greek 
alphabet).  This is the first infinite ordinal.  Now, we just keep adding 1 to get ω + 1, ω + 2, and 
so on.  Then, the first ordinal bigger than all of these is ω + ω, or ω ·  2 (but not 2 · ω, for reasons 
we will see later).  Similarly, we get ω ·  2 + 1, ω ·  2 + 2, …, ω ·  3, …, ω ·  4, … and eventually, 

we will get ω2.  If we keep going, we can count to ordinals like ω3 ·  3 + 7, ωω, 
ωωω , … (think 

about how!). 
 
Basically, there are two ways to build new ordinals: 

• Successor ordinals are defined by adding 1 to the previous ordinal. 

• Limit ordinals are defined as the first ordinal bigger than an infinite increasing sequence 
of smaller ordinals. 

 
1. What should the successors of the following ordinals be? 

A.  17  B.  ω2  C.  ω7 ·  6 + ω4 + 5 
 
2. What should the limits of the following increasing sequences of ordinals be? 

A.  ω ·  2, ω ·  3, ω ·  4, …  B.  ω, ω2, ω3, ω4, … 
C.  ω2 + ω+ 2, ω2 + ω + 4, ω2 + ω + 6, ω2 + ω + 8, … 

D. 1αω , 1αω , 1αω , …, where α1, α2, α3, … is an increasing sequence of ordinals with limit α. 
E.  α1 + 1, α2 + 1, α3 + 1, …, where α1, α2, α3, … is an increasing sequence of ordinals with 

limit α. 
 
3. Show that no ordinal can be both a limit ordinal and a successor ordinal. 
 
4. Determine whether the following ordinals are successors or limits, by giving either the 
previous ordinal or an infinite increasing sequence whose limit is that ordinal. 

 A.  ω + 4  B.  ω3 + ω2 ·  2  C.  
ωωω  

 
Ordinal Arithmetic 
 
Now that we have these things called ordinals, it would be nice if we could do things with them 
in general, like adding and multiplying them. 
 
5. Before reading on, think about how you would define arithmetic of ordinals. 
How can we define addition of positive integers?  How about multiplication? 
What would this look like if we extend it 
to infinite ordinals? 
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Here’s one way we can think about addition.  If we want to add 3 and 5, we line up 3 things, then 
line up 5 things after them, then count how many things we have total.  Now if we want to add ω 
and 5 we can try to do the same thing.  We line up ω things, then line up 5 things, then count 
how many things we have total. To understand how to do this, let’s define what we mean a little 
more formally. 
 
In set theory, the only things that exist are sets.  We can have sets of sets, and sets of sets of sets, 
and so on, but we can never have things that aren’t sets.  Thus, we will define each ordinal α to 
be a set containing exactly α elements.  Specifically, its elements are all the previous ordinals. 
 
We start with defining 0 as the empty set: 0 ≡ {} = ∅.  Similarly, we can define 
 

1 = {0} = {∅}, 
2 = {0, 1} = {∅, {∅}}, 
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}, 

 
and so on.  We can now define ω to be the set containing all the natural numbers. 
 
6. Following this notation, write out the elements of the set 4 just using sets. 
 
7. How can you describe the elements of the following sets?  (You can write the elements as 
ordinals, not as sets, if you wish.)  A.  ω ·  2  B.  ω2  C.  ωω 
 
Let’s get back to addition.  When we add 3 and 5, we can say we’re listing the elements of the 
set 3, then listing the elements of the set 5 after them, like this: 0, 1, 2, 0, 1, 2, 3, 4. 
 
Now we count from the left how 
many elements are in this list by 
assigning each list element to an 
ordinal, starting from 0 (at right). 
 
We see that we have paired up each element of our list with exactly one element of the set 8, in 
increasing order from left to right.  Thus, we say that our set has 8 elements.  (If you want the 
fancy terminology, we say that this is an order-preserving bijection of our list with the set 8, 
and thus our list has order type 8.)  Note that 8 is the set of numbers we assigned to things on 
our list, not the biggest number we assigned to a thing on our list. 
 
Now if we want to add ω and 5, we do the same thing.  We list the elements of the set ω, then list 
the elements of the set 5, then assign each thing on our list to an ordinal, counting from the left: 
 

0, 1, 2, 3, …, 0, 1, 2, 3, 4 
↓ ↓ ↓ ↓  ↓ ↓ ↓ ↓ ↓ 
0, 1, 2, 3, …, ω, ω + 1, ω + 2, ω + 3, ω + 4. 

 
We see that we count up to ω + 4, which 
is the last element of the set ω + 5. 
Thus, there are ω + 5 elements in the set. 
 
  

0, 1, 2, 0, 1, 2, 3, 4 
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
0, 1, 2, 3, 4, 5, 6, 7. 
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8. Addition of integers is commutative, meaning order doesn’t matter, i.e., a + b = b + a.  show 
that addition of ordinals is not commutative.  In particular, show that 1 + ω = ω ≠ ω + 1. 
 
9. What is 1 + ω2?  How about ω + ω2?  What can you say in general about ωα + ωβ, where α and 
β are ordinals with α < β? 
 
10. Addition of integers is also associative, meaning we can rearrange parentheses, i.e., 
(a + b) + c = a + (b + c).  Is ordinal addition associative? 
 

11. Show that every ordinal can be uniquely written in the form 1

1 0
n

n
c c c

α αω ω⋅ +…+ ⋅ +  for 

some n ≥ 0, where αn > … > α1 are nonzero ordinals, c1, …, cn are positive integers, and c0 is a 
nonnegative integer.  (This is called the Cantor normal form).  How can you describe the sum 
of two ordinals in terms of Cantor normal forms? 
 
12. As we’ve seen, addition of ordinals is not commutative in general.  However, some ordinals 
do commute with each other (under addition).  Can you come up with examples of ordinals that 
do commute?  Can you characterize in general which pairs of ordinals commute?  (Think about 
Cantor normal forms.) 
 
13. Does it make sense to define subtraction of ordinals? 
 
Now let’s go on to multiplication.  Multiplication is repeated addition; for instance, 
 

3 · 5 = 3 + 3 + 3 + 3 + 3 = 5 + 5 + 5. 
 
However, in the case of ordinals, these are not necessarily the same, so we’ll choose the first one 
and define α ·  β to mean β copies of α added together.  That is, we’ll list out the elements of the 
set α a total of β times, and then count how many things are on our list. 
 
14. Under this definition, what is 2 · ω?  You should find that it is not the same as ω ·  2!  Thus, 
multiplication of ordinals is not commutative. 
 
15. Is it true that ωα ·  ωβ = ωα + β?  (You might want to proceed inductively, considering 
separately the cases where β is a limit or a successor.) 
 
16. Is multiplication of ordinals associative? 
 
17. Does ordinal multiplication satisfy the distributive property, (α + β) ·  γ = α ·  γ + β ·  γ and 
α ·  (β + γ) = α ·  β + α ·  γ?  (You should check these two identities separately since they might 
behave differently!) 
 
18. How can you describe the product of two ordinals in terms 
of their Cantor normal forms? 
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How Big are They Really? 
 
Another question we can ask about ordinals is how big they are.  Of course, we already have one 
sense of their size, in that we can list them out in order and ones that come later in the list are 
bigger, so they’re all different sizes.  But it seems like adding one thing to an infinite set doesn’t 
make it that much bigger… after all, it’s still infinite, right? 
 
Say we have some red balls and some green balls, and we want to know if we have the same 
number of each color.  Well, one way to do this is to try to pair up each green ball with a red ball, 
and if we can do this without running out of either color, there must be the same number.  Using 
this idea, we say that two sets have the same cardinality if there is some way of pairing up the 
elements of the two sets without running out (called a one-to-one correspondence or a 
bijection).  This is different from how we “counted” sets before in that we no longer care which 
order we pair up the elements. 
 
For instance, the set of positive integers and the set of even positive integers have the same 
cardinality, because we can pair 1 with 2, 2 with 4, 3 with 6, and so on, and we’ll never run out.  
Thus, these two sets have the same “size” even though one of them is a subset of the other! 
 
We call the possible cardinalities of infinite sets the cardinals, and write ℵ$, ℵ), ℵ*, (this is 
using the Hebrew letter aleph).  The smallest of these, ℵ$, is the cardinality of ω, and ordinals of 
this cardinality are called countable. 
 
19. Show that ω + 1 and ω ·  2 are countable by putting their elements in one-to-one 
correspondence with the elements of ω. 
 
20. Show that ω2 is countable. 
 
21. Show that a countable union of countable sets is countable.  (This is very similar to the last 
problem.) 
 
22. Show that the set of real numbers from 0 to 1 is uncountable.  Try proof by contradiction: 
suppose you’ve written them all on a list, and then find one that’s not on your list.  (Thus, not all 
sets are countable!) 
 
23. Show that all the ordinals we’ve written down so far are countable!  Thus, as infinite sets go, 
they’re all actually really small! 
 

Bonus Problems 
 
We have seen that addition and multiplication are not commutative.  This means that given 
ordinals α1, …, αn, one can form several different sums and several different products.  What is 
the largest possible number as a function of n?  How many different permutations 
give different sums?  Different products?  We’ll find the answers to these 
questions in the following series of bonus problems. 
 
  



 

© Copyright 2019 Girls’ Angle.  All Rights Reserved.                                                                27 

B1. Draw a picture showing that (ω + a)(ω + b) = ω2 + ω ·  b + a, where a and b are positive 
integers.  Recall that this ordinal is ω + b copies of ω + a. 
 
B2. Show that (ω + a)(ω + b) (ω + c) = ω3 + ω2 ·  c + ω ·  b + a, where a, b, and c are positive 
integers. 
 
B3. Find a pattern that expresses (ω + a1)·· ·(ω + an) in Cantor normal form where a1, …, an are 
positive integers. 
 
B4. Deduce that it is possible for all permutations of any number of ordinals to yield different 
products. 
 
It is more subtle to understand how many sums are possible.  We have to understand how to 
decompose an ordinal into a sum of smaller ones, and we need to understand which ordinals can 
be absorbed into larger ones in a sum. 
 
A non-zero ordinal is called “indecomposable” if it is not equal to the sum of strictly smaller 
ordinals. 
 
For example, 1 is indecomposable because the only smaller ordinal is 0 and 0 + 0 = 0.  Another 
indecomposable ordinal is ω because the sum of two smaller ordinals remains finite.  Note that 
1 = ω0 and ω = ω1.  In general, the indecomposable ordinals are the powers of ω, including 
infinite powers using the notion of exponentiation for ordinals. 
 
B5. Show that any ordinal is a sum of indecomposable ordinals. 
 
An indecomposable ordinal “absorbs” addition by any smaller ordinal on the left.  For instance, 
0 + 1 = 1, 2019 + ω = ω, and ω + ω2 = ω2.  Let φ(α) be the largest indecomposable summand of α.  
For instance, φ(ω2 + ω) = ω2. 
 
B6. Show that the number of sums obtained by permuting three ordinals α1, α2, α3 is at most 5.   
 
B7. Give an example of three ordinals where there really are five different sums. 
 
B8. Let f(n) be the largest number of sums that can be obtained from n ordinals, for instance 
f(2) = 2 and f(3) = 5.  Give a recursive formula for computing f(n) from the previous values f(2), 
f(3), …, f(n – 1). 
 
B9. Use your recursive formula to show that the number of sums is much less than the number of 
permutations.  What other patterns do you notice in the numbers f(n)? 
 
Theses patterns in the numbers f(n) were found by Paul Erdős.  For more, see 
“Some Remarks on Set Theory” by P. Erdős in Proceedings of the 
American Mathematical Society, Vol. 1, No. 2 (Apr., 1950), pp.127-141. 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 24 - Meet 11 
May 2, 2019 
 
 

Mentors: 
 
 
 
 

Visitor: 

Talia Blum, Grace Bryant, Adeline Hillier, 
Rebecca Nelson, Kate Pearce, Laura Pierson, 
Gisela Redondo, Savannah Tynan, Jane Wang, 
Rebecca Whitman 
 
Eric Lander 

 Eric Lander, the 
president and founding 
director of the Broad 
Institute, stopped by and 
gave us an inspirational 
biographical talk, tracing his 
days from when he was a 
student at Stuyvesant to 
professional mathematician 
to founding director of the 
Broad Institute. 
 

Session 24 - Meet 12 
May 9, 2019 

Mentors: Talia Blum, Kelly Chen, Anna Ellison, Amy Fang, 
Katie Gravel, Adeline Hillier, Rebecca Nelson, 
Kate Pearce, Laura Pierson, Gisela Redondo, 
Melissa Sherman-Bennett, Shohini Stout, Jane Wang, 
Rebecca Whitman, Jasmine Zou 

 We held our traditional end-of-session Math Collaboration.  Try your hand at solving 
some of the problems. 
 
An isosceles trapezoid’s sides are all whole numbers.  Its bases have 
length 200 and x.  The other two sides both have length 62.  How many 
possible values are there for x? 
 

Tree stumps are placed at (x, y) where x and y are positive integers.  You jump 
from stump to stump, starting at (1, 1).  You can jump to any stump that increases 
your y-coordinate and doesn’t decrease your x-coordinate.  How many ways are 
there to jump to (3, 5)? 

 
How many non-congruent right triangles are there whose 
sides have integer length and one leg of length 121? 
  

Some members counted vertices  
(nodes), edges, and faces of 
various polyhedrons, eventually 
rediscovering Euler’s celebrated 
formula. 
 
Polyhedrons provide many paths 
of exploration to pursue.  While 
Euler’s formula is well-known, 
there surely remain many 
beautiful, unknown, facts still 

to be discovered about them. 
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Calendar 

 
Session 23: (all dates in 2018) 
 

September 13 Start of the twenty-third session! 
 20  
 27  
October 4  
 11  
 18  
 25  
November 1  
 8  
 15  
 22 Thanksgiving - No meet 
 29  
December 6  

 
Session 24: (all dates in 2019) 
 

January 31 Start of the twenty-fourth session! 
February 7  
 14  
 21 No meet  
 28  
March 7  
 14  
 21  
 28 No meet 
April 4  
 11  
 18 No meet 
 25  
May 2  
 9  

 
Session 25: To be announced… 
 
Girls’ Angle has been hosting Math Collaborations at schools and libraries.  Math Collaborations 
are fun math events that can be adapted to a variety of group sizes and skill levels.  For more 
information and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
 
A heartfelt Thank You to Monica Concepcion, Rachel Gesserman, and all employees at the 

Broad Institute for giving Girls’ Angle a marvelous, inspiring home for the past three years! 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, lecturer, Harvard University 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Instructional Designer, Stanford University 
Lauren McGough, graduate student in physics, Princeton University 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


