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An Interview with 
Rachel Pries 
 
Rachel Pries is a Professor of Mathematics 
at Colorado State University.  She is also a 
2018 Fellow of the American Mathematical 
Society.  She received her doctoral degree in 
mathematics from the University of 
Pennsylvania in 2000 under the supervision 
of David Harbater. 
 
Ken: I usually begin interviews diving right 
into math, but I was looking over your 
personal website where you’ve put a 
tantalizing list of interests including 
treehouses, watercolors, social action 
theater, and … sunlight on brick row houses.  
Well, I’ve never heard “sunlight on brick 
row houses” explicitly mentioned as a 
personal interest, and, I admit that to make 
sure this wasn’t some common interest that 
I’d missed out on, I googled the phrase in 
quotes, and you might be interested to know 
that that phrase uniquely identifies your 
personal website (as of this writing)!  What 
is it about sunlight on brick row houses that 
interests you? 
 
Rachel: During grad school, I lived in center 
city in Philadelphia.  At the end of each 
work day, I would walk home just as the sun 
was low in the sky.  The color of the brick 
row houses becomes warmer and deeper 
when the light hits it that way.  Bricks look 
completely uniform from far away, but 
when you look closely, each brick has its 
own unique pattern. 
 There are no brick row houses where 
I live now, but I feel the same way about 
lichen on rocks.  No one pays attention to 
lichen, but when you look closely, it grows 
in such a variety of colors and patterns, and 
gives clues about the moisture and 
orientation of the rock. 
 
Ken: Intriguing!  I feel like looking at lichen 
now.  You also mention that an early 

mathematical highlight in your life was 
graphing z = sin(x + y) when you were a 
student at Cambridge Rindge and Latin (a 
school which is just down the street from 
some of our readers!).  Could you please 
recreate the moment for us?  What made it a 
highlight? 
 
Rachel: It was a highlight for me because I 
thought up the question for myself.  It took a 
long time to plot enough points and then the 
pattern of the wave slowly emerged in 3D.  
At that time, I hadn’t seen any pictures of 
functions involving more than one variable. 
 Nowadays, with graphing software, 
it is easy to produce lots of these images.  
They look sharp and fancy.  I recently found 
old school work from my parents’ attic and I 
was struck by how rudimentary the hand-
drawn graphs and tables look.  A high 
school student today can investigate graphs 
much more quickly and produce documents 
that look professional.  But I felt a deep 
connection to that graph, in part because it 
took so long to make. 
 
Ken: What got you first interest in 
mathematics, and when did you start to think 
about mathematics as a potential career? 
 
Rachel: At a high school summer program 
called MASP, I took a class about number 
theory and loved it.  I had never imagined 
that you could learn so many different things 
about prime numbers.  I didn’t know it at the 
time, but number theory turned out to be the 
focus of my career in math.  I don’t know 
whether that’s because I had a natural 
affinity for it or because of having an early 
exposure to it.  There are a lot of beautiful 

…I work out a lot of examples and 

then look for what kinds of patterns 

are emerging.  Sometimes it’s 

helpful to try to explain the 

problem to colleagues – even if 

they don’t understand it… 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the remainder of this interview 
with Prof. Rachel Pries and some other content.   We hope that 
you consider the value of such content and decide that the 
efforts required to produce such content are worthy of your 
financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
Girls’ Angle: A Math Club for Girls 
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout.  
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Content Removed from Electronic Version 
 
 

 
 
 
 
 
 
 
 
 

America’s Greatest Math Game: Who Wants to Be a Mathematician. 
 

(advertisement)  
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The Needell in the Haystack 
Why it’s Hot in High Dimensions1 
by Deanna Needell | edited by Jennifer Silva 
 
For the last few issues, this column has been about various mathematical 
problems that have applications in several areas of data science and 
engineering.  In most of these settings, the signal or data being studied 

has been extremely large-scale.  The so-called “big data” phenomenon is in full swing these 
days, thus it is likely that you have already heard this phrase.  Since the size of data is only 
continuing to grow, so is the need for sophisticated mathematical tools to acquire, store, and 
analyze these massive amounts of data. 
 
Why is modern data so large-scale, and why is this a challenging and important problem to 
tackle?  Technology has progressed very quickly in recent decades, thus the ability to efficiently 
and easily acquire large amounts of data has spread.  Walk outside the airport in London and you 
are likely being caught on CCTV video surveillance.  London, like some other cities, has a vast 
network of video cameras that capture and store live feed from public areas all over the city.  
Police officers in many cities in the Unites States must now wear body cameras that also capture 
live feed while they are active on duty.  In fact, even robots on Mars send back constant streams 
of data to Earth.  Besides this massive amount of streaming video data, environmental sensors 
across the world are consistently monitoring geophysical activity, web servers track internet 
usage, patient sensors and devices record medical data, and the list goes on and on.  Essentially, 
if you have a favorite interest or activity, there is likely a large amount of data involved in one 
way or another.  You would think that with this abundance of data would come a plethora of new 
information.  In actuality, however, the opposite is often true.  The data is so large-scale that it 
clogs modern analytical systems and brings new technological challenges along with it.  This has 
sparked a critical need for mathematical innovations.  Since we are focused on large-scale data, 
the mathematics involves studying objects in high dimensions.  Here, we will touch on some of 
these high-dimensional ideas and reveal some beautiful surprises along the way. 
 
Building geometric objects 

 

In order to talk about geometric objects in arbitrary dimension, we will build these objects using 
various notions of distance.  For example, suppose you draw two points a and b on a piece of 
gridded paper and want to know the distance between them.  You may be inclined to draw a line 
between them and then a right triangle, so that the line between the two points is the hypotenuse 
and the legs are parallel to the grid lines; the grid lines may then be used as a ruler.  The distance 
between the two points could be computed using the Pythagorean Theorem.  If the coordinates of 
a and b are (a1, a2) and (b1, b2), respectively, then the distance between a and b is given by 
 

2 2

1 1 2 2( ) ( )a b a b− + − . 

 
This formula for distance is called the Euclidean distance or the L2 distance.  If we think of a 
and b as position vectors, we can define the L2 norm of a by the formula 

                                                 
1 This content supported in part by a grant from MathWorks. 
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||a||2 = 2 2

1 2a a+ . 

 
The L2 distance between a and b can then be expressed as || a – b ||2.  The name “L2” is not 
arbitrary; it corresponds to the powers of 2 (and 1/2) in this norm's definition.  The L2 distance 
can be generalized to arbitrary dimension.  Let a = (a1, a2, a3, …, an) and b = (b1, b2, b3, …, bn) 

be points in n
ℝ , where ℝ  is the set of real numbers.  We define the L2 norm of a by the formula 

 
2 2 2 2

1 2 32 n
a a a a a= + + + +… . 

 
We then define the L2 distance between a and b by the formula ||a – b||2. 
 
Using this L2 distance, we can define a sphere in arbitrary dimension as the set of all points 
whose L2 distance is a fixed distance from a given point, which is the center of the sphere.  Thus, 
the sphere with radius 1 (i.e., the unit sphere) centered at the origin is given by 
 

{ x n
∈ℝ  | ||x||2 = 1 }, 

 

and we denote it by 2

n
S .2  Because we used the L2 distance to define this sphere, we also call it an 

L2-sphere.  If we want to include the interior of the sphere, we refer to that as the L2-ball.  For 

example, the unit ball centered at the origin consists of the points { x n
∈ℝ  | ||x||2 ≤ 1 }.  Please 

check that 
2

2S  corresponds to the unit circle centered at the origin of the coordinate plane and 

that 
3

2S  corresponds to the usual unit sphere centered at the origin (which could be used to model 

the surface of the earth, for instance).  It may be hard for us to visualize spheres in dimensions 
higher than 3, but they are well-defined mathematical objects. 
 
We can use other ways of measuring distance to define new mathematical objects in arbitrary 
dimension.  Consider taking a drive from the corner of 60th Street and 2nd Avenue to 82nd Street 
and 5th Avenue in New York City.  You would no longer use L2 distance since you are confined 
to taking streets along the grid.  Instead, you would add the vertical and horizontal distances to 
measure the total distance of travel.  This yields the so-called taxicab distance or L1 distance 
between two points a = (a1, a2, a3, …, an) and b = (b1, b2, b3, …, bn), which is defined in 
dimension n by the formula ||a – b||1, where ||a||1 = |a1| + |a2| + |a3| + … + |an|.  Note the hidden 
powers of 1 in this definition, leading to the name L1.  We can now consider the L1-unit ball 

centered at the origin: 1

n
B ≡ { x n

∈ℝ  | ||x||1 ≤ 1 }.  As an exercise, draw the shape of the L1-ball in 

dimensions 2 and 3.  (Spoiler alert: In dimension 2, it’s a diamond, and in dimension 3, it’s an 
octahedron.) 
 
One can use this idea to define an Lp-ball for any positive real number p by defining distance in 

terms of the norm ||(a1, a2, a3, …, an)||p = 
1/

1 2 3( )p p p p p

na a a a+ + + +… .  (So the Lp distance between 

a = (a1, a2, a3, …, an) and b = (b1, b2, b3, …, bn) is given by ||a – b||p.)  This gives us an infinite 
supply of fun exercises to draw these shapes in low dimensions! 
 

                                                 
2 We point out that this is not the usual notation for the sphere; typically, the superscript corresponds to the 
dimension of the surface rather than the dimension of the ambient space. 
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The last important distance for our purposes is one that is defined on a sphere.  For the moment, 
pretend that the earth is spherical and that you want to fly from one point on the globe to another 
using the quickest route.  Since you cannot drill through the planet, a straight-line path is not 
feasible.  Instead, you would travel along the shortest arc, which gives rise to the notion of the 
geodesic distance between two points on the sphere.  A great circle on a sphere is a circle 
defined by the intersection of a plane that contains the center of the sphere and the surface of the 
sphere, such as lines of longitude or the equator.  (The equator is the only line of latitude that is 
also a great circle.  Planes that contain other lines of latitude do not pass through the center of the 
sphere.)  The geodesic distance between two points on the surface of the sphere is equal to the 
shortest distance along a great circle that contains those two points.  As before, we may consider 
the set of points on the sphere whose geodesic distance to the North Pole is less than or equal to 
r.  On the two-dimensional sphere, this set of points looks like a spherical cap, which is how we 
will refer to this set: the spherical cap of radius r centered at the North Pole.  Note that this 
definition also extends naturally to arbitrary dimension n, just like the previous geometric objects 
built from distances. 
 
Geodesic extensions 
 
The last geometric notion we will use here is that of the geodesic extension of a set on the 

sphere.  Given a set T on the sphere 2

n
S  and a small positive number ε, we define its geodesic 

extension as the set of points that are (geodesic) distance ε or closer to some point of T.  Since 
every point of T is zero distance away from itself, T is contained in its extension.  In effect, the 
geodesic extension of T extends the boundaries of T to include more points.  For example, if T is 
a spherical cap of radius r, then its geodesic extension will be a spherical cap of radius r + ε. 
 
 

           

Figure 1.  Left: A spherical cap in two dimensions (light blue).  Right: A spherical cap in three dimensions (light 
blue). 

 
One way of studying geometric objects is to compute certain quantities about them.  For 
example, you may wish to gain understanding of the sphere (in three dimensions) by computing 
its surface area or volume.  Here, we will be interested in studying proportions of spheres.  For 
example, the light blue spherical cap in the left sphere of Figure 1 is a semicircle, thus we would 
say that its “measure” is 1/2, since the semicircle is half of the circle.  As another example, the 
measure of land on Earth is roughly 0.29 since approximately 29% of the earth’s surface is land. 
 
Let’s examine how the measure of a hemispherical cap changes when it is extended by ε, starting 

with the unit circle 
2

2S .  Consider shading the semicircle as in the left image of Figure 1.  As 

mentioned, this cap has measure 1/2, since it is proportionately half of the circle.  Now consider 
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Systematic Counting, Part 1 
by Addie Summer | edited by Jennifer Silva 
 
 One thing I love about math is that you can do it almost anywhere, any time. 

Last week, I found myself waiting for a bus with nothing to do.  To pass the time, I drew 
a clock face: 

 
 
I wondered, “What would happen if I tried to count the 12 circles around the clock face by 
skipping 2 over each time instead of the standard 1 over,” like this: 
 

 
 
I discovered that you’d only count half of the circles before returning to the starting point. 
 The bus hadn’t yet appeared, so I decided to see what would happen if I did the same 
thing, only skipping 3 over, 4 over, 5 over, and so on. 
 

 

 

 

Skipping 3 over  Skipping 4 over 
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 I noticed that skipping 12 over would bring me right back to the starting point, so I’d only 
count one of the circles that way.  Also, skipping 13 over is essentially the same thing as 
skipping 1 over.  I can explain this by thinking of 13 as 12 + 1, meaning that skipping over 13 
each time is the same as first skipping over 12 (which brings us right back to where we started), 
then skipping an additional 1. 
 In fact, by the same reasoning, skipping 14 over is the same as skipping 2 over, and 
skipping 15 over is the same as skipping 3 over.  In general, if n ≥ 12, then skipping n over is the 
same as skipping n – 12 over.  And if n – 12 happens to be greater than or equal to 12, then we 
can subtract 12 again and say that skipping n over is the same as skipping n – 24 over.  We can 
continue subtracting 12 until we obtain a number that is less than 12. 
 Upon further reflection, I realized that subtracting 12’s like this is the same as finding the 
remainder that is left when we divide n by 12.  That is, if r is the remainder we get by dividing n 
by 12, then skipping by n is the same as skipping by r.  This means that to understand what 
happens with any skipping number, I only had to look at the skipping numbers 0 through 11. 

To my surprise, I found that we would count all of the circles if we skipped not only 1 
over, but also 5 over, 7 over, or 11 over.  It made me wonder, what’s special about the numbers 
1, 5, 7, and 11 that allows us to count all 12 circles?  For example, here’s what happens when we 
skip by 7: 
 

 
 
 Then I noticed that skipping by 11 is the same as skipping by 1 counterclockwise, and 
that’s one way to explain why skipping by 11 goes through all of the circles.  As a matter of fact, 
skipping by n and skipping by 12 – n must hit the same number of circles since one looks just 
like the other, except that they go around the clock in opposite directions.  This explains why 
skipping by 5 and 7 would hit the same number of circles; 5 = 12 – 7.  But it doesn’t explain why 
skipping by 5 or 7 should hit all of the circles. 
 It seems like the bus is always late!  But I didn’t mind waiting this time, because I had the 
skipping number problem to think about.  Eventually, I figured out why skipping by 5 or 7 
results in hitting all of the circles.  In fact, I managed to understand the situation for any skipping 
number and any number of circles.  Given any number of circles c and any skipping number n, I 
can compute how many of the circles will be counted without having to actually draw all the 
circles and write down all the numbers.  I can also say which circles will be hit, and I can quickly 
decide if a skipping number will hit all of the circles.  For example, I can tell you that if you put 
1,000,000 numbers in a circle and try to count them by skipping over 2018 each time, you’d end 
up hitting every other circle for a grand total of 500,000 of them. 
 I could explain this in detail, but it was so much fun to figure it out and I don’t want to 
spoil the opportunity for you.  See if you can figure it out for yourself.  If you spend as much 
time waiting for buses as I did, you will surely succeed! 
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Stacked Circles, Part 3 
by Ken Fan | edited by Jennifer Silva 
 
Emily: I tend to think of harmonic sequences as reciprocals of arithmetic sequences. 
 
Jasmine: So do I.  If you have an arithmetic sequence that doesn’t contain zero and you 
reciprocate every term, you end up with a harmonic sequence, and vice versa. 
 
Emily: I wonder if we can find a curve that holds a stack of circles whose radii are in harmonic 
progression by somehow “reciprocating” a stack of circles whose radii are in arithmetic 
progression. 
 
Jasmine: That’s an intriguing thought!  We’d need some kind of transformation of the plane that 
maps a circle of radius r to a circle of radius 1/r. 
 
Emily and Jasmine think in silence for several minutes. 
 
Emily: Nothing comes to mind.  I thought geometric inversion1 might work, but it doesn’t. 
 
Jasmine: I thought of geometric inversion too, but you’re right that it doesn’t do what we want; if 
we imagine a stack of circles whose radii are in harmonic progression, the stack will extend 
without bound since the sum of an infinite harmonic progression isn’t finite.  But if we invert a 
stack of circles whose radii are in arithmetic progression, all but finitely many will be inverted to 
the interior of the circle of inversion, hence resulting in a bounded sequence of circles. 
 
Emily: Nice argument.  That makes it clear that inversion doesn’t do what we want.  Since we 
can’t think of a transformation that will do the trick, why don’t we try the same thing you did to 
discover the parabola for stacked circles whose radii are in arithmetic progression? 
 
Jasmine: You mean form a stack of circles with radii in harmonic progression and see what that 
looks like? 
 
Emily: Yes.  And I suppose it couldn’t hurt to start with the standard harmonic sequence 1/1, 1/2, 
1/3, 1/4, 1/5, ….  If we stack these along the y-axis with the first circle resting on the x-axis, the 
radius of the nth circle will be 1/n, and the y-coordinate of its center will be 
 

2(1/1 + 1/2 + 1/3 + … + 1/(n – 1)) + 1/n. 
 
Jasmine: I agree, because that’s the sum of all of the diameters of the circles below it, plus the 
length of its radius.  Unfortunately, I don’t think that expression can be written any more simply. 
 
Emily: I know that as n gets larger and larger, the difference between the natural logarithm of n, 
which I denote by ln n, and 1/1 + 1/2 + 1/3 + … + 1/n gets closer and closer to a constant, called 
the Euler constant. 

                                                 
1 Geometric inversion in a circle is a transformation of the plane.  Given a circle C in the plane, the point P is sent to 
the point P’, where P and P’ lie on the same ray pointing from the center of the circle and such that the product of 
the distances of P and P’ to the center of C is equal to the square of the radius of C.  Under this transformation, the 
center of the circle is sent to infinity.  It can be thought of as a “reflection” in the circle instead of a line. 
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Jasmine puts on a puzzled expression. 
 
Emily: Euler looked at the limit of the difference 
 

1 1 1 1
ln

1 2 3
n

n

 
+ + + + − 

 
…  

 
as n tends to infinity and showed that it converges to some constant, which is called Euler’s 
constant. 
 
Jasmine: I see.  Well, in our problem, constant shifts aren’t important.  We can compensate for 
an up or down shift in the curve that contains the stack by shifting all of the circles up or down 
by the same amount.  So we can ignore Euler’s constant and check if circles that are stacked 
snugly inside the curve (1/x, 2 ln |x|) have radii in harmonic progression, since the rightmost 
point of the nth circle in our stack, up to Euler’s constant, will be located approximately at (1/n, 
2 ln |n|). 
 
Emily: Why are you taking the absolute value of x?  Oh, I see – you’re just ensuring that we’re 
stacking into something that has both “walls,” so to speak. 
 
Jasmine: Right.  The natural logarithm of x isn’t even defined for x ≤ 0. 
 
Emily: I’m skeptical that this will give us what we’re looking for, since the logarithm is only an 
approximation; when we looked at arithmetic progressions, we found that a parabola exactly 
passes through the rightmost points of the circles in the stack. 
 
Jasmine: You’re probably right, but I’m curious to know how the radii behave if we do stack 
circles into the graph of … let’s see, setting x = 1/n, the point (1/n, 2 ln |n|) becomes (x, 2 ln |1/x|) 
… into the graph of y = 2 ln |1/x| = -2 ln |x|. 
 
Emily: In the words of Francis Su, let’s do it! 
 
Jasmine: Let’s begin by floating a circle of 
radius r into this upside-down, infinite funnel. 
 
Emily: Sure, but first I suggest we work with 
the graph of y = -N ln |x|, where N is any 
positive constant.  The 2 in -2 ln |x| seems 
arbitrary, and I doubt replacing it with a 
general parameter will make things more 
difficult. 
 
Jasmine: That’s fine by me. 
 
Emily: By symmetry, the center of the circle 
will be on the y-axis, so let’s say the center 
has coordinates (0, c). 
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Jasmine: And let’s suppose the circle touches the graph of y = -N ln |x| at the point (p, -N ln |p|).  
By symmetry, we might as well assume that p > 0. 
 
Emily: Now we need equations that relate r, the radius of the circle, c, the y-coordinate of the 
center of the circle, and p, the x-coordinate of the point on the graph that is tangent to the circle. 
 
Jasmine: For one of the equations, we can express the fact that the distance from the center of the 
circle, (0, c), to the point on the circle tangent to the graph, (p, -N ln |p|), is r.  That gives us 
 

p2 + (c + N ln p)2 = r2. 
 
I dropped the absolute value since we’re assuming that p > 0. 
 
Emily: Since we want to find c and p in terms of r, we need at least one more equation. 
 
Jasmine: What should that equation be? 
 
Emily and Jasmine think. 
 
Emily: We also have to express the fact that the radial line to the point of contact with the curve 
y = -N ln |x| is perpendicular to the tangent there. 
 
Jasmine: Oh, right!  We can get the slope of the tangent by taking the derivative of -N ln x with 
respect to x.  I get -N/x.  So the slope of that radial line has to be the negative reciprocal of -N/p, 
which is p/N. 
 
Emily: So our second equation is 
 

( ln ) ln

0

p c N p c N p

N p p

− − +
= = −

−
. 

 
 
Jasmine: Hey!  Both equations contain the expression c + N ln p, and in both equations, the only 
occurrences of c are contained inside that expression.  I think we should solve for c + N ln p in 
the second equation and substitute the result into the first to eliminate c, then solve the resulting 
equation for p in terms of r. 
 
Emily: That sounds like a good plan!  The second equation tells us that 
 

c + N ln p = -p2/N. 
 
Jasmine: Substituting –p2/N for c + N ln p in the first equation turns it into 
 

p2 + p4/N2 = r2. 
 
That’s a quadratic in p2, which we can rewrite as (p2)2 + N2p2 – N2r2 = 0. 
 
Emily: Applying the quadratic formula, the solutions are 
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In the previous issue, we presented the 2018 Summer Fun problem sets. 
 
In this issue, we give solutions to many of the problems.  Our solutions may be terse and, in 
some cases, are more of a hint than a solution.  We prefer not to give detailed solutions before 
we know that most of the members have spent time thinking about the problems.  The reason is 
that doing mathematics is very important if you want to learn mathematics well.  If you haven’t 
tried to solve these problems yourself, you won’t gain as much when you read these solutions. 
 
If you haven’t thought about the problems, we urge you to do so before reading the solutions.  
Even if you cannot solve a problem, you will benefit from trying.  By working on the problem, 
you will force yourself to think about the associated ideas.  You will gain familiarity with the 
related concepts and that will make it easier and more meaningful to read other’s solutions. 

 
With mathematics, don’t be passive!  Be active! 

 

Move your pencil and move your mind – you might discover something new. 

 
Also, the solutions presented are not definitive.  Try to improve them or find different solutions. 
 
Solutions that are especially terse will be indicated in red.  
Please do not get frustrated if you read a solution and have 
difficulty understanding it.  If you run into difficulties, we are 
here to help!  Just ask! 
 
Please refer to the previous issue for the problems.  

Members: Don’t forget that 

you are more than welcome 

to email us with your 

questions and solutions! 



 

© Copyright 2018 Girls’ Angle.  All Rights Reserved.                                                                19 

The Step Function 
by Whitney Souery and Girls’ Angle staff 
 

1.  2A.  2B.  

2C.  2D.  2E.  

2F.  2G.  2H.  

Step functions are examples of functions which are defined by cases.  To prove identities that 
involve functions defined by cases, split the proof into cases. 
 
3. If x < 0, then, by definition, H(x) = 0 and, therefore, 2H(x) – 1 = -1 for x < 0.  If x = 0, then, by 
definition, H(x) = 1/2 and, therefore, 2H(x) – 1 = 2(1/2) – 1 = 0 for x = 0.  If x > 0, then, by 
definition, H(x) = 1 and, therefore, 2H(x) – 1 = 1 for x > 0.  Hence, 2H(x) – 1 is the sign function. 
 
4. We must show that u(x) – u(x – 1) is 0 when x < 0 or x ≥ 1, and 1 when 0 ≤ x < 1.  If x < 0, 
then x and x – 1 are both negative, hence u(x) – u(x – 1) = 0 – 0 = 0, as desired.  If x ≥ 1, then x 
and x – 1 are both positive, hence u(x) – u(x – 1) = 1 – 1 = 0, as desired.  Finally, if 0 ≤ x < 1, 
then x is positive, but x – 1 is negative, hence u(x) – u(x – 1) = 1 – 0 = 1, as desired. 
 
5. The characteristic function of the closed interval [0, 1] can be expressed as u(x) + u(1 – x) – 1. 
 
6. The characteristic function of the open interval (0, 1) can be expressed as 1 – u(-x) – u(x – 1). 
 

7. Let f(x) = 
1

( ) 1 ( ( ) ( ) 1)
k

u x u x k u x k
∞

=

− + + + − − .  If x = 0, then u(x + k) + u(x – k) – 1 = 0 for all 

k > 0.  Hence f(x) = u(0) – 1 = 0.  For integer x > 0, u(x + k) + u(x – k) – 1 is 1 if k ≤ x and 0 if 
k > x.  Hence f(x) = u(x) – 1 + x = 1 – 1 + x = x.  For integer x < 0, u(x + k) + u(x – k) – 1 is -1 if 
k < -x and 0 if k ≥ -x.  Hence, 
 

f(x) = u(x) – 1 – (-x – 1) = x. 
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Now suppose x is not an integer.  If x > 0, then u(x + k) + u(x – k) – 1 is 1 if k < x and 0 if k > x.  

Hence f(x) = 1 – 1 + (number of positive integers less than x) = x   .  Finally, if x < 0, then 

u(x + k) + u(x – k) – 1 is -1 if k < |x| and 0 if k > |x|.  Hence f(x) = -1 + x    = x   . 

 
8. If x < 0, we have x(u(x) – u(-x)) = x(0 – 1) = -x.  If x = 0, we have x(u(x) – u(-x)) = 0.  Finally, 
if x > 0, we have x(u(x) – u(-x)) = x(1 – 0) = x.  These agree with the absolute value of x. 
 
The proof method for Problems 9-11 are the same, so we illustrate only with Problem 11. 
 
11. If x < 0, then u(x) = 0 and H(x)(3 – 2H(x)) = 0.  If x = 0, then u(x) = 1 and H(x)(3 – 2H(x)) 
evaluates to (1/2)(3 – 2(1/2)) = 1.  If x > 0, then u(x) = 1 and H(x)(3 – 2H(x)) = 1(3 – 2(1)) = 1.  
Since the two sides agree for all values of x, they are identical. 
 
12. Hint: As n tends to infinity, (1/2)n tends to 0. 
 
13. The function 2(u(x – c) – H(x – c)) is the characteristic function of {c}. 
 
14. The function 4H(x – c)H(c – x) is the characteristic function of {c}. 
 
15. The function u(x – a)u(b – x) is the characteristic function of the interval [a, b]. 
 
16. Hint: As n tends to infinity, arctan(nx) tends to –π/2, 0, or π/2, depending on whether 
x < 0, x = 0, or x > 0, respectively. 
 
17. Given two finite sequences of real numbers v1, v2, v3, . . ., vn and x1 < x2 < x3 < . . . < xn, if f is 
the associated mesa vista function defined by f(x) = 0 if x < x1, f(x) = vk if xk ≤ x < xk + 1, for 
0 < k < n, and f(x) = vn if x ≥ xn, we will refer to the sequence {vk} as the “values,” and the 
sequence {xk} as the “jump points” of the mesa vista function. 

Here’s a proof sketch.  Note the D contains u(x – a) for all real numbers a because it 
corresponds to the mesa vista function associated with the value sequence v1 = 1 and jump point 
sequence x1 = a.  If f is a mesa vista function associated to the value sequence v1, v2, v3, . . ., vn 
and jump point sequence x1 < x2 < x3 < . . . < xn, then af is the mesa vista function associated to 
the same jump point sequence, but with value sequence av1, av2, av3, . . ., avn.  Next, show that if 
f and g are mesa vista functions, then so are f + g and fg.  In other words, establish that D enjoys 
all the properties of C, and, therefore, C must be contained inside D. 
 On the other hand, let f be the mesa vista function associated to the value sequence v1, v2, 
v3, . . ., vn and jump point sequence x1 < x2 < x3 < . . . < xn.  For the convenience of writing the 
following expression for f(x), let us extend {vk} by adding the term v0 = 0 to its beginning.  Then 
 

f(x) = 1

1

( ) ( )
n

k k k

k

v v u x x
−

=

− − . 

 
This expression shows that f is in C.  Therefore, C contains D. 
 We conclude that C = D. 
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Let’s Throw a BBQ 
by Vicky Xu | edited by Amanda Galtman 
 
We will use the notation P(A) to denote the probability that A occurs, where A is a subset of the 
possible outcomes.  We will also write P(A | B) for the probability that A occurs given that B has 
occurred.  For example, if we are flipping a fair coin, the possible outcomes are heads and tails.  
Then P({heads}) = 1/2 and P({heads, tails}) = 1. 
 Note that in general, P(A | B) = P(A ⋂ B)/P(B).  To see this, imagine repeating the 
experiment a large number N of times.  Of these, we expect B to occur P(B)N times.  Of these 
P(B)N times that B occurs, we expect A to occur P(A ⋂ B)N times.  (Overall, A is expected to 
occur P(A)N times, but to compute P(A | B), we want to count only the times where A occurs 
given that B occurred, i.e., the number of times both A and B occur, and that is P(A ⋂ B)N.)  We 
conclude that P(A | B) = P(A ⋂ B)N/(P(B)N) = P(A ⋂ B)/P(B).  The probability P(A | B) is known 
as a conditional probability because it gives the probability of an event occurring on the 

condition that another event occur. 
 We denote by Ac the complement of A, i.e., all outcomes other than A.  We also denote by 

nCm the binomial coefficient n choose m. 
 

1. We use a Venn diagram (shown at left) to sort out the given 
information and find the answer to be 24. 
 
2. The answer is 36 people. 
 
3. A. Let’s call the pets Cat 1, Cat 2, Dog 1, and Dog 2.  Each of 
these four pets is equally likely to be first chosen.  After the first 
pet is chosen, each of the three remaining pets is equally likely to 
be chosen next.  This yields a total of 12 ways in which the pets 
can be chosen, all of them equally likely.  These ways are 
summarized in the table below. 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

1st Choice Cat 1 Cat 1 Cat 1 Cat 2 Cat 2 Cat 2 Dog 1 Dog 1 Dog 1 Dog 2 Dog 2 Dog 2 
2nd Choice Cat 2 Dog 1 Dog 2 Cat 1 Dog 1 Dog 2 Cat 1 Cat 2 Dog 2 Cat 1 Cat 2 Dog 1 

 
Of these 12 equally likely outcomes, exactly two see both cats being picked.  Thus, the answer is 
2/12 or 1/6. 
 
B. Of the 12 outcomes, 10 include a cat, so the answer is 10/12 or 5/6. 
 
C. Of the 12 outcomes, eight include both a cat and a dog, so the answer is 8/12 or 2/3. 
 
D. Since we are given that the first choice was a dog, we eliminate outcomes 1 through 6 as 
possible outcomes.  Of the six remaining outcomes, four have a cat as her second choice, so the 
answer is 4/6 or 2/3. 
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4. Since grandma brings two pets, let’s assume that C + D ≥ 2. 

A. The probability of bringing two cats is 
( 1)

( )( 1)

C C

C D C D

−

+ + −
.  

B.  The probability is 1 – 
( 1)

( )( 1)

D D

C D C D

−

+ + −
.  C. The probability is 

2

( )( 1)

CD

C D C D+ + −
.  

D. The probability is 
1

C

C D+ −
. 

 
5. Let A be the event that your relatives choose to come.  Let B be the event that Uncle John 
chooses to come.  We compute 
 
P(A) = P(A ⋂ B) + P(A ⋂ Bc) = P(A | B)P(B) + P(A | Bc)P(Bc) = (1 – (1 – p)2)(1/2) + p2(1/2) = p. 

 
Thus, your family and Emily have the same probability of coming! 
 
6. (The wording of the problem was ambiguous. The first sentence, “Uncle John is never late,” 
could be interpreted to mean that, since all three are driving together, and since Uncle John is 
never late, the probability that they’re late is 0.  However, what we meant was that Uncle John 
reaches the car on time, but whether he is late to the party depends on whether Aunt Sarah and 
Uncle Tom also reach the car on time. This solution uses this latter interpretation.)  Let S be the 
event that Sarah is late and T be the event that Tom is late.  We know P(S) = 1/10, P(T) = 3/20, 
and P(S ꓵ T) = 1/20.  The probability that they arrive on time equals the probability that both 
Aunt Sarah and Uncle Tom are on time.  We compute 
 

P(Sc ⋂ Tc) = 1 – P(S ⋃ T) = 1 – (P(S) + P(T) – P(S ⋂ T)) = 1 – (1/10 + 3/20 – 1/20) = 4/5. 
 
Thus, the probability that the car arrives late is 1/5. 
 
7. A. You can give any number of ears of corn to each of the 10 guests, provided you give out 20 
ears.  In other words, you are distributing 20 ears into 10 piles, one pile for each guest.  There are 

29C9 = 10,015,005 ways to do that.  Imagine placing 29 ears of corn in a row, and then replacing 
nine with dividers like the ones you find in supermarket checkout lines.  The dividers split the 
corn into 10 bins: one between each pair of consecutive dividers, one before the first divider, and 
one after the last divider.  Note that there may be no ears in a particular bin. 
 
B. After giving each person one ear of corn, there are 10 left over. These ears can be distributed 
as in the solution to 7A, so the answer is 19C9 = 92,378. 
 
C. You can ask each ear of corn, “Which person are you going to?”  Each can answer 
independently that it is going to one of the 10 people, hence the answer is 1020. 
 
D. Label the 10 guests by the numbers 1 through 10.  Let Sk be the set of ways the corn can be 
distributed so that guest k gets no corn.  The set of ways to distribute corn so that each guest gets 
at least one ear is equal to the set of ways to distribute corn to 10 guests minus the union of Sk 
over all k from 1 to 10. 
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Using the principle of inclusion/exclusion, the size of the desired set is 
 

      10C0·1020 – 10C1·920 + 10C2·820 – 10C3·720 + . . . + 10C8·220 – 10C9·120 + 10C10·020. 
 
Using a computer, we find that the answer is 21,473,732,319,740,064,000. 
 
8. A. The probability of that particular straight in the same suit is 4/52C6 = 1/5,089,630. 
B.  The probability of all 6 cards being from the same suit is 4·13C6/52C6 = 66/195,755. 
C. The probability of getting 6 consecutive cards is 9·46/52C6 = 4608/2,544,815.  (We are 
allowing both A-2-3-4-5-6 and 9-10-J-Q-K-A to qualify as six cards in consecutive order.) 
D. The probability of getting at least one card of each suit is (4·13C3·133 + 6·13C2·132)/52C6, 
which equals 9,971/78,302. 
E. The probability of getting three different pairs is 13C3·63/52C6 = 594/195,755. 
 
9. This problem is a typical problem from a topic called Markoff chains (yes, the same Markoff 
in Matthew de Courcy-Ireland’s Summer Fun problem set in this batch).  Let’s model Ruth’s 
distance from the BBQ by a number line.  Ruth is standing at the 110 yard mark.  Each second, 
she moves either up 1 or down 1, with equal probability.  We define a matrix M such that Mij is 
the probability that Ruth will be at position i after one move if she starts at position j.  Since all 
that matters is that she get within 10 yards of the BBQ within 5 minutes, we set Mij = 0 if i < 10. 
We set M10, j = 1 if j = 10, 1/2 if j = 11, and 0 otherwise.  The problem asks us to determine the 
entry in row 10, column 110 of the matrix M300.  If you know how to multiply matrices, the 
problem is reduced to a long computation.  A computer returns the answer 
 

3042084424665716204375765672475533020280778381097970434115792291920378981492316377 

509258994083621521567111422102344540262867098416484062659035112338595324940834176545849344 

 
which is approximately six in a billion.  Unfortunately for Ruth, it’s not too likely that she’ll get 
any food at this BBQ! 
 
10. A time interval of 1 hour consists of six disjoint 10-minute time intervals.  Let p be the 
probability that a patty gets burned in a time interval of 10 minutes.  The probability that a patty 
gets burned in six disjoint 10-minute time intervals is 1 – (1 – p)6, which we are told is 0.7.  

Thus, 1 – (1 – p)6 = 0.7.  Solving for p, we find that p = 61 0.3−  ≈ 18.2%. 

 
11. Let there be b beef patty requests from your guests.  Let A be the event that the guest of 
interest wanted a veggie burger.  Let B be the event that the person you asked wanted a veggie 
burger.  We are interested in finding P(A | B).  Note that P(A | B) = P(B | A)P(A)/P(B).  If the 
guest of interest wanted a veggie burger, then three out of 3 + b people who submitted forms 
wanted a veggie burger.  Thus, P (B | A) = 3/(3 + b).  We compute 

P(B) ) = P(B | A)P(A) + P(B | Ac)P(Ac) = 
1 3 1 2 5

2 3 2 3 6 2b b b
+ =

+ + +
.  Substituting this into the 

equation P(A | B) = P(B | A)P(A)/P(B), we find that P(A | B) = 
3 1 6 2 3

3 2 5 5

b

b

+
=

+
. 

 

  



 

© Copyright 2018 Girls’ Angle.  All Rights Reserved.                                                                24 

Markoff Triples 
by Matthew de Courcy-Ireland 
 
The Markoff equation is 
 

x2 + y2 + z2 = 3xyz, 
 
to be solved in positive integers x, y, and z.  There is no general method for finding all the integer 
solutions of a cubic equation in three variables like this.  However, this equation has a very 
special structure that can help us.  Although it is a cubic equation because of the term xyz, it is 
only a quadratic equation when we consider one variable at a time. 
 
1. Factor the quadratic as (x – x1)(x – x2), where x1 and x2 are the two roots.  Multiplying these 
gives x2 – (x1 + x2)x + x1x2.  For this to match x2 + bx + c, we must have x1 + x2 = -b.  As a bonus, 
we see that the product of the solutions, x1x2, is equal to c.  An alternative way to prove these 
facts is to use the quadratic formula. 
 
2. Suppose that (x, y, z) is a solution to the Markoff equation, i.e. x2

 + y2 + z2 = 3xyz.  This can be 
rearranged to x2 – (3yz)x + y2 + z2 = 0.  This quadratic generally has two solutions, and from 
Problem 1, we know that the other solution must be 3yz – x because the middle coefficient is -3yz 
and the sum of the two solutions is therefore equal to 3yz.  Therefore (3yz – x, y, z) is also a 
solution to the Markoff equation. 
 
3. Applying the same reasoning used for Problem 2 to the second and third coordinates shows 
that (x, 3xz – y, z) and (x, y, 3xy – z) are also solutions to the Markoff equation. 
 
4. Here is a small part of the resulting tree-like picture: 
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5. We claim that doing the Markoff move on the largest coordinate must reduce its 
size.  Since the equation x2 + y2 + z2 = 3xyz is symmetric under all orderings of x, y, 
and z, we may suppose that 0 < x ≤ y ≤ z.  Our goal is to show that 3xy – z is 
smaller than z.  Suppose, to the contrary, that 3xy – z ≥ z.  We will then show that z 
< y, contradicting our assumptions.  We can find an expression for z by applying 
the quadratic formula to z2 – 3xyz + x2 + y2 = 0: 
 

2 2 2 2 2 2 23 (3 ) 4( ) 3 9 4( ) /

2 2

xy xy x y x x x y y
z y

− − + − − +
= = ⋅ . 

 
(Note that we use the minus sign instead of the plus sign in the quadratic formula because we’re 
assuming that 3xy – z ≥ z, i.e. z is not the bigger root.)  This will be less than y provided that 
 

2 2 2 23 9 4( ) / 2x x x y y− − + < . 

 
This rearranges to 9x2 – 12x + 4 < 9x2 – 4(x2 + y2)/y2.  Multiplying by y2 and isolating y, we find 
 

2

12 8

x
y

x
>

−
. 

 

Since x ≤ y, this inequality holds if 2 > 12 8x − , i.e, if x > 1, or, if x = 1, when x < y.  In these 

cases, running the same steps backward show that z < y, contrary to hypothesis.  In the case 
where x = y = 1, then the Markoff equation becomes the quadratic equation 2 + z2 = 3z.  The two 
solutions to this quadratic are z = 1 and z = 2.  If z = 1, we are already at our destination solution 
(1, 1, 1).  If z = 2, when we apply a Markoff move to the 3rd coordinate of (1, 1, 2), we go from 
(1, 1, 2) to (1, 1, 1) and reach our desired destination. 

This shows that doing a Markoff move on the largest coordinate must lower it, unless the 
coordinates are all equal.  So if we continue applying Markoff moves to the largest coordinate, 
eventually, we will reach a point where all the coordinates are equal.  But then we must be at the 
solution (1, 1, 1), because (1, 1, 1) is the only solution to 3x2 = 3x3 with x a positive integer.  
Thus the tree you began drawing will eventually contain all solutions! 
 
6. As hinted, examine the solutions (1, 1, 1), (1, 1, 2), (1, 2, 5), and (1, 5, 13).  All these 
coordinates are Fibonacci numbers!  If we let Fk be the Fibonacci sequence with F1 = F2 = 1 and 
Fn + 1 = Fn + Fn – 1 for n > 1, then in fact, the Markoff tree does contains the all the odd-indexed 
Fibonacci numbers F2n + 1.  By applying the Fibonacci recursion three times, we arrive at 
 

F2n + 1 = F2n + F2n – 1 = 2F2n – 1 + F2n – 2 = 3F2n – 1 – F2n – 3. 
 
This means that applying a Markoff move to the 3rd coordinate of (1, F2n – 1, F2n – 3) yields the 
solution (1, F2n – 1, F2n + 1).  Starting from the triple (1, 5, 2), this shows that all Fibonacci 
numbers with an odd label appear as solutions to the Markoff equation. 
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Generating Functions 
by Laura Pierson | edited by Amanda Galtman 
 
1. These definitions agree with what we would expect for polynomials because they 
generalize addition and multiplication of polynomials.  When you add polynomials, the 
coefficient of xn in the sum is the sum of the coefficients of xn in the addends; that is exactly what 
the formula for addition of formal power series corresponds to.  For multiplication of formal 
power series, note that the coefficient of xn in the product depends only on the coefficients of xk 

in the factors for 0 ≤ k ≤ n. Multiplication corresponds to truncating the formal power series after 
xn

, regarding the truncation as a polynomial of degree n, and then multiplying as polynomials. 
 
2. All of these facts are proven in a similar way, which is to carefully apply the definitions of 
addition and multiplication to both the left and right sides of the desired identity, then check that 
the results are the same. To illustrate, we show that multiplication is associative.   

Let f(x) = 
0

k

k

k

a x
∞

=

 , g(x) = 
0

k

k

k

b x
∞

=

 , and h(x) = 
0

k

k

k

c x
∞

=

 .  We must check that 

f(x)(g(x)h(x)) = (f(x)g(x))h(x).  We compute: 
 

Left Side  Right Side 

f(x)(g(x)h(x)) = 
0 0 0

( ) ( )( )k j i

k j i

k j i

a x b x c x
∞ ∞ ∞

= = =

 
 
 

    
 

(f(x)g(x))h(x) = 
0 0 0

( )( ) ( )k j i

k j i

k j i

a x b x c x
∞ ∞ ∞

= = =

 
 
 
    

 = 
0 0 0

( ) ( )
m

k m

k p m p

k m p

a x b c x
∞ ∞

−

= = =

 
 
 

    
 

 = 
0 0 0

( ) ( )
m

m i

q m q i

m q i

a b x c x
∞ ∞

−

= = =

 
 
 
    

 = 
0 0 0

( ( ( )))
s qs

s

q p s q p

s q p

a b c x
−∞

− −

= = =

    
 

 = 
0 0 0

( (( ) ))
ps

s

q p q s p

s p q

a b c x
∞

− −

= = =

    

 = 
0 0 0

( )
s qs

s

q p s q p

s q p

a b c x
−∞

− −

= = =

   
 

 = 
0 0 0

( )
ps

s

q p q s p
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Now observe that 
 

0 0 0 0 0 0 0 0

s q p q ps s s i s

q p s q p k p q k s q p k i k s i q p q s p

q p p q k i k p q

a b c a b c a b c a b c
− +

− − + − − − − − − −

= = + = = = = = =

= = =     , 

 
which shows that the coefficients of xs on the left and right sides are equal.  (If you are finding it 
difficult to see this, pick specific values of s, such as s = 3 or s = 5, and explicitly write out that 
sum in full, without using summation notation.  In the last equation, the first equality represents a 
change in the way the indices are traversed, the second equality substitutes the dummy variable i 
for p + q, and the last equality is a relabeling of the dummy variables.) 
 Another way to see equality of coefficients is to observe that on both sides, the 
coefficient of xs is equal to the sum of all triples apbqcr where p + q + r = s. 
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3. The key point is that 1/(1 – xn) = 1 + xn + x2n + x3n + x4n + . . ., which follows from 
 
    (1 – xn)( 1 + xn + x2n + x3n + x4n + . . .) = 1 + (1 – 1)xn + (1 – 1)x2n + (1 – 1)x2n . . .. 
 
4. To choose n fruit, we have n + 1 options because we can pick between 0 and n apples, 
inclusive.  Once we decide how many apples we want, we have no choice about the number of 
oranges since, together, they must total n fruit.  Thus, the generating function is 
 

1 + 2x + 3x2 + 4x3 + . . . = 
0

( 1) k

k

k x
∞

=

+ . 

 

We compute 
2

0 0 0 0 0 0 0 0 0

1
( )( ) ( 1)

(1 )

s
k j k j k j s s

k j k j k j s p s

x x x x x x s x
x

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
+

= = = = = = = = =

= = = = = +
−

      , as 

desired.  This makes sense because the xn term in the product is made up by multiplying each xk 
term in the first factor by the xn – k term in the second factor.  If the first factor is apples and the 
second oranges, we can think of k as the number of apples and n – k as the number of oranges. 
 
5. If we have apples, oranges, and bananas, the generating function will be 
 

(1 + x + x2 + . . .)(1 + x + x2 + . . .)(1 + x + x2 + . . .) = 1/(1 – x)3. 
 
We can think of the first factor as representing the number of apples, the second oranges, and the 
third bananas.  If we choose i apples, j oranges, and k bananas, this corresponds to picking xi 
from the first factor, xj from the second factor, and xk from the third factor, and each such choice 
contributes xi + j + k to the product.  Therefore, the coefficient of xn in the product corresponds to 
the number of ways we can pick i, j, and k so that i + j + k = n. 
 
6. For an unlimited number of each of T different types of fruit, the generating function that 
gives the number of ways of picking n fruit is 1/(1 – x)T. 
 
7. Since apples are only sold in pairs, we have to choose an even number of them, so our 
generating function for picking apples is 1 + x2 + x4 + x6 + . . . = 1/(1 – x2).  Our generating 
function for picking oranges is 1/(1 – x).  Since there are only 5 bananas, the generating function 
for picking bananas is 1 + x2 + x3 + x4 + x5, which can also be expressed as (1 – x6)/(1 – x).  Thus, 
our generating function for choosing n of these fruit is: 
 

6
2 3 4 5 6

2

1 1 1
1 2 4 6 9 12 15

1 1 1

x
x x x x x x

x x x

−
⋅ ⋅ = + + + + + + +

− − −
… . 

 

8. We compute 
5

2 5 2

1 1 1 1
(1 )

1 1 1 (1 )

x
x

x x x x

−
⋅ ⋅ ⋅ + =

− − − −
.  Thus, there should be exactly n + 1 ways  

 
to choose n fruit given these crazy constraints!  Verify this directly for some small values of n. 
  

(apples)  (bananas) (oranges)    (pears) 
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9. To choose n items from among elements of set A and set B, we can choose k 
from set A and n – k from set B, for some k.  Our choice of k elements from set A 
does not affect our choice of n – k elements from set B.  Hence. the number of 
ways this can be done is the product of the number of ways to choose k items from 
set A and n – k items from set B.  When we add up these products for all possible 
values of k, from 0 to n, we get the coefficient of xn in the product A(x)B(x), by definition! 
 
10. For a pair of standard dice, the generating function for sums is (x + x2 + x3 + x4 + x5 + x6)2.  
For Sicherman dice, the generating function is (x + 2x2 + 2x3 + x4)(x + x3 + x4 + x5 + x6 + x8).  
Check that these are equal. 
 
11. You get the generating function for the Fibonacci numbers.  To use the generating function to 
obtain a formula for the nth Fibonacci number, factor the denominator to express as a product of 
two generating functions of geometric sequences, then take the product of the power series. 
 
12. The answer is x(1 + x)/(1 – x)3.  Hint: nC2 + n + 1C2 = n2, where nC2 is n choose 2. 
 
13. For example, 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1, 
hence π(5) = 7. 
 

14. To see why P(x) = 
1

1

1 k
k x

∞

= −
∏ , we can think of the first factor as counting the sum of the 1’s in 

the partition, the second factor as counting the sum of the 2’s, the third the sum of the 3’s, and so 
on.  These sums determine the partition, and vice versa. 
 

15. We have O(x) = 
2 1

1

1

1 k
k x

∞

−

= −
∏  = 1 + x + x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + 6x8 + 8x9 + . . .. 

 

16. We have N(x) = 
1

(1 )k

k

x
∞

=

+∏  = (1 + x)(1 + x2)(1 + x3) · ·  ·  = 1 + x + x2 + 2x3 + 2x4 + 3x5 + . . .. 

 
17. Hint: Observe that 1 + xk = (1 – x2k)/(1 – xk). 
 
18. For a proof without generating functions, we make a one-to-one correspondence between 
partitions with only odd parts and partitions with no repeated parts.  Suppose we start from a 
partition with no repeated parts.  Halve each even part, and iterate until all parts are odd.  For 
instance, starting from the partition 4 + 3 of 7, split the 4 in half to get 3 + 2 + 2.  Then, split each 
2 in half to get 3 + 1 + 1 + 1 + 1, which has only odd parts. 

Conversely, suppose we start from a partition with only odd parts.  Combine a pair of 
repeated parts, and iterate until no repeated parts are left.  For instance, starting from the partition 
1 + 1 + 1 + 1 + 1 + 1 + 1 of 7, combine three of the pairs to get 2 + 2 + 2 + 1.  Then, combine 
two of the 2’s to get 4 + 2 + 1.  Convince yourself that the two procedures are inverses of each 
other. 
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Calendar 

 
Session 23: (all dates in 2018) 
 

September 13 Start of the twenty-third session! 
 20  
 27  
October 4  
 11  
 18  
 25  
November 1  
 8  
 15  
 22 Thanksgiving - No meet 
 29  
December 6  

 
Girls’ Angle has been hosting Math Collaborations at schools and libraries.  Math Collaborations 
are fun math events that can be adapted to a variety of group sizes and skill levels.  For more 
information and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
 
Author Index to Volume 11 

 
π 1.08  Elizabeth Meckes 1.19 
Allie 4.22  Maria Monks 1.17 
Anna B. 1.14, 3.14, 4.16, 5.12  Deanna Needell 2.03, 3.11, 4.06, 5.07, 6.07 
Timothy Chow 1.18  Alexander Pankhurst 2.07, 3.07 
Brendan Creutz 1.17  Cielo Perez 2.07, 3.07 
Matthew de Courcy-Ireland 5.24, 6.24  Laura Pierson 5.25, 6.26 
Danijela Damjanović 1.19  Rachel Pries 6.03 
Lightning Factorial 1.12, 4.18  Miriam Rittenberg 2.12 
Ken Fan 1.07, 1.08, 1.21, 1.26, 2.18, 2.22,   Radmila Sazdanović 1.19 
 2.27, 3.16, 3.20, 3.24, 3.27, 3.28,  Aesha Siddiqui 2.07, 3.07 
 4.13, 4.26, 5.06, 5.14, 5.28, 6.14, 6.19  Marjorie Senechal 1.16 
Laura Demarco 1.17  Shark Inthepool 2.20 
Ellen Eischen 1.16  Whitney Souery 5.20, 6.19 
Elisenda Grigsby 1.20  Betsy Stovall 4.03 
Ghost Inthehouse 2.20  Addie Summer 4.11, 6.12 
Heekyoung Hahn 5.03  Bianca Viray 1.17 
Milena Harned 2.12  Ashley Wang 1.16, 2.17 
Pamela E. Harris 2.07, 3.07  Fan Wei 1.20 
HolAnnHerKat 2.20  Kirsten Wickelgren 1.16 
Rhonda Hughes 3.03  Lauren Williams 1.20 
Katnis Everdeen 2.20  Helen Wong 1.18 
Sarah Koch 1.03  Vicky Xu 5.22, 6.21 
Kathryn Mann 1.18    
     

 
Key: n.pp = number n, page pp 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 



 

© Copyright 2018 Girls’ Angle.  All Rights Reserved.                                                                31 

Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others. The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities. Because we believe learning follows naturally when there is motivation, our 
mentors strive to get members to do math through inspiration and not assignment. In order for members 
to see math as a living, creative subject, at least one mentor is present at every meet who has proven and 
published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll?  You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay?  The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where are Girls’ Angle meets held?  Girls’ Angle meets take place near Kendall Square in Cambridge, 
Massachusetts.  For security reasons, only members and their parents/guardian will be given the exact 
location of the club and its phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, lecturer, Harvard University 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Instructional Designer, Stanford University 
Lauren McGough, graduate student in physics, Princeton University 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


