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An Interview with 
Betsy Stovall 
 
Betsy Stovall is an Assistant Professor of 
Mathematics at the University of Wisconsin-
Madison.  She earned her doctoral degree in 
mathematics in 2009 from the University of 
California, Berkeley under the supervision 
of Michael Christ. 
 
Ken: In a brief interview with the University 
of Wisconsin-Madison, you explained that 
you originally wanted to major in political 
science, but found your math homework too 
compelling to put aside, so ended up 
majoring in math.  What is it about math that 
pulls you so? 
 
Betsy: I love and I hate that period when I 
know enough about a problem to carry it 
around in my head, but not enough to solve 
it, when it’s almost physically painful to 
make progress.  I like the feeling of chipping 
away at some problem and seeing the way 
that the different pieces fit together (or fall 
apart, depending on your viewpoint).  I find 
that I like math more when I work harder at 
it, though I have to remind myself of this on 
the days, weeks, months when it’s really 
hard.  And I love writing mathematics. 
  
Ken: How aware were you of math and 
mathematics as a profession prior to 
college?  When did you start to like math? 
 
Betsy: To be honest, the process by which I 
ended up where I am is still a bit mysterious 
to me.  It never occurred to me until well 
into college that there might be people still 
developing new mathematics, much less that 
this is what ordinary college math professors 
spend much of their time doing.  Not in my 
wildest dreams would I have a career that 
involved proving mathematical theorems. 

When I was a kid, I always liked my 
math classes and enjoyed logic puzzles, but 
my passion was for reading, pretty much 

anything I could get my hands on.  When it 
came time to choose a college, I thought I 
wasn’t good enough at math to pass calculus 
at the engineering school in the state, so I 
opted to attend a liberal arts university and 
focus on political science or possibly 
philosophy.  It’s strange to say, but a 
defining moment for me was getting a C on 
a calculus test my first semester in college.  I 
realized that I hadn’t been studying hard 
enough, so I spent hours and hours in the 
remaining weeks of the semester solving 
problems, and I found that I loved it.  The 
more basic calculus problems I did, the more 
I wanted to do, to the exclusion of 
everything else.  After that, I was never 
ready to stop doing math, and I somehow 
now find myself as a math professor. 
 
Ken: That’s so neat!  Could you please 
describe in detail some specific math 
problem from your student years which you 
remember finding particularly compelling? 
 
Betsy: When I took my undergraduate “How 
to Write Proofs” class, we were asked to 
determine for which positive integers n the 
relationship (n + 1)n ≤ nn + 1 holds, using 
only induction and elementary facts about 
multiplication.  I was very fortunate to have 
a math professor whose philosophy was to 
assign difficult problems and then make us 
resubmit and resubmit and resubmit our 
“solutions” until we finally had a correct, 
readable proof.  I remember struggling with 
this particular problem for weeks and 
submitting a number of incorrect solutions, 
but once I really understood mathematical 
induction things just sort of clicked.  Now I 
always assign this problem to my honors 
analysis students. 
 
Ken: What questions in mathematics 
intrigue you today? 
 
Betsy: I work in a field called harmonic 
analysis, whose basic philosophy is to study 
mathematical objects and operations by 
breaking them up into small pieces and
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the remainder of this interview 
with Prof. Betsy Stovall and some other content.   We hope that 
you consider the value of such content and decide that the 
efforts required to produce such content are worthy of your 
financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
Girls’ Angle: A Math Club for Girls 
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout. 
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The Needell in the Haystack 
 How to Fill in the Blanks1 
 by Deanna Needell | edited by Jennifer Silva 
 
In the previous issue, I wrote an article about making inferences on very 
large-scale data, such as inferring class labels on unlabeled data points.  
In this article, we discuss a related topic whose goal is to infer missing 

entries in a large data matrix.  Although it can also be viewed as an inference problem, this 
setting is quite different from other inference problems like classification, where the data itself is 
known but only one attribute of the data needs to be inferred. 
 
Although most data is now extremely large-scale, it is also highly incomplete.  We view the 
underlying data as a matrix; we refer to the full matrix as the data matrix, whose rows and 
columns will correspond to particular variable types, depending on the application.  The 
examples of incomplete data are abundant.  In survey data, where the rows of the data matrix 
correspond to users taking the survey and the columns correspond to the survey questions, 
participants do not or cannot answer every question in the survey; this leads to missing entries in 
the data matrix.  In imaging applications where the data matrix may be the image itself (so each 
entry corresponds to a pixel in the image), artifacts or obstructions may appear that result in an 
incomplete matrix.  In geophysical, environmental, and medical sensor data, missing data results 
from sensor malfunction, user removal, or power/memory restrictions.  The goal in all of these 
settings will be to accurately fill in these missing entries, thereby completing the matrix. 
 
Such so-called matrix completion is clearly impossible without further assumptions; given only 
a partially-observed matrix without any assumptions, there are infinitely many ways to “fill in 
the blanks.”  However, there are examples that demonstrate situations where a unique solution 
does exist.  For example, the popular game of Sudoku requires the player to complete a 9-by-9 
matrix of integers from 1 to 9, inclusive, from only a fraction of filled-in entries.  The game is set 
up so that every row, column, and 3-by-3 block of the matrix should contain every digit 1 
through 9.  With this additional information, the game has a unique and discoverable solution, as 
long as enough of the entries are revealed – and are in an appropriate pattern.  These latter 
conditions beg the following questions: How many entries does the player need to see before she 
can determine a unique solution?  And in what pattern must those revealed entries be?  It turns 
out these questions will also be relevant to our problem of mathematical matrix completion. 
 
To better motivate the setting we will discuss further, consider the matrix 
 

1 2 3 4 5

3 ? ? ? ?

? 4.8 ? ? ?

? ? ? ? 1

? ? ? ?π

 
 
 
 
 

− 
  

, 

 

                                                 
1 This content supported in part by a grant from MathWorks. 
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supposing you also know that this matrix is rank 1; thus, all rows are linearly dependent, 
meaning that each row is a multiple of one of the others.  Can the missing entries (marked by 
"?") be uniquely determined?  In this case, we can easily see that the answer is yes (I’ve left this 
as an exercise for the reader).  Although this is a highly simplified example since an entire row is 
visible, it nonetheless motivates the more realistic problems discussed here. 
 
State-of-the-art methods in matrix completion allow one to accurately complete a data matrix by 
observing only a few of its entries, under the assumption that the data is intrinsically low-rank.  
Low-rankness is a reasonable assumption in most applications.  For example, in survey data, the 
matrix is (exactly or approximately) low-rank when a small number of underlying variables or 
trends determine how users answer the questions.  In the now famous Netflix problem, where 
mathematicians aim to predict Netflix user ratings from the matrix whose rows correspond to 
users and columns correspond to movies (and entries to the corresponding ratings), the low-
rankness stems from the fact that only a few parameters are needed to describe the tastes of most 
users (e.g., whether someone likes romance movies or sci-fi, etc.).  In imaging, the images tend 
to be approximately low-rank through appropriate representation transforms, and sensor 
applications lead to low-rank data due to correlations across space or time. 
 
Mathematically, then, the problem is formulated as recovering a matrix M from linear 

measurements of the form yi = ,
i

A M ≡  trace( *

iA M ) (where A* denotes the adjoint or conjugate 

transpose of a matrix A) for i = 1 … m and where Ai are matrices of the same dimension as M.  
For example, when Ai are matrices of all zeros and a single 1, this corresponds to the classical 
matrix completion problem when only a subset of entries are observed.  We then seek a low-rank 
matrix M consistent with these measurements.  Formally, we wish to solve for the minimizer of 

 
(1) 

 
ˆ argmin rank( )

B

M B≡  

 

such that yi = ,
i

A B  for all i. 

 
Let’s analyze this program more carefully.  Recall that a singular value of a matrix A is the 
square root of an eigenvalue of the matrix A*A, which is called the gram matrix.  Singular values 
are used in so-called singular value decompositions, and they provide a way of understanding 
how much a matrix can shrink or stretch a vector.  For example, if σmax(A) denotes the largest 

singular value of the matrix A, then it is always true that max2 2
( )Ax A xσ≤ ; that is, the largest 

singular value quantifies how much the matrix can stretch a vector.  Similarly, if σmin(A) denotes 

the smallest singular value of a full-rank square matrix A, then min2 2
( )Ax A xσ≥ ; so the 

smallest singular value quantifies how much a vector can be shrunk by applying A. 
 
Now consider a rank-r matrix and note that any such matrix has only r non-zero singular values.  
In fact, the rank of a matrix can be defined as the number of non-zero singular values.  One may 
write this using ℓ0-notation as 
 

rank(A) = 
0

( ) { : ( ) 0}
j

A j Aσ σ≡ ≠ , 

 

where σj(A) denotes the jth singular value of A, and 
0

  ⋅  counts the number of non-zeros in its 

argument.  Note that although we use norm notation, this function is not actually a norm (a fun 
exercise to check).  Unfortunately, this also makes solving (1) computationally challenging.  For 
that reason, we consider a relaxation of the program.  Instead of counting the number of non-
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zero singular values to compute the rank of a matrix, let’s instead consider summing them (in 
absolute value), as a proxy to the rank.  This leads to what we call the nuclear norm of a matrix: 
 

*

*
trace( ) ( )j

j

A A A Aσ≡ = . 

 
Thus, the nuclear norm of a matrix is the relaxation of the rank – where the rank counts the 
number of non-zero singular values and the nuclear norm sums them.  Since rank-minimization 
is not computationally tractable, we may now instead solve its semi-definite relaxation: 

 
(2) 

 

*
ˆ argmin

B

M B≡  

 

such that yi = ,
i

A B  for all i. 

 
Fortunately, this relaxation yields a convex program, which can be solved computationally 
efficiently.  Due to recent work in matrix completion and nuclear norm minimization (see, e.g., 
[3], [2]), it is now well known that when m is on the order of nr, nuclear norm minimization 
accurately recovers any rank-r n × n matrix from m linear measurements under mild assumptions 
on the type of measurements.  For example, the measurements may be single-entry observations 
of the matrix, selected uniformly at random.  This means that if the matrix is very low-rank, i.e., 
r n≪ , only a small fraction of the observations need to be observed for one to be able to 
correctly fill in the blanks!  We now turn to a real-world example, considering practical aspects 
of the typical assumptions. 
 
Lyme Data 
 
Lyme disease is the most common vector-borne disease in the United States.  The Centers for 
Disease Control (CDC) estimates that there are 300,000 people in the U.S. diagnosed with Lyme 
disease each year.  A significant proportion of patients with Lyme disease develop chronic, 
debilitating symptoms that often mimic other illnesses such as multiple sclerosis and 
amyotrophic lateral sclerosis (also known as Lou Gehrig’s disease).  Founded over 25 years ago, 
LymeDisease.org (LDo) is a national non-profit dedicated to advocacy, research, and education.  
In November 2015, LDo announced the launch of MyLymeData, a patient-powered research 
project.  MyLymeData has over 5,000 patients enrolled, includes several phases of initial and 
follow-up survey responses, and asks patients questions about diagnosis, treatment, symptoms, 
and quality of life.  Like many large-scale surveys, this data is noisy, incomplete, and has a tree-
like structure that makes it challenging to mathematically analyze it. 
 
Lyme data, like most real-world data, has missing entries that are not random, much less 
uniformly selected at random.  For example, in the Lyme data, entries may be missing because 
the user chose not to answer, the survey structure deemed the question irrelevant, or there were 
corruptions/errors in acquisition.  An example of a portion of the data is shown in Figure 1, 
which displays the sampling pattern, the original data, and the completed data. 
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Figure 1.  Matrix completion on the full (incomplete) Lyme symptom data.  The 
actual sampling pattern from the survey for these questions is shown in (a); 
yellow denotes an observed entry and blue denotes an unobserved one.  The full 
matrix is shown in (b) and the reconstruction is shown in (c). 

 
The astute observer will quickly notice that the sampling pattern displayed in Figure 1(a) looks 
far from randomly uniform.  Indeed, in the majority of real applications, the patterns arise from 
some sort of data structure, rather than randomness.  In fact, not only are these sampling patterns 
non-random, but the pattern itself yields a lot of untapped information.  In both of these 
examples, most of the unobserved entries are likely due to irrelevance or participant disinterest.  
This information is useful!  Motivated by this setting, we consider a nuclear-norm matrix 
completion program with an added regularizer that promotes small values for unobserved entries. 
 

Let M ∈ 1 2n n×
ℝ  be the unknown matrix we would like to recover and Ω be the set of indices of 

the observed entries.  Let ℘Ω : 1 2 1 2n n n n× ×
→ℝ ℝ , where 

 

|℘Ω|ij = 
 ( , )

 0    ( , )

ijM i j

i j

∈Ω


∉Ω
. 

 
Recall the nuclear-norm minimization, 

 
(3) 

 

*
ˆ argmin

A

M A≡  

 
such that ℘Ω(A) = ℘Ω(M). 

 
Motivated by applications in which the unobserved entries tend to have small values, we instead 
solve 

 
(4) 

 

*argmin
A

M A≡ɶ +α ∥���(A)	∥1 

 
such that ℘Ω(A) = ℘Ω(M), 
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where α > 0 and the entrywise L1 norm 
1

M  is defined as ij ijM .  This L1 term, denoted a 

regularizer, aims to penalize matrices that have many large entries in the unobserved locations.  
The minimizer, therefore, will tend to have small entries in those locations. 
 
We again consider the Lyme data discussed above.  We complete this subsampled matrix with 

both (3) and (4) using L1 regularization (for a reasonably selected choice of α) and report 

ˆ/
F F

M M M M− −ɶ , averaged over ten trials in Figure 2.  As expected, when most of the 

unobserved entries are small and the bulk of the observed entries are large, we see the most 
improvement in using the regularizer.  Preliminary theoretical results can be found in [4], which 
are motivated by work in robust principal component analysis [1], but future work is needed to 
clearly quantify the theoretical gains as a function of the sampling rates. 
 

 
Figure 2.  For Mɶ  and M̂  given by (4) and (3), respectively, with L1 
regularization on the recovered values for the unobserved entries, we plot 

ˆ/
F F

M M M M− −ɶ .  We consider 50 patient surveys with 65 responses each, 

chosen randomly from 2126 patient surveys. 
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Matrices 
by Addie Summer | edited by Jennifer Silva 
 
In order to fully understand Prof. Needell’s installments of “The Needell in the Haystack,” you 
need to have a familiarity with matrices.  However, even if you aren’t familiar with matrices, her 
articles are worth reading because one can still learn a lot without knowing the complete details.  
 The reality is that we lack complete details in almost everything we do.  For example, 
when you first learned the formula for the area of a circle, namely πr2, where r is the radius, you 
probably didn’t know how the formula is actually derived.  You may not even have had an idea 
about how the numerical value of π is computed.  Yet, despite that lack of information, you could 
still use the formula and make interesting inferences about circles and related shapes. 
 In this article, I’d like to say a few words about matrices for those of you who haven’t 
worked with them before.  My hope is that you’ll then be more comfortable reading Prof. 
Needell’s articles. 
 
 To start off, what is a matrix?  A matrix is just a rectangular array of numbers. 
 Rectangular arrays of numbers have many uses.  For example, the record of race 
completion times of a group of athletes in multiple races, the prices of various items when sold in 
different stores, and the distances between cities all furnish examples of information that can be 
nicely organized as a matrix.  If you are reading this on a computer monitor, then you are looking 
at a visual representation of a matrix.  In fact, you’re seeing three matrices, which describe the 
intensity of red, green, and blue in each pixel on your monitor. 
 
Matrix Notation 
 
Here’s a matrix with 3 rows and 5 columns: 
 

15 4 7 2 99

10 9 8 0 6

11 15 13 14 15

 
 
− − 
  

. 

 
People often place the entire array inside square brackets as above, but some prefer to use large 
parentheses. 
 It’s convenient to use variables to name matrices.  For instance, we might call the above 
matrix M.  We can then refer to M without having to write down all the numbers inside of it each 
time.  It’s also useful to be able to refer to specific numbers in the array.  For example, we might 
want to refer to the number in row 2 and column 4 of M, which happens to be 0.  Mathematicians 
have agreed that we can simply write M2, 4 to refer to the number in row 2 and column 4 of M.  
By convention, the first number in the subscript tells us which row the number is in and the 
second number tells us which column, with the top row being row 1 and the leftmost column 
being column 1.  It’s also a convention to omit the comma in the subscript when there’s no 
ambiguity about what the two numbers are. 
 We can describe a matrix with r rows and c columns as an r by c (or an r × c) matrix.  
Again, the first number specifies the number of rows, and the second number tells the number of 
columns.  This decision to make the first number correspond to the row is arbitrary and has to be 
memorized.  It’s simply the price we pay for compact notation. 
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Matrix Types and Operations 
 
Through the years, matrices have been applied to hundreds, perhaps even thousands, of different 
applications.  With all of these different uses, vocabulary has been created to refer to specific 
kinds of matrices. 
 For example, a column matrix is a matrix with a single column.  A square matrix is a 
matrix that has the same number of rows as it has columns.  A diagonal matrix is a square 
matrix A for which Aij = 0 if i ≠ j.  A zero-one matrix is a matrix whose entries can be 0 or 1 
only.  A permutation matrix is a zero-one square matrix where each row and each column 
contain precisely one 1.  There are many other types of matrices; if you’re curious to see dozens 
more, check out the list of matrices on Wikipedia. 
 Just as there are many types of matrices, there are also many operations that can be 
performed on matrices.  The various operations arose as matrices were used for different 
purposes.  For example, suppose you oversee a number of convenience stores.  You have a 
matrix X that represents the net profit made on various items sold at the convenience stores under 
your charge in the year 2016.  The rows represent different items sold and the columns represent 
the store locations.  Suppose you have another matrix Y representing the same information for 
the year 2017.  You might be interested to know the net profit on the various items at the 
different store locations over the two-year span of 2016 and 2017.  That would correspond to a 
third matrix whose entries are the sum of the corresponding entries in X and Y.  This operation is 
used so often that it has a name, matrix addition, which is denoted using the plus sign.  Thus,  
X + Y is the matrix whose i, j entry is equal to Xij + Yij. 
 An important application of matrices that gave birth to many types of matrices and 
operations on matrices is solving systems of linear equations.  Here’s a system of 3 linear 
equations in 3 unknowns: 
 

5x + 4y + z = 10 
2x – 3y + 2z = 8 

x + y + z = 3 
 
It has proven extremely useful to organize the coefficients in such equations as a matrix: 
 

5 4 1

2 3 2

1 1 1

 
 

− 
  

. 

 
If you play around with linear equations and use matrices to represent coefficients in this 
manner, you will end up recreating the subject of linear algebra and matrices. Many of the 
matrix operations that Prof. Needell uses have their origins in this application. 
 
 If you are new to matrices and you come upon a matrix-dense section of one of Prof. 
Needell’s articles, don’t let that deter you.  It’s perfectly fine if you don’t understand all the 
details on a first reading; you can worry about those details later.  Just aim to get an overall sense 
of what she is doing.  Or, you can look up the various terms as you encounter them to gain basic 
knowledge of the matrix types or operations she is using.  The significance may not be 
immediately clear, but you can always read more about the operations or play with the concepts 
to develop a working understanding of the material.  And if you’re a Girls’ Angle member, you 
can email us or ask a mentor about matrices at the club! 
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Stacked Circles, Part 1 
by Ken Fan | edited by Jennifer Silva 
 
Jasmine: How’s your graphic design class going? 
 
Emily: It’s fun, but I’m not too happy with how my last assignment came out. 
 
Jasmine: What was it? 
 
Emily: We had to create a design based on circles.  I tried to make a radiating pattern of circles. 
 
Jasmine: Circles and radial lines – intriguing! 
 
Emily: I picked a point and drew radial lines all emanating from it to make a bunch of angles.  
Then I drew a series of circles within each angle, so that each circle was tangent to its circular 
neighbors as well as to the sides of the angle.  Here’s an example of one circle-filled angle. 

 
Emily sketches the drawing shown at left. 
 
Jasmine: Like peas in an angular pod.  That’s neat! 
 
Emily: Thanks, but the result wasn’t as exciting as 
I’d hoped.  Actually, I found the mathematics I had 
to figure out to create the design more interesting 
than the design itself.  For example, the radii of the 
circles form a geometric sequence. 
 

Jasmine: Really? 
 
Emily: Yeah.  Initially, I found that out using a lot of algebra and trigonometry.  But I kept 
wondering about it.  In fact, I was going to ask you, but then I thought of a nifty way to see it. 
 
Jasmine: Please tell! 
 
Emily: Imagine gradually scaling the design by stretching everything outward equally in all 
directions from the apex of the angle.  The angle maps onto itself because the radial lines map 
onto themselves. 
 
Jasmine: I think I see where you’re going.  As you scale, the circles will grow as they slide 
outward, farther and farther away from the apex of the angle.  In fact, the radius of the circle 
determines how far away from the apex it must be in order to be tangent to both sides of the 
angle. 
 
Emily: Right, so when the figure has been dilated so that the smallest circle becomes as large as 
the second smallest circle, the dilation must map the smallest circle right smack on top of the 
second smallest circle.  The second smallest circle, by the same dilation, must map onto the third 
smallest circle.  Put another way, consecutive circles must map to consecutive circles. 
 



 

© Copyright 2018 Girls’ Angle.  All Rights Reserved.                                                                14 

Jasmine: Since all of this happens with the same dilation factor, it means that each successive 
radius will be the previous radius times this one universal dilation factor.  That’s precisely what 
it means to be a geometric sequence! 
 
Emily: Exactly!  A geometric sequence is a sequence of numbers where each successive term is 
obtained from the previous term by multiplying by the same factor, called the common ratio. 
 
Jasmine: Did you figure out how the common ratio depends on the measure of the angle? 
 
Emily: Yes.  I had to compute that common ratio in order to make the design.  If A is the 
measure of the angle, then the common ratio turns out to be 
 

1 sin( / 2)

1 sin( / 2)

A

A

+

−
. 

 
Jasmine’s eyes dart back and forth. 
 
Emily: You want to derive that formula for yourself, don’t you? 
 
Jasmine: You know me too well!  Let’s see.  It 
suffices to look at two touching circles and figure 
out the ratio of their radii.  Since the circles are 
tangent to the sides of the angle, the radii that 
meet the points of tangency meet the sides at right 
angles.  Therefore, 
 

r/OC = r’/OC’ = sin(A/2). 
 
Emily: Right. 
 
Jasmine: Those equations only use the fact that 
the circles are tangent to the sides of the triangle.  I should also need to use the fact that the two 
circles are tangent to each other. 
 
Emily: Correct. 
 
Jasmine: The fact that the two circles are tangent to each other means that the distance between 
their centers is equal to the sum of their radii: CC’ = r + r’.  Combining these facts, we have 
 

r + r’ = CC’ = OC’ – OC = r’/sin(A/2) – r/sin(A/2). 
 
Multiplying throughout by sin(A/2), we have sin(A/2)(r + r’) = r’ – r.  Rearranging so that r’ is 
isolated, we get 
 

r’ = 
1 sin( / 2)

1 sin( / 2)

A

A

+

−
r, 

 
just as you said! 
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Emily: That’s it!  Isn’t it neat that as A tends to 0, the common ratio tends to 1, and as A tends to 
180°, the common ratio tends to infinity?  That means that every geometric sequence can be 
illustrated by the radii of a sequence of such circles. 
 
Jasmine: I’m curious, did you invert this formula to find out how the angle measure depends on 
the common ratio? 
 
Emily: I did.  If you solve for A in terms of the common ratio r’/r, which I called s, you get 
 

A = 2 arcsin(
1

1

s

s

−

+
). 

 
Jasmine: Beautiful!  The expression inside the arcsine must map the interval [1, ∞ ] onto the 
interval [0, 1], since that corresponds to being able to geometrically realize every common ratio. 

 
Emily: And it does.  By the way, the common ratio happens to be 
precisely 3 when the angle is 60°.  This fact made me play around 
with circles inside an equilateral triangle, but I abandoned that and 
returned to the radial design concept. 
 
Jasmine: May I see your design? 
 
Emily: Sure, here it is.  I don’t really like it. 
 

Jasmine: Wow, I do! 
 
Emily: The circles next to each 
other in the outer ring are also 
tangent to each other.  In theory, 
the circles could be continued 
inward toward the center 
indefinitely, but I stopped drawing 
them when they started to get so 
small they began to look like dots. 
 
Jasmine: I can’t stop staring at it. 
 
Emily: Thanks.  Say, Jasmine?  A 
question just occurred to me.  
Using this stacked circle concept, 
is there an elegant way to illustrate 
arithmetic sequences instead of 
geometric sequences? 
 
Jasmine: Hmm, I wonder.  Let’s 
figure that out! 
 

To be continued... 
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By Anna B. 
 

Tackling a problem where rows of Pascal’s triangle, modulo 3, are read as ternary numbers. 
  

Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 
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Tennis Directions 
by Lightning Factorial 
edited by Jennifer Silva 
 
I love tennis and often find myself 
wondering the following: What is the 
ideal direction to run in order to 
intercept an incoming shot? 
 I’ve heard that one should run in 
the direction perpendicular to the path 
of the ball.  This advice sounds 
reasonable because it corresponds to 
sprinting the shortest distance.  
However, when I watch professionals 
chase down balls, they don’t seem to 
heed it. 
 I decided to use mathematics to 
answer the question. 
 
Framing the Problem 
 
 In order to apply mathematics, I must create a mathematical model of the situation.  I’ll 
simplify the tennis ball motion by assuming that the ball travels at a constant velocity.  This 
means that for now, I’m not going to worry about air resistance slowing the ball, nor about spin, 
nor the bounce.  Even though real life is more intricate, this simplified model will still give me 
an approximation to the truth and a better understanding of how to play.   
 In tennis, the ball could be coming in from a variety of different angles.  However, I’m 
only interested in figuring out how to get to the ball as quickly as 
possible.  So for this analysis, I’m not concerned with the court 
geometry.  In my mind’s eye, I let the lines that define the playing area 
and the net fade away, leaving only the ball and me.     In my picture, I 
even replace myself with a geometric point and make the simplifying 
assumption that this point can instantaneously move at a speed s.  For 
ease of computation, I place my initial position at the origin of an xy-
coordinate plane and rotate the plane as necessary; thus, I may also 
assume that the ball starts at some point (h, d) and travels along a line 
perpendicular to the y-axis at a speed of b (b for “ball”) in the direction 
of decreasing y-coordinates.  It therefore makes sense to assume that it 
begins in the upper half plane, i.e., d > 0.  I’ll also assume that there is 
a symmetry between forehand and backhand, allowing me to assume h 
> 0.  [See the figure at right.]  By the way, I’ve deliberately avoided 
mention of units of measurement.  In the end, we will be able to use whatever units of 
measurement we wish, provided that we use them consistently within the same formula. 
 In order to answer which direction I should run to intercept the ball, I have to be precise 
about what I am trying to achieve.  Do I want to reach the ball as quickly as possible?  Or do I 
want to give myself the most time to set up for a shot?  As an amateur tennis player, I certainly 
can use all the time I can get to set up for my shot and make a good swing.  With this latter goal 
in mind, I’ll figure out which direction I should run in order to maximize my set-up time.  
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 

America’s Greatest Math Game: Who Wants to Be a Mathematician. 
 

(advertisement)  
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Member’s Thoughts 
 

The Greatest Number From N Ones 
by Allie 

 
 We find the greatest number you can make with N ones, addition, multiplication, and 
parentheses.  We call this maximal value L(N).  We assume N is a positive integer. 
 
Theorem.  Let N be a positive integer and let L(N) be the largest number expressible using N 
ones, addition, multiplication, and parentheses.  Then L(1) = 1 and 
 

/3

/3 12

/3

           3 ,  if 0 (mod 3),

( )    2 3 ,  if 1 (mod 3),

      2 3 ,  if 2 (mod 3),

N

N

N

N

L N N

N

−  

  

 =


= =


⋅ =

 

 
if N > 1. 
 
 We prove this by induction, splitting the proof of the inductive step into cases depending 
on the remainder N leaves upon division by 3.  We will consider how the last binary operation 
splits the expression in two with one part involving a ones and the other involving b ones, where 
N = a + b.  By the induction hypothesis, we will know what L(a) and L(b) are.  We use L(a) and 
L(b) to determine L(N). 
 
 We shall make frequent use of the following lemma: 
 
Lemma. Let m and n be positive integers.  If m and n are both greater than 1, then mn ≥ m + n, 
with equality if and only if m = n = 2.  Otherwise, mn < m + n. 
 
Proof.  First, suppose m > 1 and n > 1.  Then 1/m ≤ 1/2 with equality if and only if m = 2.  
Similarly, 1/n ≤ 1/2 with equality if and only if n = 2.  Therefore, 1/n + 1/m ≤ 1, with equality if 
and only if m = n = 2.  Multiplying both sides of this inequality by mn, we find m + n ≤ mn, with 
equality if and only if m = n = 2. 
 Now suppose n = 1.  Then mn = m and m + n = m + 1.  Since m < m + 1, we have 
mn < m + n.  A similar argument shows that mn < m + n if m = 1. □ 
 
 Now, we establish the base cases.  We will consider the cases where N = 1 and N = 2 as 
base cases. 
 

Last semester, Allie wondered what is the largest number one can express using N ones, 
addition, multiplication, and parentheses.  After some experimentation, she formulated a 
conjecture.  Here, she proves her conjecture.  Her proof is an excellent example of a 
relatively advanced inductive proof.  Much of this work was done under the guidance of 
Girls’ Angle mentor Josephine Yu.  - Editor 
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Base case 1.  Suppose N = 1.  The only expression that can be formed with a single 1 is 1.  
Therefore L(1) = 1. 
 
Base case 2.  Suppose N = 2.  Essentially the only expressions we can form with 2 ones, 
addition, multiplication, and parentheses, are 1 + 1 and 1 × 1.  Of these, the larger is 2, hence 
L(2) = 2.  This is consistent with our expression in the statement of the theorem when N = 2, 

since 
2/3

2 3  ⋅  = 2. 
 
 Next, we prove the inductive step by splitting it into cases depending on whether N = 0, 
1, or 2 modulo 3. 
 
Inductive case 1.  Suppose N = 0 (mod 3) and N > 1. 
 

Our expression must have the form (A) + (B) or (A)(B), where A is an expression that uses 
only addition, multiplication, parentheses, and a ones, and B is an expression that uses only 
addition, multiplication, parentheses, and b ones, where a and b are both positive integers 
satisfying a + b = N.  Note that both a and b must be smaller than N. 

Without loss of generality, the possible cases for a and b are: 
 
Case 1a.  We have a = b = 0 (mod 3). 
 
Case 1b.  We have a = 1 (mod 3) and b = 2 (mod 3) and a > 1. 
 
Case 1c.  We have a = 1 and b = 2 (mod 3). 

 
We do not need to consider the cases where a = 2 (mod 3) and b = 1 (mod 3) because both 
addition and multiplication are commutative. 
 We will first consider whether (A) + (B) or (A)(B) produces the largest possible value.  In 
either case, to maximize the value of the expression, we need to pick A and B to evaluate to their 
largest possible values, which are, by the induction hypothesis, L(a) and L(b), respectively. 
 
Case 1a and 1b.  Since a > 1 and b > 1, we know that L(a) > 1 and L(b) > 1.  Hence 
 

L(a)L(b) ≥ L(a) + L(b). 
 
Case 1c.  In this case, a = 1, so L(a) = 1.  Then 
 

L(a)L(b) = L(b) < 1 + L(b) = L(a) + L(b). 
 
 Using the formulas for L(a) and L(b) by the induction hypothesis, we find the largest 
candidates in each case to be: 
 
 Case 1a.  The largest value of L(a)L(b) = 3a/33b/3 = 3N/3. 
 

 Case 1b.  The largest value of L(a)L(b) = 
/3 1 /32 3 ( 1)/3 1 ( 2)/3 3 ( 6)/32 3 2 3 2 3 2 3

a b a b N−    − − + − −   ⋅ ⋅ = = . 
 

 Case 1c.  The largest value of L(a) + L(b) = 1 + 
/3

2 3
b  ⋅  = 1 + 2·3(N – 3)/3. 

 



 

© Copyright 2018 Girls’ Angle.  All Rights Reserved.                                                                24 

Comparing these values, we see that case 1a yields the largest possible value.  (In detail, we have 
3N/3 = 9·3(N – 6)/3 > 233(N – 6)/3 and 3N/3 = 3·3(N – 3)/3 = 3(N – 3)/3 + 2·3(N – 3)/3 ≥ 1 + 2·3(N – 3)/3.  For the 
remaining cases, we omit these details.)  We conclude that if N = 0 (mod 3), then L(N) = 3N/3. 
 
Inductive case 2.  Suppose N = 1 (mod 3) and N > 1. 
 

As in case 1, our expression must have the form (A) + (B) or (A)(B), where A is an 
expression that uses only addition, multiplication, parentheses, and a ones, and B is an 
expression that uses only addition, multiplication, parentheses, and b ones, where a and b are 
both positive integers satisfying a + b = N.  Note that both a and b must be smaller than N. 

Without loss of generality, the possible cases for a and b are: 
 
Case 2a.  We have a = 0 (mod 3) and b = 1 (mod 3) and b > 1. 
 
Case 2b.  We have a = b = 2 (mod 3). 
 
Case 2c.  We have a = 0 (mod 3) and b = 1. 

 
We do not need to consider the 
cases where a = 1 (mod 3) and 
b = 0 (mod 3) because both 
addition and multiplication are 
commutative. 
 We will first consider 
whether (A) + (B) or (A)(B) 
produces the largest possible 
value.  In either case, to maximize 
the value of the expression, we 
need to pick A and B to evaluate to 
their largest possible values, which 
are, by the induction hypothesis, 
L(a) and L(b), respectively. 
 
Case 2a and 2b.  Since a > 1 and b > 1, we know that L(a) > 1 and L(b) > 1.  Hence 
 

L(a)L(b) ≥ L(a) + L(b). 
 
Case 2c.  In this case, b = 1, so L(b) = 1.  Then 
 

L(a)L(b) = L(a) < L(a) + 1 = L(a) + L(b). 
 
 Using the formulas for L(a) and L(b) by the induction hypothesis, we find the largest 
candidates in each case to be: 
 

 Case 2a.  The largest value of L(a)L(b) = 
/3 1/3 2 2 /3 ( 1)/3 1 2 ( 4)/33 2 3 2 3 2 3

ba a b N−  + − − − ⋅ = = . 
 

 Case 2b.  The largest value of L(a)L(b) = 
/3 /3 2 ( 2)/3 ( 2)/3 2 ( 4)/32 3 2 3 2 3 2 3

a b a b N    − + − −   ⋅ ⋅ ⋅ = = . 
 
 Case 2c.  The largest value of L(a) + L(b) = 3a/3 + 1 = 3(N – 1)/3 + 1 = 1 + 3·3(N – 4)/3. 

 
 

An excerpt from one of Allie’s drafts. 
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Case 2a and 2b yield the same value and both are greater than or equal to the value in case 2c.  

We conclude that if N = 1 (mod 3), then L(N) = 223(N – 4)/3 = 
/3 122 3

N −   . 
 
Inductive case 3.  Suppose N = 2 (mod 3) and N > 2. 
 

As in cases 1 and 2, our expression must have the form (A) + (B) or (A)(B), where A is an 
expression that uses only addition, multiplication, parentheses, and a ones, and B is an 
expression that uses only addition, multiplication, parentheses, and b ones, where a and b are 
both positive integers satisfying a + b = N.  Note that both a and b must be smaller than N. 

Without loss of generality, the possible cases for a and b are: 
 
Case 3a.  We have a = 0 (mod 3) and b = 2 (mod 3). 
 
Case 3b.  We have a = b = 1 (mod 3) and both a > 1 and b > 1. 
 
Case 3c.  We have a = 1 and b = 1 (mod 3) with b > 1. 

 
We do not need to consider the cases where a = 2 (mod 3) and b = 0 (mod 3) or where b = 1 
because both addition and multiplication are commutative.  Note that the case N = 2 was covered 
as a base case. 
 We will first consider whether (A) + (B) or (A)(B) produces the largest possible value.  In 
either case, to maximize the value of the expression, we need to pick A and B to evaluate to their 
largest possible values, which are, by the induction hypothesis, L(a) and L(b), respectively. 
 
Case 3a and 3b.  Since a > 1 and b > 1, we know that L(a) > 1 and L(b) > 1.  Hence 
 

L(a)L(b) ≥ L(a) + L(b). 
 
Case 3c.  In this case, a = 1, so L(a) = 1.  Then 
 

L(a)L(b) = L(b) < 1 + L(b) = L(a) + L(b). 
 
 Using the formulas for L(a) and L(b) by the induction hypothesis, we find the largest 
candidates in each case to be: 
 

 Case 3a.  The largest value of L(a)L(b) = 
/3/3 /3 ( 2)/3 ( 2)/33 2 3 2 3 2 3

ba a b N  + − − ⋅ ⋅ = ⋅ = ⋅ . 
 

 Case 3b.  The largest value of L(a)L(b) = 
/3 1 /3 12 2 4 ( 4)/3 ( 4)/3 4 ( 8)/32 3 2 3 2 3 2 3

a b a b N− −    − + − −   ⋅ = = . 
 

 Case 3c.  The largest value of L(a) + L(b) = 1 + 
/3 122 3

b −    = 1 + 223(b – 4)/3 = 1 + 223(N – 5)/3. 
 
Of these 3 cases, case 3a is the biggest.  We conclude that if N = 2 (mod 3), then 
 

L(N) = 2·3(N – 2)/3 = 
/3

2 3
N  ⋅ . 

 
This concludes the proof of the induction hypothesis and the theorem follows. □ 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 22 - Meet 4 
March 1, 2018 

Mentors: 
 
 
 
 

Visitor: 

Rachel Burns, Sarah Coleman, Anna Ellison, 
Alexandra Fehnel, Molly Humphreys, Elise McCormack, 
Suzanne O’Meara, Samantha Russman, Christine Soh, 
Shohini Stout, Elizabeth Tso, Jane Wang, Josephine Yu 
 
Melody Chan, Brown University 

 “Think Globally, Act Locally”  That’s the motto of Support Network visitor Melody 
Chan, an assistant professor of mathematics at Brown University, who treated us to a wonderful 
presentation on distributed computing. 
 In distributed computing, one builds networks that consist of many “simple” sensors, 
which are computing devices that have limited capability, but together, can accomplish nontrivial 
tasks.  There can be millions of sensors in a single such network. 
 To illustrate, Melody challenged us to create a series of networks that accomplished tasks 
of increasing difficulty.  The first task was to design a network with a single sensor with a 
memory capacity of 1 bit.  The sensor has a binary input that it could sample, and based on the 
input, change its memory.  A stream of bits is sent to the sensor.  The task for this network is to 
answer the question, “Was there a 1 in the input stream?” 
 A protocol for a distributed system is a set of rules dictating the initial state (i.e. what its 
memory will contain at the beginning) and how the sensors will change state depending on the 
input and current state.  For example, the following protocol solves the problem in the previous 
paragraph: 
 

Start in 

0 state 

Input State New State 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 
We interpret the state “1” as giving a “yes” answer and “0” as giving a “no” answer. 

For the next challenge, we had a sensor with a binary input, but it could be in any one of 
three states: 0, 1, or 2.  What protocol will answer the question: Were there two 1’s in the input 
stream? 

After solving that, Melody asked us to design a protocol for a 2-state sensor that 
answered the question: Was the number of 1’s in the input stream even? 

Melody concluded by performing a card trick.  She explained that to perform it, she 
played the role of a sensor with a specific protocol and challenged us to figure out that protocol. 

 

Session 22 - Meet 5 
March 8, 2018 

Mentors: Karia Dibert, Anna Ellison, Amber Guo, 
Suzanne O’Meara, Kate Pearce, Christine Soh, 
Shohini Stout, Elizabeth Tso, Jane Wang, Josephine Yu 
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 A group of members engaged in a long discussion about the meaning of the decimal 

number 0.9 .  Is it or is it not equal to 1?  What are sensible ways of defining what 0.9  is?  Can a 
system of numbers be created that can be represented by sequences of decimal digits in which 

0.9  is not equal to 1?  What aspects of such a discussion are actually about numbers and what 
aspects are about representations of numbers?  These are good questions to think about! 
 

Session 22 - Meet 6 
March 15, 2018 

Mentors: 
 

Ivana Alardin, Rachel Burns, Sarah Coleman, 
Danielle Fang, Jacqueline Garrahan, Amber Guo, 
Elise McCormack, Kate Pearce, Samantha Russman, 
Christine Soh, Shohini Stout, Josephine Yu 

 
 Some members worked on solving problems pertaining to paper folding, which is a rich 
source of mathematical material.  Other members worked on solving problems involving 
jumping frogs or checker-like moves, another rich source of problems.  For example, there is the 
following problem of John Horton Conway: Checkers are placed on the lattice points of a 
coordinate plane on or below the horizontal axis.  These checkers can only move if they can 
jump over an adjacent checker into an unoccupied lattice point, at which point the checker that 
has been leapt over is removed.  However, unlike in the game checkers, these checkers can only 
move horizontally and vertically.  The question is: What is the minimum number of checkers 
needed if the goal is to get a checker with a vertical coordinate of n, where n is a given positive 
integer, and how should they be initially positioned? 
 For n = 1, two checkers are needed.  For example, you could place them at the locations 
(0, 0) and (0, -1).  With one move, the checker at (0, -1) leaps over the checker at (0, 0) to (0, 1). 
 For n = 2, it can be done with four checkers placed at (2, 0), (1, 0), (0, 0), and (0, -1).  
The checker at (0, -1) leaps the checker at (0, 0) landing in (0, 1) and freeing up (0, 0).  Then the 
checker at (2, 0) leaps the checker at (1, 0) landing in (0, 0) and freeing (1, 0).  Finally, the 
checker now in (0, 0) leaps the checker at (0, 1) landing in (0, 2), achieving the goal. 
 What is the answer for any positive integer n? 
 This problem is also described in Ross Honsberger’s Mathematical Gems II. 

 

Session 22 - Meet 7 
March 22, 2018 

Mentors: 
 

 

Rachel Burns, Sarah Coleman, Danielle Fang, 
Alexandra Fehnel, Elise McCormack, Kate Pearce, 
Jane Wang, Josephine Yu 

 Some members found beautiful formulas for the lengths of the 
altitudes of a triangle in terms of the side lengths of the triangle.  A 
few meets prior, one of these members, Barry Allen, had solved this 
problem for a specific triangle.  So the task was essentially to redo that 
computation using variables in order to obtain a general formula.  We 
then discussed the advantages of having the general formula, such as 
being able to see how the altitude lengths depend on the lengths of 
each side, seeing the symmetries of the problem reflected in the formulas, and being able to 
apply dimensional analysis. 
 

Session 22 - Meet 8 
April 5, 2018 

Mentors: Danielle Fang, Alexandra Fehnel, Amber Guo, 
Kate Pearce, Samantha Russman, Christine Soh, 
Jane Wang, Josephine Yu, Annie Yun 

“...so it can’t be 

actual magic... it 

must be math!” – 

a member at Meet 7 
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 We opened this meet by playing a game due to Alain Ledoux.  Everybody was asked to 
write down an integer between 0 and 100, inclusive, which represented their best guess as to 
what two-thirds of the average of all turned in numbers would be.  We collected the numbers, 
then at the end of the meet, revealed the answer, declaring those who got the answer, rounded 
down to the nearest integer, as the “winners.”  What number would you have submitted? 
 In this experiment, zero satisfies the condition that if everybody submitted it, everybody 
would win.  For any other valid number, one must realize that if everyone else did the same, then 
everybody would lose, because the average would be this one number, and two-thirds of that 
would be less. 
 If you’re interested in participating in such an experiment, there is a large scale ongoing 
one being conducted by Leonhardt and Quealy at the New York Times.  To find it, search on the 
internet for “new york times leonhardt quealy two-thirds”. 
 

Session 22 - Meet 9 
April 12, 2018 

Mentors: 
 
 
 

Visitor: 
 

Rachel Burns, Jacqueline Garrahan, Amber Guo, 
Elise McCormack, Kate Pearce, Samantha Russman, 
Christine Soh, Jane Wang, Josephine Yu 
 
Anna Frebel, Department of Astronomy, MIT 

Today, we were fortunate to enjoy not only Prof. Frebel’s performance, but also a visit 
from Beth Malmskog, professor of mathematics from Colorado College and the author of Quilt-

doku! which appeared in Volume 10, Numbers 2 and 3 of the Girls’ Angle Bulletin. 
Prof. Frebel gave us a special performance of her play “Pursuit of Discovery: Lise 

Meitner & Nuclear Fission.”  Anna drew us all into the difficult circumstances of Meitner’s life 
surrounding her discovery that the uranium nucleus spontaneously breaks apart.  Meitner had just 
fled Berlin for Sweden to escape the holocaust where she found herself bereft of her colleagues, 
laboratory, money, personal items, and home, carrying with her only what she could pack into a 
suitcase in a couple of hours.  She was in the midst of experiments designed to create new, heavy 
elements, like uranium (which has atomic number 92).  But surprisingly, the experiments seemed 
to only produce barium (atomic number 56).  Anna conveyed the mystery and thought process 
that led Meitner from the experimental data to the then breakthrough idea that heavier elements 
are so unstable that they actually spontaneously break apart into lighter elements. 

After her performance, Prof. Frebel explained how the discovery of nuclear fission 
impacts her research into the chemical composition of stars.  She gave an overview of element 
formation in stars.  Briefly, fusion creates elements up to iron (atomic number 26).  When 
neutron stars collide, much heavier elements are produced, and the heaviest of these decay into 
lighter elements producing all the elements in the periodic table up to Uranium.  For more 
details, read her book, Searching for the Oldest Stars. 

Prof. Frebel also pointed out that despite being nominated for a Nobel prize 48 times over 
a roughly 40 year span, Meitner was never given the distinction, although the element 
meitnerium (atomic number 109) is named after her. 
 

Session 22 - Meet 10 
April 26, 2018 

Mentors: 
 

 

Rachel Burns, Sarah Coleman, Anna Ellison, 
Alexandra Fehnel, Amber Guo, Suzanne O’Meara, 
Kate Pearce, Jane Wang, Josephine Yu 

 Allie finished her proof of her conjecture on the largest number that can be expressed 
using N ones, addition, multiplication, and parentheses.  For her proof, see page 22. 
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Calendar 

 
Session 22: (all dates in 2018) 
 

February 1 Start of the twenty-second session! 
 8  
 15  
 22 No meet  
March 1 Melody Chan, Brown University 
 8  
 15  
 22  
 29 No meet 
April 5  
 12 Anna Frebel, MIT 
 19 No meet 
 26  
May 3  
 10  

 
Session 23: (all dates in 2018) 
 

September 13 Start of the twenty-third session! 
 20  
 27  
October 4  
 11  
 18  
 25  
November 1  
 8  
 15  
 22 Thanksgiving - No meet 
 29  
December 6  

 
Girls’ Angle has been hosting Math Collaborations at schools and libraries.  Math Collaborations 
are fun math events that can be adapted to a variety of group sizes and skill levels.  For more 
information and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll?  You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay?  The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located?  Girls’ Angle holds its meets within 5 minutes of the Kendall Square T 
stop in Cambridge, Massachusetts.  For security reasons, only members and their parents/guardian will be 
given the exact location of the club. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, lecturer, Harvard University 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Instructional Designer, Stanford University 
Lauren McGough, graduate student in physics, Princeton University 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, professor of aeronautics and astronautics, MIT 
Lauren Williams, professor of mathematics, UC Berkeley 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


