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An Interview with 
Judy Walker 
 
Judy Walker is Aaron Douglas Professor of 
Mathematics and the Chair of the 
Department of Mathematics at the 
University of Nebraska–Lincoln.  Her main 
area of interest is Algebraic Coding Theory. 
 
Ken: If it’s okay with you, I’d like to start 
by jumping right into mathematics.  What is 
coding theory?  Would you please tell us a 
problem that illustrates some of the essential 
features of coding theory? 
 
Judy: Whenever information is transmitted 
or stored, errors are bound to occur.  Think, 
for example, about music being stored on an 
iPod, or satellite pictures being sent to earth 
from outer space.  In many situations, the 
information is stored as a string of 0’s and 
1’s, and the errors would be that some of the 
0’s come out as 1’s and conversely.  The 
goal of coding theory is to find efficient 
ways of adding redundancy to data so that 
these errors can be detected and even 
corrected.  For example, you could add an 
“overall check bit” to the information, so 
that every string you transmit contains an 
even number of 1’s.  If an error occurred, 
you’d know, because you’d see an odd 
number of 1’s.  This scheme is efficient – 
we’re only adding one additional bit no 
matter how long our initial information 
string is – but you don’t know where the 
error occurred, and so you cannot fix it.  At 
the other extreme, you could repeat your 
entire information string twice, so that you 
transmit it a total of three times.  This time 
you can fix errors by doing a “majority 
vote”, but the system is very inefficient 
since you’re transmitting 3 bits for every 1 
bit of information.  Coding theory got its 
mathematical start with a 1948 landmark 
paper by Claude Shannon, in which he 
proved that reliable transmission is possible.  
More precisely, Shannon proved that given 

any channel (think: a system for 
transmission or storage of information), 
there are systems of adding redundancy that 
are efficient (up to a bound determined by 
the channel) and that correct lots of errors.  
His proof wasn’t constructive, though, so the 
big problem in channel coding is to actually 
find good codes, i.e., codes that are efficient, 
correct lots of errors, and have efficient 
decoding algorithms; this is often referred to 
as Shannon’s Challenge.  Other related and 
timely problems include network coding 
(ensuring efficient and reliable transmission 
of information through a network, such as 
the internet), coding for flash memory (USB 
drives, for example), neural coding (how 
does the brain encode a stimulus?), and 
others. 

 
Ken: What do you find fascinating about 
coding theory? 
 
Judy: My favorite thing about coding theory 
is that it centers on problems with 
immediate applications – problems that have 
real-world implications – but often very 
advanced mathematical techniques are 
needed to solve these problems.  What 
hooked me into the subject originally was 
the idea of algebraic geometry codes.  One 
way to approach Shannon’s challenge is to 
look for collections of strings of 0’s and 1’s 
of a fixed length that don’t involve a lot of 
redundancy and are pairwise different in a 
lot of coordinates.  If we let n be the length 
of the strings, k the number of coordinates 
that correspond to information (rather than 
redundancy), and d the minimum number of 
coordinates in which any two distinct strings 
must differ, then there is a bound called the 
Gilbert-Varshamov bound that gives a lower 
bound on how large the best possible k/n  

Stay strong.  Keep doing 

math.  And be sure to treat 

mathematics as a team sport. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on this expository article on 
induction.   We hope that you consider the value of such 
content and decide that the efforts required to produce such 
content are worthy of your financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

  Girls’ Angle: A Math Club for Girls  
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In Search of Nice Triangles, Part 1 
by Ken Fan | edited by Jennifer Silva 
 
Emily and Jasmine are walking home from school. 
 
Emily: What’s up?  You haven’t said a word since school let out. 
 
Jasmine: Oh, I’m just thinking. 
 
Emily: About what? 
 
Jasmine: Triangles. 
 
Emily: Triangles? 
 
Jasmine: I walked by a geometry class this morning.  The teacher had a strange triangle on the 
board.  It had side lengths of 10, 17, and 20 … 
 
Emily: What’s strange about that? 
 
Jasmine: … and angle measurements of 30, 60, and 90 degrees. 
 
Emily: Oh!  Does such a triangle actually exist? 
 
Jasmine: Nope!  A 30-60-90 right triangle with hypotenuse of length 20 should have legs of 
length 20 sin 30° and 20 cos 30°.  It’s true that sin 30° is 1/2, so 20 sin 30° is 10.  But cos 30° is 

3 / 2 , so 20 cos 30° is 10 3 , and that can’t be equal to 17 since 3  is irrational. 

 

Emily: Yes, I agree.  If 20 cos 30° = 17, then 3  would be 17/10, which is incorrect.  Did you 

tell the teacher? 
 
Jasmine: I went back, but the class was out and the board had been erased.  But I began to 
wonder about which triangles do have integer side lengths and nice angle measures. 
 
Emily: What do you consider to be a “nice” angle measure? 
 
Jasmine: That’s what I’ve been thinking about.  I was thinking an integer number of degrees, but 
that doesn’t feel right to me because I don’t think the degree is a particularly special angle 
measurement. 
 
Emily: I agree.  Degrees are like the choice of 10 as the base of our number system.  Arbitrary. 
 
Jasmine: Exactly. 
 
Emily: Some people use grads, which are 1/400 of a full circle, and mathematicians often use 
radians. 
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Jasmine: I did think of declaring angles with integer radian measure to be nice, but then the 90° 
angle wouldn’t be considered nice since 90° is π/2 radians, and I know π is irrational.  It doesn’t 
seem reasonable to me to have a definition of “nice angle” that excludes the right angle! 
 
Emily: Hmm.  I think the right angle and other angles I like, such as the 30°, 45°, and 60° angles, 
feel nice because a whole number of each will fill out a full circle.  They’re the angles you get 
when you cut a pie into equal slices.  Since there are 2π radians in a full circle, perhaps a good 
definition for nice angle is one whose radian measure is 2π/n for some whole number n. 
 
Jasmine: I think we should also include angles that are built up from nice angles: an angle that is 
formed by putting two nice angles together would also be nice. 
 
Emily: Okay.  In that case, a nice angle is an angle whose measure, in radians, is a rational 
multiple of π. 
 
Jasmine: Nice!  Let’s go with that definition. 
 
Emily: I feel like drawing a figure.  Let’s sit over there. 
 
Emily and Jasmine find a park bench and Emily draws the figure at right. 
 
Emily: We seek triangles whose side lengths are whole numbers and whose angles are nice, in 
the sense that they have angle measures that are rational multiples of π in radians. 
 
Jasmine: Because of side-side-side congruence, as soon as side lengths are specified, the triangle 
is determined up to congruence.  Maybe we can express the angle measures in terms of the side 
lengths and see what happens if we insist that those expressions are rational multiples of π. 
 
Emily: Good idea.  This feels like a job for the law of cosines: c2 = a2 + b2 – 2ab cos C. 
 

Jasmine: That means that cosC =
a

2 + b
2 − c

2

2ab
.  Neat!  The cosine of C is a rational expression of 

the side lengths.  If all of the sides of a triangle are whole numbers, then the cosines of its angles 
must be rational. 
 
Emily: But we’re interested in knowing if the angle itself has a measure that is a rational multiple 
of π radians, not whether its cosine is rational. 
 
Jasmine: You’re right.  Well, cos 90° is 0, so that’s an example of a nice angle that has a rational 
cosine.  And 60° works, too, because its cosine is 1/2. 
 

Emily: The cosine of 45° is 2 / 2 , which is irrational, so there aren’t any triangles with whole 
number side lengths and an angle measuring 45°. 
 

Jasmine: And the cosine of 30° is 3 / 2 , which is also irrational, so no such triangle can have a 

30° angle, either. 
 
Emily: In general, we must answer this question: for what rational numbers r is cos rπ rational? 
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 By Anna B. 
 

Anna plays with Prof. Walker’s finite field questions from her interview (see page 5). 
  

Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 
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The Derivative, Part 5 
by Ken Fan | edited by Jennifer Silva 
 
In this installment, we find the derivative of the exponential 
function. 
 
The exponential function 
 
Let f(x) = ax, where a is a positive real number.  I’ll assume that you are familiar with the 
definition of this function and are comfortable with its basic properties, such as f(0) = 1 and 
f(x + y) = f(x)f(y) for all real numbers x and y. 
 
Fix a real number t. 
 
We know that f(x + t) = f(x)f(t) = atf(x).  I want to highlight this fact, so here it is again: 
 
 
 
 
 
 
We can interpret this identity as saying that the graph of the exponential near x = t looks exactly 
like a vertically-scaled version of the graph of the exponential near x = 0.  For instance, suppose 
you want to know the shape of the graph of the exponential function over values of x between 
t – 1 and t + 1.  What you can do is take the graph of the exponential function between x = -1 and 
x = 1 and stretch it vertically by a factor of at. 
 
This observation tells us a lot about the derivative of the exponential function.  Vertically 
stretching a graph changes its derivative by the same factor (that is, the derivative of cg(x) is 
cgʹ (x)).  So we must have fʹ(t) = atfʹ(0). 
 
In other words, as soon as we know the derivative of the exponential function ax at x = 0, we 
know the derivative of the function everywhere! 
 
(Note that the equation fʹ(t) = atfʹ(0) can also be deduced blindly by differentiating both sides of 
the highlighted fact above with respect to x.) 
 
The derivative of ax at x = 0 
 
What is fʹ(0)? 
 
The figure on the next page shows graphs of the exponential function ax for various values of a 
and for values of x between -1 and 1. 
 
When a = 1, the function ax is simply the constant function 1 whose derivative is 0.  Evidently, 
as a increases, the slope of the tangent line at (0, 1) increases.  Although we haven’t proven it, as 
a tends to infinity, the slope of the tangent line at (0, 1) also tends to infinity. 
 

Calculus is a subject well covered 
in textbooks.  Instead of giving 
another textbook treatment of the 
subject, we aim to provide an 
illuminating, though non-rigorous, 

explanation. 

f(x + t) = atf(x). 
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Apparently, there’s a special value of a where the 
derivative of ax at x = 0 is precisely 1.  This special value 
of a is denoted e and is called Euler’s number. 
 
Thus, by definition, if f(x) = ex, then fʹ(x) = exf ʹ(0) = ex.  
The exponential function ex is equal to its own derivative. 
 
The natural logarithm 
 
Because ex is strictly increasing, it has an inverse 
function.  We denote this inverse function by ln x.  The 
function ln is called the natural logarithm. 
 
By definition, eln x = x and ln(ex) = x. 
 
Let f(x) = ax.  Then f(x) = ax = ex ln a.  Using the chain rule, 
we compute that fʹ(x) = (ln a)ex ln a = (ln a)ax.  So now we 
know that the derivative of ax at x = 0 is ln a. 
 
The derivative of ln x 
 
In the last installment of this series, we saw how to express the derivative of an inverse function 
in terms of the derivative of the function by using the chain rule.  Let’s apply this technique to 
find the derivative of the natural logarithm. 
 
We know that eln x = x.  If we differentiate both sides of this equation with respect to x, we find 
 

lnʹ(x) eln x = 1. 
 
Rearranging terms, we see that the derivative of ln x, with respect to x, is 1/x. 
 
Properties of ln x 
 
The basic properties of the natural logarithm can be derived from its definition as the inverse 
function to ex.  For example, since e0 = 1, we must have ln 1 = 0.  Also, the property 
 
(*) ln(xy) = ln x + ln y 
 
is equivalent to the exponential property ex + y = exey. 
 
Just for fun, let’s find (*) with differentiation.  Let’s differentiate (ab)x = axbx in two different 
ways, directly and using the product rule.  We get ln(ab)(ab)x = ln(a)axbx + ln(b)axbx.  Since 
(ab)x = axbx is never equal to 0 we can divide by it and find that ln(ab) = ln a + ln b. 
 
What is the numerical value of e? 
 
We’ll leave you with this challenge: without looking it up, can you think of a good way to find a 
numerical approximation to the value of e?
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In the last issue, we presented the 2015 Summer Fun problem sets. 
 
In this issue, we give solutions to many of the problems.  Our solutions may be terse and, in 
some cases, are more of a hint than a solution.  We prefer not to give detailed solutions before 
we know that most of the members have spent time thinking about the problems.  The reason is 
that doing mathematics is very important if you want to learn mathematics well.  If you haven’t 
tried to solve these problems yourself, you won’t gain as much when you read these solutions. 
 
If you haven’t thought about the problems, we urge you to do so before reading the solutions.  
Even if you cannot solve a problem, you will benefit from trying.  When you work on the 
problem, you will force yourself to think about the ideas associated with the problem.  You will 
gain some familiarity with the related concepts and this will make it easier to read other people’s 
solutions. 
 

With mathematics, don’t be passive!  Get active! 
 
Move that pencil!  Move your mind!  You might discover something new. 
 
Also, the solutions presented are not definitive.  Try to improve them or find different solutions. 
 
Solutions that are especially terse will be indicated in red.  
Please do not get frustrated if you read a solution and have 
difficulty understanding it.  If you run into difficulties, we are 
here to help!  Just ask! 
 
Please refer to the previous issue for the problems.  

Members and Subscribers: 

Don’t forget that you are 

more than welcome to email 

us with your questions and 

solutions! 
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Telescoping Series 
by Girls’ Angle Staff 
 
1.  If we substitute bk – bk + 1 for ak, we find 
 

sn = a1 + a2 + a3 + . . . + an 
 = (b1 – b2) + (b2 – b3) + (b3 – b4) + . . . + (bn – bn + 1) 
 = b1 – b2 + b2 – b3 + b3 – b4 + b4 – . . . – bn + bn – bn + 1 
 = b1 – bn + 1. 

 
Problems 2-5 are about the series 
 

1 1 1 1

1 1 2 1 2 3 1 2 3 4
+ + + +

+ + + + + +
… , 

 

i.e. the series associated to the sequence defined by ak = 
1

1 2 3 k+ + + +…
 = 

2

( 1)k k +
. 

 

2.  Let bk = 2/k.  We compute bk – bk + 1 = 
2 2

1k k
−

+
 = 

2( 1) 2

( 1)

k k

k k

+ −

+
 = 

2

( 1)k k +
 = ak, as desired. 

 
3.  By problem 2, ak = bk – bk + 1, so the series telescopes. 
 

4.  Using problem 1, the nth partial sum is b1 – bn + 1 = 2 – 
2

1n +
= 

2

1

n

n +
. 

 

5.  As n tends to infinity, b1 – bn + 1 = 
2

1

n

n +
 tends to 2, hence the sum of the infinite series is 2. 

 
For Problems 6-14, keep in mind our convention that ak = bk – bk + 1, where the ak are the terms of 
the series.  It is also common for people to define a sequence ck such that ak = ck + 1 – ck.  If you 
did that, your “bk” sequence will be the negative of the ones that appear here.  Also, because bk is 
defined by a difference equation, answers can also differ by a constant. 
 

6.  bk = -(-1)k/k.  (To verify, compute bk – bk + 1 = -(-1)k/k + (-1)k + 1/(k + 1) =  (-1)k + 1 2 1

( 1)

k

k k

+

+
.)  

We have 13 5 2 1
( 1)

1 2 2 3 ( 1)

n n

n n

+ +
− + + −

⋅ ⋅ +
…  = 1 – (-1)n/(n + 1). The series converges to b1 = 1. 

 

7.  bk = 
1

2 ( 1)k k +
.  We have 

1 1 1

1 2 3 2 3 4 ( 1)( 2)n n n
+ + +

⋅ ⋅ ⋅ ⋅ + +
…  = 

( 3)

4( 1)( 2)

n n

n n

+

+ +
. 

The series converges to b1 = 1/4. 
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8.  bk = 
1

3 ( 1)( 2)k k k+ +
.  We have 

1

1

( 1)( 2)( 3)

n

k k k k k= + + +
∑  = 

2( 6 11)

18( 1)( 2)( 3)

n n n

n n n

+ +

+ + +
. 

The series converges to b1 = 1/18. 
 

9.  bk = k− .  We have 
1

1

1

n

k k k= + +
∑  =  1n +  – 1.  The series does not converge. 

 
10.  bk = -k!.  We have 1 × 1! + 2 × 2! + 3 × 3! + . . . + n × n! = (n + 1)! – 1. 
The series does not converge. 
 

11.  bk = 
( 1)(2 1)

6

k k k− −
− .  We have 12 + 22 + 32 + . . . + n2 =  

( 1)(2 1)

6

n n n+ +
. 

The series does not converge. 
 

12.  bk = 
cos(2 1)

2sin1

k −
 .  We have sin 2 + sin 4 + sin 6 + . . . + sin(2n) = 

cos1 cos(2 1)

2sin1

n− +
. 

The series does not converge. 
 

13.  bk = 1/k!.  We have 
1 2 3

2! 3! 4! ( 1)!

n

n
+ + +…+

+
=1 – 

1

( 1)!n +
.  The series converges to 1. 

 

14.  bk = -arctan(2k – 1).  We have 
2

1

1
arctan

2

n

k k=

∑  = arctan 
1

n

n +
.  The series converges to π/4. 

 

15.  The terms ak satisfy ak = ck – ck + 1 where ck = bk – bk + 1.  Therefore the nth partial sum 
1

n

k

k

a
=

∑  

is equal to c1 – cn + 1 = b1 – b2 – bn + 1 + bn + 2. 
 
(Note: There was no Problem 16 in this Summer Fun problem set!) 
 
17.  Instead of following the hint, we look for a pattern in the answers to Problems 7 and 8. 
 

The “bk” for Problem 7 is 
1

2 ( 1)k k +
.  The “bk” for Problem 8 is 

1

3 ( 1)( 2)k k k+ +
. 

 

These suggest that if we let bk = 
1

( 1)( 2) ( ( 1))nk k k k n+ + + −⋯

, then ak = bk – bk + 1, and, indeed, 

this is true (please check it!). 
 

Thus, the series converges to b1 = 
1

!n n⋅
. 
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Induction 
by Girls’ Angle Staff 
 
1.  A. The first odd number is 1 and its sum is 1.  Since 1 = 12, the base case is established. 
 
B. Fix some positive integer N.  Assume that 1 + 3 + 5 + . . . + (2N – 1) = N2.  We will show that 
 

1 + 3 + 5 + . . . + (2N – 1) + (2N + 1) = (N + 1)2. 
 
Add 2N + 1 to both sides of the equation 1 + 3 + 5 + . . . + (2N – 1) = N2 to get 
 

1 + 3 + 5 + . . . + (2N – 1) + (2N + 1) = N2 + (2N + 1). 
 
Now observe that N2 + (2N + 1) = (N + 1)2, as desired. 
 
2.  Here’s a table of the first few positive perfect cubes and their sums: 
 

n 1 2 3 4 5 6 7 

nth positive perfect cube 1 8 27 64 125 216 343 

sum of first n positive perfect cubes 1 9 36 100 225 441 784 
 
Notice that the numbers in the bottom row are the squares of 1, 3, 6, 10, 15, 21, and 28, and this 
sequence is the sum of the first n positive integers, which is given by the formula n(n + 1)/2.  So 
we conjecture that 13 + 23 + 33 + . . . + n3 = (n(n + 1)/2)2. 
 
The base case, when n = 1, is 13 = (1(1+1)/2)2 = (1)2, which is true. 
 
Fix a positive integer N and assume that 13 + 23 + 33 + . . . + N3 = (N(N + 1)/2)2.  If we add 
(N + 1)3 to both sides, we get 13 + 23 + 33 + . . . + N3 + (N + 1)3 = (N(N + 1)/2)2 + (N + 1)3.  To 
establish the inductive step, we have to show that the right-hand side of this equation is equal to 
((N + 1)(N + 2)/2)2.  We compute 
 

(N(N + 1)/2)2 + (N + 1)3 = (N + 1)2(N2/4 + N + 1) 
 = (N + 1)2(N2 + 4N + 4)/4 
 = (N + 1)2(N + 2)2/4 
 = ((N + 1)(N + 2)/2)2 

 
as desired. 
 

3.  Let Pn be the statement that ( 2  + 1)n can be written as a + b 2 , where a and b are integers.  

We prove Pn be induction on n.  The base case P1 is true since 2  + 1 has the desired form 
(with a = b = 1).  Let N be a fixed positive integer and assume that PN is true.  Thus, we can write 

( 2  + 1)N = a + b 2 , where a and b are integers. 
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We have ( 2  + 1)N + 1 = (a + b 2 )( 2  + 1) = 2b + a + (a + b) 2 . 
 
Since a and b are integers, so are 2b + a and a + b.  Therefore PN + 1 is also true and 
the inductive step is proven. 
 
4.  B. A 2 by 1 rectangle only has room for one 2 by 1 domino, so N1 = 1.  A 2 by 2 rectangle can 
be tiled in two ways: 2 horizontal or 2 vertical dominos.  So N2 = 2.  Since F1 = 1 and F2 = 2 (as 
defined in the problem statement), we’ve established the base cases N1 = F1 and N2 = F2. 
 
C. Let k > 1 and consider a 2 by k + 1 rectangle tiled by 2 by 1 dominos.  Look at its right end.  
There are two possibilities.  Either the right side of the rectangle is the side of a single, vertically 
oriented domino or it is the union of the widths of two horizontally oriented, stacked dominos.  
Thus, the set of tilings of a 2 by k + 1 rectangle can be split into two disjoint subsets depending 
on whether the right edge is the side of a single vertical domino (call it subset S1), or of two 
stacked horizontal dominos (call it subset S2). 
 The subset S1 contains exactly Nk tilings because every tiling of a 2 by k rectangle can be 
extended to a different tiling of a 2 by k + 1 rectangle by attaching a single vertically oriented 
domino to its right end, and every tiling in S1 can be so obtained. 
 The subset S2 contains exactly Nk – 1 tilings because every tiling of a 2 by k – 1 rectangle 
can be extended to a different tiling of a 2 by k + 1 rectangle by attaching two stacked, 
horizontally oriented dominos to its right end, and every tiling in S2 can be so obtained.  
 Therefore, Nk + 1 = Nk + Nk – 1 for k > 1. 
 Since Nk satisfies the same recurrence relation as that which defines the Fibonacci 
sequence and the first two terms of Nk start off just like the Fibonacci sequence, we conclude, by 
induction, that Nk = Fk for all k > 0. 
 
5. Hint: Consider counting the number of subsets that contain only odd numbers instead. 
 
6.  A. When x1 and x2 are real numbers, (x1 – x2)2 ≥ 0 with equality if and only if x1 = x2.  
Expanding, we get x1

2 – 2x1x2 + x2
2 ≥ 0.  Now add 4x1x2 to both sides: x1

2 + 2x1x2 + x2
2 ≥ 4x1x2.  

Now take the principle square root of both sides: x1 + x2 ≥ 2 1 2x x .  Divide both sides by 2 and 

see that P2 is true. 
 

B. 1 2 3 2

2
n

x x x x

n

+ + + +…
 = 1 2 3 1 2 3 2

2 2
n n n n n

x x x x x x x x

n n

+ + ++ + + + + + + +
+

… …

 

 
 = 1 2 3 1 2 3 21

2
n n n n n

x x x x x x x x

n n

+ + ++ + + + + + + + 
+ 

 

… …

 

 
 ≥ ( )1 2 3 1 2 3 2

1

2
n n

n n n n n
x x x x x x x x+ + ++⋯ ⋯  

  ≥ 2
1 2 3 2

n
nx x x x⋯  

 
where there is equality in the first inequality if and only if x1 = x2 = x3 = . . . = xn and 
xn + 1 = xn + 2 = xn + 3 = . . . = x2n.  Therefore, there 
can be equality throughout only if the first n of 
the xk are equal, say to x, and the last n of the xk 
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are equal, say to y, and, using P2 in the last inequality, also x = y, which means that 
all the xk are equal. 
 Hence, P2 and Pn imply P2n. 

  
C. Given n – 1 positive real numbers x1, x2, x3, . . ., xn – 1, let a be their arithmetic mean. 
We compute 

a = 1 2 3 1

1
n

x x x x

n

−+ + + +

−

…

 = 
1 2 3 1( )

( 1)
n

n x x x x

n n

−+ + + +

−

…

 

 = 1 2 3 1( ) / ( 1)
n

n x x x x n

n

−+ + + + −…

 

 = 1 2 3 1 1 2 3 1( ) / ( 1)
n n

x x x x x x x x n

n

− −+ + + + + + + + + −… …

 

 = 1 2 3 1n
x x x x a

n

−+ + + + +…

 

 ≥ 1 2 3 1
n

nx x x x a−⋯ . 

 
Equality holds if and only if all the xk are equal (note in this case, a =xk, for all k). 

 If we now divide throughout by n a , we get ( 1)/

1 2 3 1

n n n
na x x x x

−

−≥ ⋅⋅⋅  .  Raising both sides 

to the n/(n – 1) power yields Pn – 1. 
 
D. The inductive step in part C can be used to deduce Pn once it is known that PN is true for any 
N > n.  Using the induction step proved in part B, we can get Pn for all n of the form 2k.  Since 2k 
increases without bound as k tends to infinity, for any n we can find k so that n < 2k. 
 
7. (Emily and Jasmine) Let Tn(x) be the Chebyshev polynomials of the first kind.  These are 
defined recursively as follows: T0(x) = 1, T1(x) = x, and Tn(x) = 2xTn – 1(x) – Tn – 2(x) for n > 1. 
 
A. We’ll not only show that the leading coefficient of Tn(x) is 2n – 1, but also that the degree of 
Tn(x) is n for all positive integers n.  Since T1(x) = x, our claim is true for n = 1. 

Using the recursive formula, we find that T2(x) = 2x(x) – 1 = 2x2 – 1, so, by inspection, 
our claim is also true for n = 2. 

For the inductive step, we show that our claim is true for n = N + 1 if we assume it is true 
for 0 < n ≤ N, where N > 1.  By definition, TN + 1(x) = 2xTN(x) + TN – 1(x).  The degree of 2xTN(x) 
is one more than the degree of TN(x), which, by our inductive hypothesis, is N, so the degree of 
2xTN(x) is N + 1.  The degree of TN – 1(x), also by our inductive hypothesis, is N – 1.  We deduce 
that the degree of TN + 1(x) must be N + 1.  Its leading coefficient is twice that of the leading 
coefficient of TN(x), which, by our induction hypothesis is 2N – 1.  Hence, the leading coefficient 
of TN + 1(x) is 2N.  This proves the inductive step. 
 
B. We claim that the constant terms of Tn(x) cycle through the sequence 1, 0, -1, 0, starting with 
1..  Since the constant terms of T0(x) and T1(x) are 1 and 0, respectively, our claim is true for n = 
0 and 1.  The recursive formula Tn(x) = 2xTn – 1(x) – Tn – 2(x) shows that the constant term of Tn(x) 
is the negative of the constant term of Tn – 2(x).  
By induction, it follows that the constant terms 
of Tn(x) for even n are 0 since -0 = 0 and 
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the constant terms of Tn(x) for odd n alternate between 1 and -1. 
 
C. We claim that cos nx = Tn(cos x) for all nonnegative integers n and prove this by 
induction on n.  When n = 0, the formula is cos 0 = T0(cos x).  Since cos 0 = 1 and 
T0(x) = 1, this is true.  When n = 1, the formula is cos x = T1(cos x).  Since T1(x) = x, 
this is also true.  Hence, our claim is true for n = 0 and n = 1. 

Now fix a positive integer N > 0.  Assume that our claim is true for all 0 ≤ n ≤ N.  We 
shall prove that our claim is also true for n = N + 1.  We use the trigonometric identity 
2 cos(nx) cos(x) = cos((n + 1)x) + cos((n – 1)x).  By our induction hypothesis, we can rewrite this 
as 2 Tn(cos x) cos x = cos((n + 1)x) + Tn – 1(cos x).  Rearranging terms, this is equivalent to 
cos((n + 1)x) = 2 Tn(cos x) cos x – Tn – 1(cos x).  By definition of the Chebyshev polynomials of 
the first kind, 2 Tn(cos x) cos x – Tn – 1(cos x) = Tn + 1(cos x).  Hence cos((n + 1)x) = Tn + 1(cos x), 
as desired. 

D. We claim that Tn(x) – 1 = 2n – 1
1

0

2
( cos( ))

n

k

k
x

n

π−

=

−∏ .  By substituting x = 2πk/n into the formula 

cos nx = Tn(cos x), we see that cos 2πk/n is a root of the polynomial Tn(x) – 1.  This gives us 

( 1) / 2n +    + 1 distinct roots by taking 0 ≤ k ≤ ( 1) / 2n +   .  (For integers k outside this range, 

we don’t get new values of cos 2πk/n.)  However, when 0 <  x = 2πk/n < π, the formula 
cos nx = Tn(cos x) shows Tn(y) ≤ 1 for values of y near to and surrounding cos x.  Therefore, for 
such x, cos x is a multiple root of Tn(x) – 1.  Because the degree of Tn(x) is n, a count of the roots 
with multiplicity shows that each multiple root has multiplicity exactly 2.  Our claim follows. 

Vieta’s formulas tell us that the product of the roots of Tn(x) is equal to (-1/2)n times the 

constant term of Tn(x).  Using part B, we conclude that 
1

0

2
cos( )

n

k

k

n

π−

=

∏  is 0 if n is 0, modulo 4, 

1/2n – 1 if n is 1 or 3, modulo 4, and -1/2n – 2 if n is 2, modulo 4. 
 

8. From Problem 3, we know that ( 2  + 1)n = an + bn 2 , where an and bn are integers.  We 
shall prove by induction on n that an

2 – 2bn
2 = ±1.  The result would follow. 

 
For the base case, note that a1 = b1 = 1, so a1

2 – 2b1
2 = 1 – 2 = -1. 

 
Let N be a positive integer and assume that aN

2 – 2bN
2 = ±1. 

 

Note that aN + 1 + bN + 1 2  = ( 2  + 1)N + 1 = (aN + bN 2 )( 2  + 1) = aN + 2bN + (aN + bN) 2 .  
Thus, aN + 1 = aN + 2bN and bN + 1 = aN + bN. 
 
We compute aN + 1

2 – 2bN + 1
2 = (aN + 2bN)2 – 2(aN + bN)2 

  = aN
2 + 4aNbN + 4bN

2 – 2aN
2 – 4aNbN – 2bN

2 
  = -aN

2 + 2bN
2 

  = -(aN
2 – 2bN

2) 
 
Since aN

2 – 2bN
2 = ±1, we see that aN + 1

2 – 2bN + 1
2 = ±1, as desired. 

 
Can you show that an + 1 = 2an + an – 1 for n > 0? 
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The Symmetric Group 
by Girls’ Angle Staff 
 
1. n!.  The 24 elements of S4 are 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 
2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, and 4321.  
 
2. The map pq also maps {1, 2, 3, ..., n} to itself.  If p(q(k)) = p(q(j)), then q(k) = q(j), since p is 
one-to-one and, hence, k = j, since q is also one-to-one.  Therefore pq is one-to-one and since 
{1, 2, 3, ..., n} is finite, pq must also be onto, hence it is a permutation in Sn. 
 
3. p(1(k)) = p(k) and 1(p(k)) = p(k). 
 
4. ((pq)r)(k) = (pq)(r(k)) = p(q(r(k))).  (p(qr))(k) = p((qr)(k)) = p(q(r(k))).  Hence, (pq)r = p(qr). 
 
5. Let 1 ≤ k ≤ n.  Since p is one-to-one and onto, there exists a unique j such that p(j) = k.  Define 
u(k) = j.  If u(x) = u(y), then x = p(u(x)) = p(u(y)) = y.  Hence, u is one-to-one and since u is 
defined on a finite set, it is also onto. 
 
6. Suppose pp1 = pp2.  Then p-1pp1 = p-1pp2, which shows that p1 = p2.  For Cayley graphs of Sn, 
this implies that no two edges of the same color will point to the same permutation. 
 
7. If p = 1, there is nothing to show, so assume p ≠ 1.  Since H is closed under composition, pk is 
in H for all positive integers k.  Since there are a finite number of permutations, there must be k < 
j with pk = pj.  Using Problem 6, this means that 1 = pj – k.  Since p ≠ 1, we in fact have j – k > 1.  
Hence, 1 and p-1 = pj – k – 1 are in H. 
 
8. (1623)(57). 
 
9. H = {1, (123), (132)}.  H is a proper subgroup with 3 elements. 
 
10.  Observe that (a1a2a3...ak) = (a1a2)(a2a3)(a3a4) ·  ·  ·  (ak – 1ak), so it suffice to show that every 
transposition (ab), with a < b, is a product of transpositions of the form (k k+1).  Now observe 
that 

(a b) = (a a+1)(a+1 a+2)(a+2 a+3) · ·  ·  (b–1 b)(b–2 b–1)(b–3 b–2) · ·  ·  (a  a+1). 
 
11.  Observe that (123...n)k(12)(123...n)n – k = (k+1 k+2).  Since we can get all transpositions of 
the form (a a+1), using Problem 10, we can get any permutation. 
 
12.  Hint: Define a map σ from Sn to {-1, 1} by setting σ(p) = (-1)N where p is in Sn and N is 
equal to the number of pairs (i, j) with i < j such that p(i) > p(j).  Show that σ(pq) = σ(p)σ(q).  
Show that An consists of permutations p in Sn such that σ(p) = 1. 
 
13. H = {1, (12)(34), (13)(24), (14)(23)}.  
H(12) = {(12), (34), (1423), (1324)}. 
H(234) = {(234), (124), (132), (143)}.  
H(1324) = {(1324), (1423), (34), (12)}. 
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These right cosets all contain 4 elements and they are either disjoint or equal to each other. 
 
14.  If p is in H, then Hp is a subset of H since H is closed under composition.  If xp = yp, then 
x = y so Hp has the same size as H.  Hence H = Hp.  Since 1 is in H, p is in Hp.  So if p is not in 
H, we cannot have Hp = H. 
 
15.  Suppose x is in Hp1 and Hp2, say x = hp1 = h’p2.  Then p2 = h’-1hp1.  Since right 
multiplication by h’-1h permutes H, we see that Hp2 = Hh’-1hp1 = Hp1.  For any x in Sn, x is 
contained in Hx. 
 
16.  (For the size, see the solution to Problem 14.)  Since all right cosets of H have the same size 
and partition Sn, the number of elements in Sn is equal to the number of elements in H times the 
number of right cosets of H, i.e., |Sn| = |H| [Sn : H]. 
 
19.  Observe that m1(x) = 1(x) = x.  Also, mp(mq(x)) = mp(q(x)) = p(q(x)) = (pq)(x) = mpq(x). 
 

20. Since mp(x) = y, 1 1( ( )) ( )
pp p

m m x m y− −= .  But, 1 1 1( ( )) ( ) ( )
pp p p

m m x m x m x x− −= = = .  Thus, 

1 ( )
p

m y x− = . 

 
21.  Since 1x = x, 1 is in Stab(x).  Suppose p and q are in Stab(x).  Then p(x) = x and q(x) = x.  
Hence, (pq)(x) = p(q(x)) = p(x) = x, so pq is also in Stab(x).  Hence, Stab x is a subgroup of Sn.  
Note that if p and q are in the same left coset r Stab x of Stab x, then p(x) = q(x) (and p(x) and 
q(x) are also equal to r(x)).  Therefore, we can define a map from the set of left cosets of Stab x 
into Orb(x) by sending r Stab x to r(x).  This map is onto and we will show that is one-to-one.  
Suppose p(x) = q(x).  Then q-1p is in Stab x.  Hence q-1p Stab x = Stab x, so p Stab x = q Stab x.  
We conclude that | Orb(x) | = [ Sn : Stab(x) ]. 
 

22.  A. First, 1(T) = {1(t) | t ∈ T } = { t | t ∈ T } = T.  Second, 
 

p(q(T)) = p({q(t) | t ∈ T }) = {p(q(t)) | t ∈ T } = {(pq)(t)) | t ∈ T } = (pq)(T). 
 
B.  Let p be in Stab(T).  Then p permutes the elements of T.  This implies that T also permutes 
the elements not in T.  Furthermore, any permutation in Sn that permutes the elements of T is in 
Stab(T).  Since there are k! permutations of T and (n – k)! permutations of the elements not in T, 
we conclude that | Stab(T) | = k!(n – k)!. 
 
C. Let S and T in Xk.  Suppose S = {s1, s2, s3, . . ., sk} and T = {t1, t2, t3, . . ., tk}.  Extend the 
sequence si to contain all elements of {1, 2, 3, . . ., n} and do the same for ti.  Let p be the 
permutation in Sn such that p(si) = ti.  Then p(S) = T.  Thus, Xk is a subset of Orb(T).  Finally, 
note that p(T) has k elements for all p in Sn.  Thus, Xk = Orb(T). 
 

D. Using Problem 21, we conclude that | Xk | = [ Sn : Stab(T) ] = 
!

!( )!

n

k n k−
. 
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Derivatives 
by Ken Fan 
 
1. (Leibniz’s rule) The nth derivative of f(x)g(x) with respect to x is given by 
 

( ) ( )

0

( ) ( )
n

n k k

k

n
f x g x

k

−

=

 
 
 

∑ .  We prove this by induction on n.  When n = 1, the formula coincides 

with the product rule.  Suppose the formula is true for n = N, where N is a positive integer.  Then 
the (N + 1)st derivative of f(x)g(x) with respect to x is equal to the derivative, with respect to x, of 

( ) ( )

0

( ) ( )
N

N k k

k

N
f x g x

k

−

=

 
 
 

∑ , which is ( 1) ( ) ( ) ( 1)

0

( ( ) ( ) ( ) ( ))
N

N k k N k k

k

N
f x g x f x g x

k

− + − +

=

 
+ 

 
∑ .  After 

rearranging terms, this is equal to 
1

( 1) ( )

0

( ) ( )
1

N
N k k

k

N N
f x g x

k k

+
− +

=

    
+    

−    
∑ , where we adopt the 

convention that 0
1

N 
= 

− 
 and 0

1

N

N

 
= 

+ 
.  Using the fact that 

1

1

N N N

k k k

+     
= +     

−     
, the 

inductive step follows. 
 
2. When you zoom in on a point on the graph of a differentiable function, the graph looks more 
and more like part of a straight line, but if the graph isn’t precisely a straight line, there will be a 
deviation from the straight line, even if it is imperceptible to the eye.  When you zoom in a lot, 
you are looking at a very small piece of the graph.  The horizontal coordinate may be confined to 
a teeny amount of the number line.  Changes in the slope of the tangent as you traverse this 
snippet of the graph can be quite large per unit length, but since the zoomed in section covers a 
very small portion of the number line, the change in slopes can still be imperceptible. 
 For example, consider cos x.  We know that the derivative of cos x, with respect to x, is 
–sin x.  If we zoom in on the graph of cos x near the point (0, 1), the graph will look more and 
more like a snippet of a horizontal line.  In the range -1/100 < x < 1/100, for instance, the value 
of cos x remains between 0.99995 and 1.  This deviation is so small that if you make a graph of 
cos x over the range of values -1/100 < x < 1/100 at a scale where the physical distance between 
-1/100 and 1/100 on your horizontal axis is about the width of a standard sheet of paper, the 
graph itself will fit within the thickness of a horizontal line drawn with a ballpoint pen. 
 From -1/100 to 1/100, the slope of the tangent varies from sin(-1/100) to sin(1/100), or, 
approximately, from -1/100 to 1/100.  That’s a very small change in the slope from the left 
endpoint to the right endpoint of the graph.  However, the rate of change of this slope, i.e., the 
value of the second derivative, is approximately (1/100 – (-1/100))/(1/100 – (-1/100)) = 1.  
 
3. Hint: Use Vieta’s formulas. 
 
4. Suppose p(x) has a multiple root at x = r.  Then p(x) = (x – r)2q(x) where q(x) is a polynomial.  
Using the product rule, pʹ(x) = 2(x – r)q(x) + (x – r)2qʹ(x).  Thus (x – r) is a factor of both p(x) 
and pʹ(x).  Conversely, suppose that p(x) and pʹ(x) share a common factor.  Then there exists r 
such that (x – r) is a factor of both p(x) and pʹ(x).  
We claim that r is a multiple root of p(x).  If not, 
then p(x) = (x – r)q(x) where (x – r) is not a factor 
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of q(x).  Using the product rule, we find pʹ(x) = q(x) + (x – r)qʹ(x).  Hence, 
pʹ(r) = q(r) ≠ 0, contradicting the fact that pʹ(r) = 0. 
 
5. A complete answer to this question could be quite long.  We’ll instead confine 
ourselves to showing that when the derivative is defined as in the statement of the 
problem, the derivative of a sum is the sum of the derivatives. 
 
Let f and g be two functions that map the real numbers to itself and assume that the derivative of 
f(x) and g(x) exist at x = z.  Let mf and mg be the derivatives of f(x) and g(x) (with respect to x) at 
x = z, respectively.  We will show that the derivative of f(x) + g(x) exists at x = z and is equal to 
mf + mg. 
 

Fix ε > 0.  We must show that there exists δ > 0 such that 
 

| f(z + h) + g(z + h) – ((mf + mg)h + f(z) + g(z)) | < ε|h| 
 

for all 0 < |h| < δ. 
 

By definition, since ε/2 is also greater than 0, there exists δf > 0 and δg > 0 such that 
 

| f(z + h) – (mfh + f(z))| < (ε/2)|h| for all 0 < |h| < δf 

 and | g(z + h) – (mgh + g(z))| < (ε/2)|h| for all 0 < |h| < δg. 
 

Let δ = min(δf, δg).  Then, for all 0 < |h| < δ, we have 
 
 | f(z + h) + g(z + h) – ((mf + mg)h + f(z) + g(z)) | 

 = | f(z + h) – (mfh + f(z)) + g(z + h) – (mgh + g(z)) | (rearranging terms) 
 ≤ | f(z + h) – (mfh + f(z)) | + | g(z + h) – (mgh + g(z)) | (triangle inequality) 

 < (ε/2)|h| +  (ε/2)|h|  

 = ε|h|  
 
as desired. 
 
For a complete treatment, consult a book on real analysis, such as Introduction to Calculus and 

Analysis, Volume I by Courant and John or Principles of Mathematical Analysis by Rudin. 
 
6. This is not true.  Two functions may change in tandem, yet be separated by a constant 
everywhere.  For example, consider f(x) = x and g(x) = x + 1.  However, if you know the 
derivative everywhere and the value of the function at a single point, then you can recover the 
function.  The operation of recovering a function from its derivative is called integration. 
 
7. The double-angle formula for sine is sin(2x) = 2sin(x)cos(x).  Using the chain rule, the 
derivative of sin(2x) with respect to x is 2cos(2x).  Using the product rule, the derivative of 
2sin(x)cos(x) with respect to x is 2cos(x)cos(x) – 2sin(x)sin(x).  Therefore, 
cos(2x) = cos2(x) – sin2(x). 
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The half-angle formula for sine is sin(x/2) = (1 cos ) / 2x− .  Using the chain rule, 

the derivative of sin(x/2) with respect to x is cos(x/2)/2.  Using the chain rule, the 

derivative of (1 cos ) / 2x−  with respect to x is 
sin( ) / 2

2 (1 cos ) / 2

x

x−
.  Therefore, 

cos(x/2) = 
sin

2(1 cos )

x

x−
.  If we multiply the top and bottom of this last expression by 1 cos x+  

and simplify, we can express this identity in the more familiar form cos(x/2) = 
1 cos

2

x+
. 

 
8. Let f(x) = arctan x.  By definition, f(tan x) = x.  Differentiating both sides with respect to x, we 
find fʹ(tan x)/cos2 x = 1, hence fʹ(tan x) = cos2 x.  If we substitute arctan y for x, we find that 
fʹ(y) = cos2(arctan y).  A right triangle with legs of length 1 and y has a hypotenuse of length 

21 y+ .  Therefore cos(arctan y) = 21/ 1 y+  and fʹ(y) = 
2

1

1 y+
 .  Thus, fʹ(0) = 1. 

 

Note that ( )1 1

2

1
( ) ( ) / 2

1
i x i x i

x

− −= + − −
+

, where i is a square root of -1. 

 
We begin computing higher derivatives of f(x) and look for a pattern: 
 

f(2)(x) = i(-(x + i)-2 + (x – i)-2)/2. 
f(3)(x) = i(2(x + i)-3 – 2(x – i)-3)/2. 
f(4)(x) = i(-3·2(x + i)-4 + 3 · 2(x – i)-4)/2. 

 
Evidently, for n > 0, f(n)(x) = (-1)ni(n – 1)!(-(x + i)-n + (x – i)-n)/2.  We prove this by induction.  
The formula is true for n = 1 by design.  The inductive step follows from the fact that the 
derivative of (-1)ni(n – 1)!(-(x + i)-n + (x – i)-n)/2 with respect to x is 
 

(-1)ni(n – 1)!(n(x + i)-(n + 1) – n(x – i)-(n + 1))/2 = (-1)n + 1in!(-(x + i)-(n + 1) + (x – i)-(n + 1))/2. 
 
Hence f(n)(0) = (-1)ni(n – 1)!(-i-n + (-i)-n)/2.  It’s convenient to simplify this expression according 
to cases that depend on the remainder n leaves upon division by 4.  If n is even (i.e., if n is 0 or 2, 
modulo 4), this expression reduces to 0.  If n is 1, modulo 4, the expression simplifies to (n – 1)! 
and if n is 3, modulo 4, the expression simplifies to –(n – 1)!. 
 
If you know about Taylor expansions, this computation shows that 
 

arctan x = x – x3/3 + x5/5 – x7/7 + x9/9 – x11/11 + . . .. 
 
9. The equation is equivalent to f(x)fʹ(x) = 1.  Notice that the derivative, with respect to x, of 
f2(x)/2 is f(x)fʹ(x).  Hence, d/dx f2(x)/2 = 1.  Any function of the form x + c, where c is a constant 
has derivative equal to 1.  Thus f2(x)/2 = x + c and f(x) = (2(x + c))1/2.  In order to be defined for 
all x ≥ 0, we take c ≥ 0. 
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Calendar 

 
Session 17: (all dates in 2015) 
 

September 17 Start of the seventeenth session! 
 24  
October 1  
 8  
 15  
 22  
 29  
November 5  
 12  
 19  
 26 Thanksgiving - No meet 
December 3  
 10  

 
Girls’ Angle has been hosting Math Collaborations at schools and libraries.  Math Collaborations 
are fun math events that can be adapted to a variety of group sizes and skill levels.  For more 
information and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
 
Author Index to Volume 8 
 

404 Name Not Found 4.14 
Ivana Alexandrova 5.03 
Anna B. 1.16, 1.18, 2.19, 3.14, 4.16, 5.14, 6.13 
Madison Evans 1.08, 2.06 
Lightning Factorial 1.20, 2.24 
Fallow 4.13 
Ken Fan 1.06, 1.08, 1.13, 1.21, 1.24, 1.26, 2.06, 2.16, 2.21, 2.25, 2.26, 3.07, 3.12, 3.18, 

3.22, 3.27, 4.07, 4.18, 4.24, 4.26, 5.07, 5.11, 5.16, 5.22, 5.27, 5.28, 6.08, 6.15 
Noah Fechtor-Pradines 5.24 
Courtney Gibbons 3.03, 4.03 
Bathsheba Grossman 4.28 
Toshia McCabe 2.12, 3.01, 4.12 
Cathleen Morawetz 1.03, 2.03 
Shelby Nutter 2.13 
Sue D. Nym 4.12 
Ombrésa 4.14 
Pikachu 4.13 
Konstanze Rietsch 3.16 
John Rose 2.05, 2.15 
Jim Sawyer 2.12 
Stuart Sidney 4.22 
Addie Summer 1.22, 3.25 
Claire Trabue 2.14 
Judy Walker 6.03 
Sydney Webber 2.13 
Fan Wei 5.20 
Millie Wert 2.01, 2.14 
Thaddeus Wert 2.12 

 
Key: n.pp = number n, page pp 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 
the information here is also on that form. 
 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 
Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $36 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $36 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 
 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll?  You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay?  The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 12 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 
mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 

Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, lecturer, Harvard University 
Julia Elisenda Grigsby, assistant professor of mathematics, Boston College 
Kay Kirkpatrick, assistant professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Instructional Designer, Stanford University 
Lauren McGough, graduate student in physics, Princeton Univeresity 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, The Dartmouth Institute 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, assistant professor, University of Washington 
Karen Willcox, professor of aeronautics and astronautics, MIT 
Lauren Williams, associate professor of mathematics, UC Berkeley 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $36 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 
Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


