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An Interview with Christine Berkesch Zamaere 
 
Christine Berkesch Zamaere is an assistant 
professor of mathematics at the University of 
Minnesota.  She earned her doctoral degree in 
mathematics from Purdue University under the 
supervision of Uli Walther. 
 
Ken: To get things started, I’m interested to know what mathematics meant to you at various 
stages in your life.  For example, what did mathematics mean to you in kindergarten?  In middle 
school?  In high school?  In college?  In graduate school?  And today? 
 
Christine: For me, mathematics meant pattern recognition, arithmetic, logic, and geometry in 
elementary school.  In middle school, I was introduced to algebra and how to use mathematics to 
solve problems in everyday life situations, for example, in computing interest, optimization 
problems, and basic physics.  During high school, I began to grasp the power, practicality, and 
ubiquity of the subject; mathematics is the foundation for economics, science, and engineering.  
Through graduate school and beyond, I have learned to appreciate how various mathematical 
disciplines work together to yield new discoveries.  For example, in trying to understand 
geometric objects and their associated equations in my own research, I use tools from algebra, 
geometry, analysis (the study of continuous structure), and combinatorics (the study of discrete 
structure). 
 
Ken: When did becoming a mathematician become a goal?  What turned you on to mathematics? 
 
Christine: When I began college, I planned to be a violinist, but I also continued to study 
mathematics because I found it fun.  After my sophomore year, I had the opportunity to 
participate in a Research Experience for Undergraduates (REU) funded by the National Science 
Foundation.  It opened up my eyes to the world of mathematical research, which I discovered I 
really enjoyed! 
 I worked with a small group of students from around the country on a research project in 
combinatorial representation theory. We used computers to run large searches to generate 
examples much faster than we could have done by hand. We then hunted for patterns and used 
our observations to make conjectures. Finally, we constructed proofs to turn our conjectures into 
theorems. While each step in this process was rewarding, the part I found the most exciting was 
that by the end, we understood mathematics that no one else had ever figured out before us. 
Because of this great experience, I decided to pursue mathematics as a career and set my sights 
on graduate school! 
 
Ken: How do you learn mathematics?  Did you ever encounter a mathematical subject or 
concept that proved difficult to grasp?  If so, what kinds of things did you do to grasp it 
eventually? 
 
Christine: Learning new mathematics for me involves several steps.  Even if I am fortunate 
enough to attend lectures on the subject, I still spend time reading and working on problems from 
books and old exams.  Other people are also an important resource to me!  I talk with experts on 
the new topic, as well as with others who are learning along with me. 
  

...anything worth pursuing 

takes hard work, so do not be 

afraid to dive in and get busy. 



 

© Copyright 2014 Girls’ Angle.  All Rights Reserved.                                                                4 

Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the complete interview with 
Prof. Zamaere, and some other content.   We hope that you 
consider the value of such content and decide that the efforts 
required to produce such content are worthy of your financial 
support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
Girls’ Angle: A Math Club for Girls 
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Finding the Maximum Subsequence, Part 21 
by Kate Jenkins | edited by Jennifer Silva 
 

Did you think of a way to find the maximum subsequence in a sequence of length N 
using fewer than N addition problems? 
  

Recall that we are trying to come up with an algorithm that, given any sequence of 
numbers, will find the subsequence with the largest sum by doing as little work as possible.  
Here is the example sequence we’ve been looking at: 

 

1 -2 2 -1 4 

1st 2nd 3rd 4th 5th 

 
Let’s make the following 2 definitions: 
 
 Let M(j) be the maximum of all the sums of subsequences that end at position j. 
 
 Let s(j) be the start position for the maximum subsequence that ends at position j. 
 
If we knew the values of M(j) and s(j) for all values of j between 1 and the length of our 
sequence, then we would have the answer to our original problem.  This is because the maximum 
subsequence has to end at some value of j, so – by definition – its start position would be s(j) and 
its sum M(j). 
 
 Let’s see if we can efficiently compute M(j) and s(j). 
 In our example, M(1) = 1 and s(1) = 1.  We know this because the only subsequence that 
ends at position 1 is the one that also begins there, and its sum is the value of the 1st number in 
the sequence, which happens to be 1. 
 For j = 2, there are only two subsequences to consider – the one that begins and ends at 
the 2nd term, or the one that begins with the 1st term and ends with the 2nd term.  In other words, 
you can either start over with a new subsequence beginning with the 2nd term, or extend the one 
beginning at the 1st term by one term.  Which has the bigger sum?  It depends on whether M(1) is 
positive or negative.  For our purpose, it’s better to start over than to extend a subsequence 
whose sum is negative.  In this case, since M(1) = 1 is greater than 0, our best bet is to extend the 
sequence to the one starting at the 1st term and ending with the 2nd term.  So 
 

s(2) = 1 and M(2) = M(1) + (2nd term of sequence) = 1 + (-2) = -1. 
 
 For any value of j > 1, the choice is to either extend a sequence that ends at j – 1, or to 
begin a new sequence at the jth position.  If you are extending an existing sequence, you can’t 
possibly do better than to extend the subsequence with the maximal sum that ends at j – 1. 
 

These considerations suggest the following algorithm to find the maximum subsequence 
by computing M(j) and s(j) for a sequence of length N: 
 

                                                 
1 This content supported in part by a grant from MathWorks. 
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Maximum Subsequence Finder Algorithm 

Step 1. Let j = 1, let M(j) be the 1st term in the sequence, 
and let s(j) = 1. 
 

Step 2. Let j = 2. 
 

Step 3. If M(j – 1) < 0, then let M(j) be the jth term of the 
sequence and let s(j) = j.  If M(j – 1) ≥ 0, then let 
M(j) be the sum of M(j – 1) and the jth term of the 
sequence and let s(j) = s(j – 1). 
 

Step 4. Increase the value of j by 1. 
 

Step 5. If j ≤ N, go to Step 3. 
 

Step 6. Stop. 
   
As the steps are worked through, keep track of the value of j that corresponds to the largest value 
of M(j) so far computed.  When the algorithm terminates, we will know the value of j where M is 
maximal.  Let’s denote by J this special value of j.  Then the maximum subsequence is the 
sequence from s(J) to J, and the sum of this subsequence is M(J). 
 
Here’s how the algorithm works when applied to our sample sequence: 

1 -2 2 -1 4 

1st 2nd 3rd 4th 5th 

 

Step j M(j) s(j) 

Value of j such that M(j) is the 

largest value of M so far computed 

1 1 1 1 1 

2 2    

3  -1* 1 1 

4 3    

5     

3  2 3 3 

4 4    

5     

3  1* 3 3 

4 5    

5     

3  5* 3 5 

4 6    

5     

6     

 
In the table above, an asterisk * indicates a place where we performed an addition operation. 
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The algorithm finds that the largest subsequence sum is 5, achieved by the subsequence that runs 
from the 3rd to 5th positions. 
 

Notice that this algorithm only requires at most one addition operation for each value of j 
greater than 1 and less than or equal to N.  Hence, for a sequence of length N, the algorithm will 
perform fewer than N addition operations!  (In our analysis, we ignored the cost of performing 
the checks for when something is greater than zero.  These checks are also work, but since they 
are done just twice for each value of j from 2 to N [once to check if M(j – 1) > 0, and once to 
check if a larger value of M has been discovered], these checks do not change the efficiency of 
the algorithm.) 
 The work involved in this algorithm is therefore O(N).  Algorithms that are O(N) are 
referred to as linear time algorithms.  The first brute-force algorithm we considered is a cubic 

time algorithm, and the second algorithm we considered is a quadratic time algorithm. 
 

Let’s see how our latest algorithm compares to our other algorithms.  The chart below 
shows how many addition operations each algorithm must perform for various sequence sizes. 
 

Sequence Length Algorithm 1 Algorithm 2 Algorithm 3 

5 20 10 4 

6 35 15 5 

10 165 45 9 

100 166,650 4,950 99 

1000 166,666,500 499,000 999 
 
(The numbers under “Algorithm 3” are the maximum number of addition operations needed.  
The algorithm might perform fewer additions, depending on what the input sequence is.) 
 

Wouldn’t you much rather do Algorithm 3 instead of one of the others, given a sequence 
of length 100 or more? 
 

Remember the longer sequence I gave you at the beginning of Part 1?  Did you find the 
maximum subsequence of that sequence?  Find it using Algorithm 3 to check if you got the same 
answer!  For your convenience, here is the sequence again: 

 

10 -8 4 2 -9 8 4 -10 -1 12 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

 
For the answer, see page 29.  
 
I hope this maximum subsequence problem has given you a sense of what people consider when 
they think about algorithms and why algorithms can be interesting and useful, particularly when 
solving large problems.  I have shared just one small example.  There are many other neat 
algorithms for important problems that people really care about!  And we keep inventing new 
ones all the time.  I hope you find opportunities to learn more about them.  For me, they have 
been the foundation of an interesting and rewarding career. 
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Star-Spangled Numbers 
by Lightning Factorial | edited by Jennifer Silva 
 
Emily and Jasmine decide to design a 51-star flag. 
 
Jasmine:  I like Robert Heft’s 50-star flag design. 
 
Emily:  I do too, but I’m curious, what do you like 
about it? 
 
Jasmine:  Well, if I’d made it, I probably would’ve 
put the stars in a blocky 5 by 10 rectangular array.  The way Heft did it, it feels more dynamic. 
 
Emily:  It’s actually two rectangular arrays, one embedded within the other. 
 
Jasmine:  Hey, you’re right!  It’s a 4 by 5 rectangular array of stars inside a 5 by 6 rectangular 
array of stars. 
 
Emily:  Why don’t we try a similar pattern for a 51-star flag? 
 
Jasmine:  Okay! 
 
Emily:  Hmm.  How do we figure out the dimensions of the rectangles? 
 
Jasmine:  Well, since we don’t know what the dimensions are yet, let’s say the inner rectangular 
array is W stars by L stars. 
 
Emily:  Okay.  If we want the inner rectangle to fit snugly inside the outer rectangle, as in Heft’s 
design, the outer rectangle would have dimensions of L + 1 by W + 1. 
 
Jasmine:  That means there would be LW stars in the inner rectangle and (L + 1)(W + 1) stars in 
the outer rectangle, for a total of LW + (L + 1)(W + 1) stars. 
 
Emily:  That simplifies to 2LW + L + W + 1. 
 
Jasmine:  So we have to solve the equation 2LW + L + W + 1 = 51. 
 
Emily:  Wait a sec!  Doesn’t that equation have tons and tons of solutions?  I mean, you can 
pretty much substitute any value of W and then solve for L, right? 
 
Jasmine:  Yeah, but we need L and W to be positive integers. 
 
Emily:  Oh yeah, that’s right.  Well, we can still solve for, say, L in terms of W, and then try to 
see which integers W yield integer values of L. 
 
 Both girls take a moment to isolate L in the equation 2LW + L + W + 1 = 51. 
 

 
 

Robert Heft designed the US flag’s 50-star field. 



 

© Copyright 2014 Girls’ Angle.  All Rights Reserved.                                                                10 

Jasmine:  I got 
50

2 1

W
L

W

−
=

+

. 

 
Emily:  I got that, too.  But how are we supposed to figure out when 2W + 1 divides evenly into 
50 – W? 
 
Jasmine:  I don’t know.  I guess we can just try all values of W from 1 to 51.  We know that W 
can’t be bigger than 51 since there aren’t more than 51 stars. 
 
Emily:  Actually, we just have to go until 2W + 1 > 50 – W, and that happens when 3W > 49.  So 
we only need to try numbers from 1 to 16 for W.  That’s not too bad.  We might as well get 
started. 

W 2W + 1 50 – W (50 – W)/(2W + 1) 

1 3 49 16 1/3 
2 5 48 9 3/5 
3 7 47 6 5/7 
4 9 46 5 1/9 
5 11 45 4 1/11 
6 13   
    

 
Jasmine:  Emily, maybe all that work isn’t necessary.  I just had a thought.  What if we divide 

2W + 1 into 50 – W using polynomial long division?  We get L = 
50 1 101

2 1 2 4 2

W

W W

−
= − +

+ +

.  This 

is an integer if and only if 
101

4 2W +

 is a half-integer. 

 
Emily:  What’s a half-integer? 
 
Jasmine: It’s a number halfway between two consecutive integers: an odd number divided by 2. 
 
Emily:  Okay, but you know what?  For some reason, I remember that 101, 103, 107, and 109 are 
all prime numbers.  Since 101 is prime, we’ll only get a half-integer if 4W + 2 is either 2 or 202.  
If 4W + 2 = 2 then W = 0, which won’t work.  If 4W + 2 = 202 then W = 50, which means that 
L = 0, so that doesn’t work either.  Hey, that was much faster than making the table! 
 
Jasmine:  Yes, but that also means that we can’t make a 51-star flag in the form of a rectangle 
embedded in a rectangle.  Bummer! 
 
Emily and Jasmine pause while they consider what to do with this newfound knowledge.  Then 
they look at each other. 
 
Emily:  Are you thinking what I’m thinking? 
 
Jasmine:  You want to figure out for what N can N stars be arranged as a rectangle embedded in a 
rectangle? 
 
Emily:  Exactly!  How’d you know? 
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By Anna B. 
 

Anna follows a hunch that connects a paraboloid to a sphere and obtains a neat result. 
  

Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 
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In the last issue, we invited members to submit solutions to a batch of Summer Fun problem sets. 
 
In this issue, we give solutions to many of the problems.  Our solutions may be terse and, in 
some cases, are more of a hint than a solution.  We prefer not to give detailed solutions before 
we know that most of the members have spent time thinking about the problems.  The reason is 
that doing mathematics is very important if you want to learn mathematics well.  If you haven’t 
tried to solve these problems yourself, you won’t gain as much when you read these solutions. 
 
If you haven’t thought about the problems, we urge you to do so before reading the solutions.  
Even if you cannot solve a problem, you will benefit from trying.  When you work on the 
problem, you will force yourself to think about the ideas associated with the problem.  You will 
gain some familiarity with the related concepts and this will make it easier to read other people’s 
solutions. 
 

With mathematics, don’t be passive!  Get active! 
 
Move that pencil!  Move your mind!  You might discover something new. 
 
Also, the solutions presented are not definitive.  Try to improve them or find different solutions. 
 
Solutions that are especially terse will be indicated in red.  
Please do not get frustrated if you read a solution and have 
difficulty understanding it.  If you run into difficulties, we 
are here to help!  Just ask! 
 
Please refer to the previous issue for the problems. 
 
 
 

Members and Subscribers: 

Don’t forget that you are 

more than welcome to email 

us with your questions and 

solutions! 
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Magic Squares 

by Lightning Factorial 
 

1. Let 
a b

c d
 be a 2 by 2 square of numbers.  To be a magic square, we must have 

a + b = c + d = a + c = b + d = a + d = b + c. 
 
From a + b = a + c, we see that b = c.  From a + b = a + d, we see that b = d.  From a + d = b + d, 
we see that a = b.  Hence, a = b = c = d and distinct entries are impossible. 
 

2. Here’s a 3 by 3 magic square: 

1 8 12

18 7 4

2 6 13

− .  There are infinitely many. 

3. Let 

a b c

d e f

g h i

 be a 3 by 3 magic square.  If we add both diagonals to the middle row and 

column we get: 
(a + e + i) + (g + e + c) + (d + e + f) + (b + e + h). 

NW-SE 
diagonal  

SW-NE 
diagonal  

middle 
row  

middle 
column 

 
This sum simplifies to a + b + c + d + 4e + f + g + h + i.  Using the fact that 
 

S = a + b + c = d + e + f = g + h + i, 
 
our sum can be written as 3S + 3e.  Thus, 3S + 3e = 4S.  Isolating e, we find that e = S/3. 
 

4. We get 
2 4 4 2

3 3 3

2 2 2 2 2 2

3 3 3

a b c

a b c a b c a b c

a b c a b c a b c

− + + + + + −

+ − − + − + +

. 

 
Notice that setting a = 1, b = 8, and c = 12 produces the magic square in our answer to #2. 
 

5. We get 

x z z x y y z

x y z z x y z

y z x y z x z

+ − − +

− + + − +

− + + + − +

. 

 
Notice that if x, y, and z are integers, this matrix 
will consist entirely of integers.  However, the 
expressions in #4 may not result in integers even 
if a, b, and c are integers.   
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6. Suppose 0 < x < y < z – x and y ≠ 2x. 
 First, we’ll show that all the entries in the square are positive. 
 Since z – x > y, we know that z > x + y.  Since x and y are both positive, 
we can conclude that z is also positive.  Therefore x + z, y + z, x + y + z, and z will 
all be positive. 
 Also, from z – x > y, we see that z – x – y > 0. 
 To see that –x + y + z > 0, observe that –x + y + z = (z – x – y) + 2y, and both z – x – y and 
2y are positive.  Similarly, we can see that x – y + z > 0 because x – y + z = (z – x – y) + 2x. 
 To see that –y + z > 0, note that –y + z = (z – x – y) + x. 
 Finally, we’re given that –x + z > 0. 
 We conclude that the square will consist of positive numbers. 
 
 Next, we’ll check that all entries are distinct so that we may conclude that the square is, 
in fact, a magic square. 
 First note that x + y + z > y + z > x + z > z > -x + z > -y + z > z – x – y.  This shows that 
the 7 entries in the top row, bottom row, and center are distinct. 
 Now observe that y + z > -x + y + z > z.  This tells us that of the 7 entries from the 
previous paragraph, the only one that –x + y + z might equal is x + z.  However, if 
–x + y + z = x + z, then 2x = y, which is not the case by assumption. 
 Similarly, observe that z > x – y + z > -y + z, which tells us that of the other 8 entries, the 
only one that x – y + z might equal is –x + z.  However, if x – y + z = -x + z, then again, 2x = y, 
which is not true by assumption. 
 Thus, if 0 < x < y < z – x and y ≠ 2x, then the square will be a magic one. 
 
7. All rows, columns and diagonals add up to n(n2 + 1)/2.  Hint: Add up the entries in a normal 
magic square in 2 different ways. 
 
8. The central number in a normal 3 by 3 magic square must be 5. 
 
Solutions for 9 and 10 are omitted. 
 
11. This is closely related to the representation of the numbers 0 through 15 in base 4.  If n is an 
integer between 1 and 16, inclusive, let x be 4 if n is divisible by 4 and let x be the remainder left 
when n is divided by 4 otherwise.  Let X = n – x.  Note that X must be in the set {0, 4, 8, 12}.  
Then n = X + x.  If n = Y + y is another representation with Y in {0, 4, 8, 12} and y in {1, 2, 3, 4}, 
then X – Y = y – x, which shows that y – x is divisible by 4.  This is only possible if x = y, and if 
x = y, then also X = Y, so the representation is unique. 
 
12. This follows from #11. 
 
13. There are 4! = 24 ways to assign the numbers 0, 4, 8, and 12 to the variables a, b, c, and d.  
There are 4! = 24 ways to assign the numbers 1, 2, 3, and 4 to the variables α, β, γ, and δ.  Since 
the assignment of numbers to the Latin variables is independent of the assignment of number to 
the Greek variables, there are a total of 242 = 576 ways to make the number assignments. 
 
The assignments are not all different in the 
sense that some can be obtained from others 
by rotations and reflections of the array. 
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Center of Mass and Mass Points 

by Girls’ Angle Staff 
 
1. The ratio of the mass at A to that at B is 3 : 1. 
 
2. A. A unit mass should be placed at vertex B so that the center of mass of the two masses at 
vertices A and B is located at F.  A unit mass should be placed at vertex C so that the center of 
mass of the two masses at A and C is located at E. 
 

B. The center of mass of the masses at B and C is located at point D. 
 

C. Use the “piecemeal” property of the center of mass to see that it must 

be located on all 3 medians AD , BE , and CF , and hence the medians 
are concurrent. 
 

D. The center of mass of 3 unit masses, one placed at each vertex of the triangle, is located at the 

intersection of the medians.  Consider the median AD .  We compute the center of mass of the 3 
unit masses by first replacing the 2 unit masses at points B and C with a 2 unit mass located at 
their center of mass, which is point D.  We now compute the center of mass of the original 3 unit 
masses by computing the center of mass of the unit mass at A and the 2 unit mass at D.  By the 
law of the lever, we know that this center of mass will split the median into 2 pieces that are in 
the ratio 1 : 2.  The same argument can be applied to all 3 medians.  
 
3. Label the vertices of the quadrilateral A, B, C, and D, in clockwise order.  Place unit masses at 
the 4 vertices of the quadrilateral.  Now compute the center of mass of these 4 point masses in 
two different ways, using the “piecemeal” property of the center of mass. 
 
4. Hint: Think of each unit mass at each vertex of P as 2 point masses each of mass 1/2. 
 
5. The ratio DX : DY = 2 : 1. 
 
6. The angle bisector theorem tells us that AY : YC = 7 : 3 and BX : XC = 7 : 6.  Therefore, if we 
place a 7 unit point mass at C, a 3 unit point mass at A, and a 6 unit point mass at B, the center of 
mass of the masses at A and C will be at Y and the center of mass of the masses at B and C will 
be at X.  Using the “piecemeal” property of the center of mass, we conclude that the center of 
mass of all 3 masses will be at M.  We can then readily compute that BM : MY = 10 : 6. 
 
7. If we can assign point masses to A, B, and C so that their center of mass is located at P, we 
would then be able to compute the ratio of the heights of triangles ABP and ABC.  Assign a point 
mass of mass a to A, b to B, and c to C.  We desire that a : b + c = 5 : 8 and b : a + c = 4 : 9.  That 
is, 8a = 5(b + c) and 9b = 4(a + c).  We solve this linear system for a and b in terms of c and find 
that a = 5c/4 and b = c.  Hence, if we let a = 5, b = 4, and c = 4, the center of mass of the 3 point 

masses will be at P.  Let F be where the cevian from A through P meets AB .  Using the 
“piecemeal” property of the center of mass, we find that FP : PC = 4 : 9.  Therefore, 
FP : FC = 4 : 13.  We conclude that the area of 
triangle ABP is 13(4/13) = 4 square units. 
 
 

To find out what we 
mean by “piecemeal” 
property of the center 
of mass, see Volume 
7, Number 3 of this 
Bulletin, particularly 
pages 20-21. 
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8. Without loss of generality, we position a coordinate plane so that the circumcircle has unit 
radius and center at the origin.  By rotating if necessary, we can ensure that one of the vertices is 
at A = (1, 0) and the other 2 vertices are located at B = (cos a, sin a) and C = (cos b, sin b), where 
0 < a < b < 360°.  The center of mass of the 3 equal unit masses is located at the average of their 
coordinates: P = ( (1 + cos a + cos b)/3, (sin a + sin b)/3).  In order for the center of mass of the 3 
unit masses and the mass m to be at the circumcenter, we need m to be on the circumcircle 
opposite P, and, by the law of the lever, we must have m = 3 |P|, where |P| is the distance of P 
from the origin.  Therefore, m2 = (1 + cos a + cos b)2 + (sin a + sin b)2.  This can be rearranged 
to m2 = 3 + 2(cos a + cos b + cos(a – b)). 
 Now observe that 

 A = (-a + b)/2, 
 B = 180 – b/2, 

and C = a/2. 
 
Therefore, m2 = 3 + 2(cos 2C + cos 2B + cos 2A). 
  
B. The centroid of the triangle is contained in the circumcircle.  Therefore, 0 ≤ |P| < 1.  Hence, 
 

0 ≤ m2 = 3 + 2(cos 2C + cos 2B + cos 2A) < 9. 
 

Equality holds if and only if |P| = 0, and this can only happen when the triangle is equilateral. 
 
9. At A, place a point mass of mass wxx’yy’.  At B, place a point mass of mass vxx’yy’.  At C, 
place two point masses, one of mass xx’wxy’ and one of mass xx’vx’y.  These masses are 
specifically chosen so that the following 3 facts are true: 
 

 1. The center of mass of the point masses at A and B is F. 
2. The center of mass of the point mass at A and the point mass at C of mass xx’wxy’ is E. 
3. The center of mass of the point mass at B and the point mass at C of mass xx’vx’y is D. 

 

From fact 1, we know that the center of mass of all 4 masses is located along CF .  Facts 2 and 3 

combined imply that the center of mass of all 4 masses is also located along ED .  Therefore, the 
center of mass of all 4 point masses is located at P.  We can then apply fact 1 to deduce that 
 

PF: PC = (xx’wxy’ + xx’vx’y) : (wxx’yy’ + vxx’yy’). 
 
This can be simplified to PF : PC = (wxy’ + vx’y) : yy’(w + v). 
 If x/y = x’/y’, then 

'

' ' '

'( )

x x x x
w v w v

PF wxy vx y xy y y y

PC yy w v w v w v y

+ +

+
= = = =

+ + +

. 

 
10. A. The center of mass of unit point masses located at each of the integers from 0 to n, 
inclusive, is located at (0 + 1 + 2 + 3 + ... + (n – 1) + n)/(n + 1) = n/2. 
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B. We claim that mk = k + 1.  To see this, we show that the center of masses of the point masses 
at 0, 1, 2, 3, ..., n is located at 2n/3.  First, the weighted sum of the positions of each point mass 
from the origin, weighted by their masses, is 
 

 1(0) + 2(1) + 3(2) + . . . + n(n – 1) + (n + 1)(n) 

= 
1

( 1)
n

k

k k
=

+∑   

= 
2

1

( )
n

k

k k
=

+∑  

= 
2

1 1

n n

k k

k k
= =

+∑ ∑  

= 
( 1)(2 1) ( 1)

6 2

n n n n n+ + +
+   

 
The total mass is 1 + 2 + 3 + . . . + (n – 1) + n + (n + 1) = (n + 1)(n + 2)/2.  Therefore, the center 

of mass is located at 
2 ( 1)(2 1) ( 1)

( 1)( 2) 6 2

n n n n n

n n

+ + + 
+ 

+ +  
, which simplifies to 2n/3. 

 
C. When R = 1 – 1/p, where p is a positive integer, we claim that mk = p – 2 + kCp – 2, where nCk is 
the binomial coefficient n choose k.  This can be proven by induction.  We omit the details. 
 

11. We think of the plane as the complex plane.  Let 
2 i

nw e

π
−

=  .  The vertices of the polygon are 
located at 1, w, w2, w3, ..., wn – 1 and the point mass at wk has mass k + 1.  The center of mass of 
these point masses is located at 

1

0

1
( 1)

n
k

k

k w
M

−

=

+∑ , 

 

where M is the total mass n(n + 1)/2.  To compute this sum, we use the algebraic identity 
 

1 + 2x + 3x2 + . . . + nxn – 1 = 
1

2

( 1) ( 1) (1 )

(1 )

n n
n x x x

x

+

+ − + −

−

 . 

 

(This identity can be derived in the following way.  First, note that 1/(1 – x) is the sum of the 
infinite geometric series 1 + x + x2 + . . ..  If we square this, we find that 1/(1 – x)2 is the infinite 
series 1 + 2x + 3x2 + . . . + (k + 1)xk + . . ..  If we subtract from this the quantity xn + 1/(1 – x)2, the 
first n + 1 terms will be unaffected but from the term (k + 1)xk, with k > n, we will subtract the 
like term (k – n)xk, resulting in (n + 1)xk for all terms k > n.  Therefore, if we subtract 
(n + 1)xn/(1 – x) from (1 – xn + 1)/(1 – x)2, we will obtain the above identity.) 
 We substitute w for x in the identity and divide by the total mass.  After simplification, 

we find that the center of mass is located at 
1

( 1,cot )
1n n

π
−

+

.  As n tends to infinity, 

cos1
cot

1 ( 1)sin

n

n n n
n

π
π

π
=

+ +

 tends to 1/π. 
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Quadratic Reciprocity 
by Cailan Li 
 
(Recall that in this Summer Fun problem set, p and q always denote distinct odd prime numbers.) 
 
1. Starting from ax2 + bx + c = 0 (mod p), we proceed by “completing the square” to transform 
this equation to (2ax + b)2 = b2 – 4ac (mod p).  This shows that b2 – 4ac is a square modulo p if 
and only if there exists x such that ax2 + bx + c = 0 (mod p).  (Since p is an odd prime, 4a is 
invertible modulo p.) 
 
2. (We should have asked to show that the nonzero squares modulo p are given by gx where 
1 < x < p is even, since 0 is a square modulo p but isn’t a power of a primitive root.)  The 
nonzero residues modulo p are given by g, g2, g3, ..., gp – 1.  If we square these, we will find all 
nonzero squares modulo p.  Thus, the set of squares are {g2, g4, g6, ..., g2(p – 1)}.  Since 
gp – 1 = 1 (mod p), we know that g2k = g2k + p – 1.  This implies that 
 

{g2, g4, g6, ..., g2(p – 1)} = { g2, g4, g6, ..., gp – 1}, 
 
as desired. 
 
3. Problem 2 informs us that there are (p – 1)/2 nonzero squares modulo p.  We determine all the 

squares to find the answers.  Modulo 3, the squares are 0 and 1, so 
2

3

 
 
 

 = -1.  Modulo 7, the 

squares are 0, 1, 4, and 2, hence 
2

7

 
 
 

 = 1.  Modulo 13, the squares are 0, 1, 4, 9, 3, 12, and 10, 

hence 
5

13

 
 
 

 = -1.  Modulo 19, the squares are 0, 1, 4, 9, 16, 6, 17, 11, 7, and 5, hence 
3

19

 
 
 

 = -1.  

To compute 
1041

101

 
 
 

, we could systematically compute the 51 squares modulo 101 and check if 

1041 is among them, though doing so would be tedious.  The development of the theory of 
quadratic residues leads to much more efficient ways of computing Legendre symbols. 
 
4.  From Fermat’s little theorem, (x(p – 1)/2)2 = 1 (mod p).  Hence x(p – 1)/2 = ±1 (mod p).  If 
x = y2 (mod p), then x(p – 1)/2 = y(p – 1) = 1 (mod p) by Fermat’s little theorem.  On the other hand, 
x(p – 1)/2 – 1 = 0 (mod p) cannot have more than (p – 1)/2 roots.  Since there are (p – 1)/2 nonzero 
squares modulo p, all the non-squares must satisfy x(p – 1)/2 = -1 (mod p). 
 

5. Did you figure out that, contrary to what we asked, 
1

p

 −

 
 

 = 1 if and only if p = 1 (mod 4)? To 

see this, we use Euler’s criterion: 
1

p

 −

 
 

 = (-1)(p – 1)/2.  Thus, 
1

p

 −

 
 

 = 1 if and only if (p – 1)/2 is 

even, say equal to 2k for some integer k. 
In that case, p = 4k + 1. 
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6. If k = j, then | rk | = | rj |.  Assume | rk | = | rj |.  Then kb = ±jb (mod p).  Dividing by b, we see 
that k = ±j (mod p), i.e. either p divides k – j or p divides k + j.  Because both k and j are between 
1 and (p – 1)/2, inclusive, it cannot be the case that k + j is divisible by p.  So k – j must be 
divisible by p, and since both k and j are between 1 and (p – 1)/2, inclusive, we must have k = j. 
 
7. From #6, the numbers r1, r2, r3, ..., r(p – 1)/2 consist of the numbers ±1, ±2, ±3, ..., ±(p – 1)/2, 
with a definite sign for each entry in this list.  By definition of N, there are exactly N negative 
numbers in the list.  Thus b(2b)(3b) ·· ·  ((p – 1)b/2) = (-1)N·1·2·3·· ·((p – 1)/2) (mod p). 
 

8. Using Gauss’s lemma, 
1

p

 −

 
 

 = (-1)N, where N is the number of k such that 1 ≤ k ≤ (p – 1)/2 

and rk = (-1)k < 0.  This is true for all such k, so N = (p – 1)/2.  Therefore, -1 is or is not a square 
modulo p according to whether (p – 1)/2 is even or odd, i.e., p = 1 (mod 4) or p = 3 (mod 4). 
 

9. By Gauss’s lemma, 
2

p

 
 
 

 = (-1)N, where N is the number of k such that 1 ≤ k ≤ (p – 1)/2 and 

rk < 0, where rk is the unique number between –p/2 and p/2 such that rk = 2k (mod p).  Of the 
numbers 2, 4, 6, 8, ..., p – 3, p – 1, the numbers up to (p – 1)/2 are congruent to positive numbers 
in the range –p/2 to p/2 and the remaining numbers are congruent to negative numbers in the 
range –p/2 to p/2.  Therefore, N is the least integer greater than or equal to (p – 1)/4.  If 
p = 1 or 7 (mod 8), then N is even and if p = 3 or 5 (mod 8), then N is odd.  (Verify this!) 
 

10. Using Euler’s criterion, we see that ( 1)/2 ( 1)/2 ( 1)/2( ) p p pxy x y
xy x y

p p p

− − −
    

= = =    
    

. 

11. From #9, 
2

3

 
 
 

 = -1 and 
2

7

 
 
 

 = 1.  We compute 
5 13 3 5 2

1
13 5 5 3 3

         
= = = = = −         

         
.  We 

compute 
3 19 1

1
19 3 3

     
= − = − = −     

     
.  Finally, 

3
1041 31 101 8 2

1
101 101 31 31 31

         
= = = = =         

         
. 

12.  By Gauss’s lemma, 1( 1)Nq

p

 
= − 

 
 and 2( 1)Np

q

 
= − 

 
.  Therefore 1 2( 1)N Nq p

p q

+
  

= −  
  

.  It 

follows that 
p

q

 
 
 

 = 
q

p

 
 
 

 if and only if 1 2( 1) 1N N+

− = . 

13.  The diagonal AD is on the line py = qx.  Since p and q are relatively prime, any integer 
solutions to this equation must satisfy p | x and q | y.  However, for points (x, y) on the interior of 
the diagonal, 0 < x < p/2 and 0 < y < q/2. 
 
14.  Let (a, b) be a lattice point in the interior of H above diagonal AD.  By examining the 
boundary of this region, we see that 0 < a < p/2, qa/p < b < qa/p + 1/2, and b < q/2.  The second 
of these inequalities is equivalent to –p/2 < qa – pb < 0.  Therefore aq is congruent, module p, to 
a negative number greater than –p/2 and contributes to the value of N1.  Conversely, for any a 
between 0 and p/2 where aq is congruent, modulo p, to a number between –p/2 and 0, there is an 
integer b such that -p/2 < aq – bp < 0.  The left 
inequality implies that b < aq/p + 1/2 < (q + 1)/2. 
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Since q is an odd prime and b is an integer, this implies that b < q/2.  Therefore, (a, b) 
corresponds to a lattice point in the interior of H and above the diagonal AD. 
 A similar argument shows that N2 is the number of lattice points in the interior of H 
below the diagonal AD. 
 Combining this result with #13, we conclude that there are N1 + N2 lattice points in the 
interior of H. 
 
15. The interior of H is defined by the following inequalities: 
 

0 < x < p/2 
0 < y < q/2 

qx – q/2 < py < qx + p/2 
 
Let (x, y) be a lattice point in H.  Since p and q are both odd, ((p + 1)/2 – x, (q + 1)/2 – y) is also a 
lattice point.  We now verify that ((p + 1)/2 – x, (q + 1)/2 – y) is in the interior of H by checking 
that its coordinates satisfy each of the inequalities above.  Since 0 < x < p/2, we know that 
(p + 1)/2 – p/2 < (p + 1)/2 – x < (p + 1)/2, which simplifies to 1/2 < (p + 1)/2 – x < (p + 1)/2.  
Since (p + 1)/2 – x and (p + 1)/2 are integers, if (p + 1)/2 – x < (p + 1)/2, then in fact 
(p + 1)/2 – x < p/2.  And since 0 < 1/2, we conclude that 0 < (p + 1)/2 – x < p/2. 
 Similar reasoning shows that 0 < (q + 1)/2 – y < q/2. 
 Next, we compute that 
 

q((p + 1)/2 – x) – q/2 = q(p + 1)/2 – qx – q/2 
 = qp/2 – qx 
 = qp/2 + p/2 – p/2 – qx 
 < qp/2 + p/2 – py 
 = p((q + 1)/2 – y). 

 
 A similar computation shows that p((q + 1)/2 – y) < q((p + 1)/2 – x) + p/2. 
 We conclude that ((p + 1)/2 – x, (q + 1)/2 – y) is in the interior of H. 
 Now observe that (x, y) = ((p + 1)/2 – x, (q + 1)/2 – y) if and only if x = (p + 1)/4 and 
y = (q + 1)/4.  But ((p + 1)/4, (q + 1)/4) is a lattice point if and only if p = q = 3 (mod 4).  So only 
when p = q = 3 (mod 4) will the number of lattice points in the interior of H be odd since all 
lattice points in the interior of H aside from ((p + 1)/4, (q + 1)/4) can be paired with their image 
under the involutory transformation (x, y) → ((p + 1)/2 – x, (q + 1)/2 – y). 
 
16. From #14, the number of lattice points in the interior of H is N1 + N2.  From #15, N1 + N2 is 

odd if and only if p = q = 3 (mod 4).  Thus 1 2( 1)N Nq p

p q

+
  

= −  
  

= -1 if and only if 

p = q = 3 (mod 4).  Thus 
p

q

 
 
 

 = 
q

p

 
 
 

 unless p and q are both congruent to 3 modulo 4, in which 

case 
p

q

 
 
 

 = -
q

p

 
 
 

. 
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Signs of Permutations 
by Ken Fan 
 
1. In one-line notation, the permutation that leaves each object in place is given by: 
 

1 2 3 4 5 . . . (n – 1) n 
 
2. Let’s build up the permutation step by step by assigning a place for the object in the 1st box, 
followed by the 2nd box, followed by the 3rd box, etc.  First take out all the objects. 
 The object from the 1st box can be put into any of the n boxes.  The object from the 2nd 
box can be put into any box other than the one where the object from the 1st box was placed.  So 
there are n – 1 choices for the object from the 2nd box.  After the objects from the 1st and 2nd 
boxes are placed, there are n – 2 choices for where we can place the object from the 3rd box.  By 
the time we get to the object from the (k + 1)st box, there are only n – k unoccupied boxes 
remaining.  Since each choice is independent, the total number of ways to rearrange the objects is 
n(n – 1)(n – 2) · ·  ·  3 · 2 · 1 = n!.  Here’s a table of the first few values of n!: 
 

n 1 2 3 4 5 6 7 8 

n! 1 2 6 24 120 720 5040 40320 

 
3. With s = 3 1 5 2 4 and t = 5 2 4 1 3, if we apply t followed by s, the object in box 1 will end up 
in box 4, the object in box 2 will end up in box 1, the object in box 3 will end up in box 2, the 
object in box 4 will end up in box 3, and the object in box 5 will end up in box 5. 
 
4. In one-line notation, the permutation obtained by applying s first, followed by t, is: 
 

4 5 3 2 1 
 
This is different from what you get when you apply t first, followed by s, which, in one-line 
notation, is the permutation 4 1 2 3 5. 
 
5. We’ll prove this by induction on n.  When n = 1, we adopt the convention that the empty 
product corresponds to the permutation that leaves every object in place.  When n = 2, there are 
only 2 permutations: 1 2 and 2 1.  The first can be represented by the empty product and the 
second is a transposition. 
 Now assume that every permutations on the numbers 1 through N can be written as a 
product of transpositions.  We shall show that any permutation on N + 1 numbers can be written 
as a product of transpositions. 
 Let s be a permutation on the numbers 1 through N + 1.  Suppose that s(J) = N + 1.  If 
J = N + 1, then the restriction of s to the numbers 1 through N is a permutation of the numbers 1 
through N.  By induction, this restriction can be written as a product of transpositions.  If we 
extend all these transpositions to transpositions on the numbers 1 through N + 1 by leaving the 
object in box N + 1 alone, we see that s is a product of transpositions.  So assume that J < N + 1. 
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 Let t be the transposition which swaps the objects in boxes J and N + 1 and leaves all the 
other objects in place.  Notice that st (N + 1) = N + 1.  By the same reasoning of the previous 
paragraph, we use induction to see that st can be written as a product of transpositions t1t2t3· · ·tm.  
Then t1t2t3· · ·tm·t is a product of transpositions equal to s. 
 By induction, all permutations can be expressed as products of transpositions. 
 
6. A transposition swaps the positions of 2 objects and leaves all the other objects in place.  Once 
we have selected which 2 objects we are going to swap, the transposition is determined.  So the 
number of transpositions is equal to the number of ways we can pick 2 objects from n objects.  
We have n choices for the first object and n – 1 choices for the second.  However, if we simply 
take the product n(n – 1), we would be counting every possibility twice since each possibility can 
be selected in 2 ways, depending on which of the 2 elements is selected first.  So the number of 
transpositions is n(n – 1)/2. 
 
7. Since 1 leaves all objects in place, there are no (x, y), with 1 ≤ x < y ≤ n, such that p(x) > p(y).  
Hence N(1) = 0.  Conversely, suppose N(p) = 0.  If p(1) > 1, there must be some k > 1 such that 
p(k) = 1.  But then (1, k) would be a pair of box labels such that 1 < k but p(1) > p(k), in 
contradiction to the assumption that N(p) = 0. Therefore p(1) = 1.  By similar reasoning, p(2) = 2, 
and so on for all the boxes.  We conclude that if N(p) = 0, then p = 1. 
 
8. If N(p) = n(n – 1)/2, every pair of box labels (x, y), with 1 ≤ x < y ≤ n satisfies p(x) > p(y).  If 
we let f be the permutation represented by n (n – 1) (n – 2) · ·  ·  3 2 1 in one-line notation, then pf 
must satisfy pf(x) < pf(y) for every pair of box labels (x, y), with 1 ≤ x < y ≤ n (because f(x) > f(y) 
and so pf(y) > pf(x)).  From #7, it follows that pf = 1.  Therefore pff = 1f.  But pff = p1 = p and 
1f = f.  Hence p = f. 
 
9. Let t be a transposition that swaps the contents of boxes i and j with 1 ≤ i < j ≤ n.  Throughout, 
assume that 1 ≤ x < y ≤ n.  We consider cases according to how {x, y} and {i, j} intersect.  If 
{x, y} and {i, j} do not intersect, then t(x) = x and t(y) = y.  If {x, y} ∩ {i, j} = {i}, then either 
x = i or y = i.  If x = i, then t(x) > t(y) if and only if j > y.  Since y > x, there are exactly j – i 
values of y such that t(x) > t(y).  If x = j, then t(x) < t(y).  By similar reasoning, we count j – i 
ordered pairs (x, y) where t(x) > t(y) and {x, y} ∩ {i, j} = {j}.  If {x, y} ∩ {i, j} = {i, j}, then x = i 
and y = j and t(x) > t(y).  We conclude that there are 2(j – i) + 1 ordered pairs (x, y) such that 
t(x) > t(y).  The σ(t) = (-1)2(j – i) + 1 = -1. 
 
10. Suppose t swaps the contents of boxes i and j with 1 ≤ i < j ≤ n.  Then 
 

( ), if  and 

( ) ( ), if 

( ), if 

p x x i x j

pt x p j x i

p i x j

≠ ≠


= =


=

 

 
Let S = { (x, y) | 1 ≤ x < y ≤ n and p(x) > p(y) } and S’ = { (x, y) | 1 ≤ x < y ≤ n and pt(x) > pt(y) }.  
By definition σ(p) = (-1)#S and σ(pt) = (-1)#S’.  We can also assume, without loss of generality, 
that p(i) < p(j), for if p(j) < p(i), we can simply switch the roles of p and pt. 
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10 continued. Throughout, assume 1 ≤ x < y ≤ n.  We again consider cases according to how 
{x, y} and {i, j} intersect.  If the intersection is empty, then (x, y) is in S if and only if (x, y) is in 
S’.  If the intersection is {i, j}, then x = i and y = j and since p(i) = pt(j) and p(j) = pt(i), we know 
that (x, y) is in S’ but not in S.  (Recall that we are assuming that p(i) < p(j).) 
 Now consider the cases where {x, y} and {i, j} intersect in a single element.  There are 4 
such cases: either x = i, x = j, y = i, or y = j.  If x = i, then p(x) = p(i), pt(x) = p(j), and p(y) = pt(y).  
If p(y) < p(i), then (x, y) is in both S and S’.  If p(i) < p(y) < p(j), then (x, y) is in S’ but not S.  If 
p(y) > p(j), then (x, y) is in neither S nor S’.  A similar argument shows that if x = j, then (x, y) is 
in both S and S’ if p(y) < p(i), in S but not S’ if p(i) < p(y) < p(j) (note that unlike the case x = i, 
here, more pairs end up in S than in S’), and in neither S nor S’ if p(y) > p(j).  Therefore, the 
cases x = i and x = j account for a net difference of #{y | i < y < j and p(i) < p(y) < p(j)} more 
pairs in S’ than in S. 

Similar reasoning reveals that the cases y = i and y = j account for a net difference of 
#{x | i < x < j and p(i) < p(x) < p(j)} more pairs in S’ than in S. 

Since the net difference from the cases x = i and x = j equals the net difference from the 
cases y = i and y = j, all 4 cases where {x, y} and {i, j} intersect in a single element account for a 
net difference of an even number more pairs in S’ than in S. 

The only case that affects the relative parity of #S and #S’ is where x = i and y = j. 
Therefore, #S and #S’ are of opposite parity and σ(pt) = -σ(p). 
To show that σ(tp) = -σ(p), we can adapt the above argument or use inverses, noting that 

σ(p) = σ(p-1), where p-1 is the unique permutation that satisfies p-1p = 1. 
 
11. For #11, combine the results of #5 and #10. 
 
12.  Actually, the statement isn’t true if p = 2.  Did any of you catch that?  So let’s assume that p 
is an odd prime number.  In this case, see Cailan’s solution to problem 2 of his Summer Fun 
problem set on quadratic reciprocity on page 23. 
 
13. Again, we must assume that p is an odd prime number.  If p = 2, then σ(s) = 1 regardless of 
the parity of k since, in this case, g = 1 and gk = 1 for all k.  So assume that p is an odd prime 
number. 
 
If we start at any box x and repeatedly apply s, the contents of box x will go from x to ax to a2x to 
a3x, etc.  The contents of box x will return to box x whenever we apply s a total of m times where 
am = 1 (mod p).  The first time this happens is when m = (p – 1)/(k, p – 1).  From this we see that 
the p – 1 boxes can be organized into (p – 1)/m sets of m boxes where s cyclically rotates the 
contents of the boxes within each set in such a way that each object visits each box in the set.  
Such a cycle can be written as a product of m – 1 transpositions (check this!).  Therefore, s is a 
product of (m – 1)(p – 1)/m transpositions and σ(s) = (-1)(m – 1)(p – 1)/m.  This shows that σ(s) = -1 if 
and only if (m – 1)(p – 1)/m is odd, and this can only happen if m is even and (p – 1)/m is odd.  If 
(p – 1)/m is odd, then the highest power of 2 that divides p – 1 must also divide m, and this can 
only happen if k is odd (since otherwise, (k, p – 1) would be even and its factors of 2 would 
cancel with factors of 2 in p – 1.  Since p is an odd prime, p – 1 is even, so the highest power of 2 
that divides p – 1 is at least 2.  Therefore if (p – 1)/m is odd, then m will also be even. 
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Calendar 

 
Session 15: (all dates in 2014) 
 

September 11 Start of the fifteenth session! 
 18  
 25 No meet 
October 2 Emily Pittore, iRobot 
 9  
 16  
 23  
 30  
November 6  
 13 Cornelia A. Van Cott, University of San Francisco 
 20  
 27 Thanksgiving - No meet 
December 4  
 11  

 
 
Finding the Maximum Subsequence Answer (see page 8):  The maximum subsequence runs 
from the 6th term to the 10th term (8, 4, -10, -1, 12) and the sum of this subsequence is 13. 
 
 
Author Index to Volume 7 

 
Nadine Alise 4.09 
Anna B. 1.15, 2.16, 3.15, 4.17, 5.13, 6.14 
Leah Berman 4.01, 4.09 
Timothy Chow 2.07 
Alissa Crans 2.03 
Robert Donley 2.11, 3.08 
Lightning Factorial 2.13, 3.17, 4.12, 5.20, 6.09, 6.18 
Ken Fan 1.17, 1.18, 1.23, 2.10, 2.18, 2.22, 2.26, 2.27, 3.19, 3.27, 3.28, 4.19, 4.27, 5.26, 5.28, 6.20, 6.26  
Valeria Golosov 5.09 
Kate Jenkins 5.06, 6.06 
Aaron Lee 1.09 
Jesse Lee 1.12 
Cailan Li 5.24, 6.23 
Sisi Liu 1.03 
Isabel Macenka 1.26 
Tom Moore 4.20 
Anthony Orth 1.06 
Barabara Remmers 1.19, 3.23 
Anne Shiu 1.03 
Karen Smith 3.03 
Addie Summer 3.12, 4.06, 5.15 
Johnny Tang 5.22 
Marie Vitulli 4.03, 5.03 
Christine Berkesch Zamaere 6.03 
Julia Zimmerman 3.01 

 
Key: n.pp = number n, page pp 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $36 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $36 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll?  You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay?  The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 12 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, lecturer, Harvard University 
Julia Elisenda Grigsby, assistant professor of mathematics, Boston College 
Kay Kirkpatrick, assistant professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Instructional Designer, Stanford University 
Lauren McGough, graduate student in physics, Princeton Univeresity 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, The Dartmouth Institute 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, assistant professor, University of Washington 
Karen Willcox, professor of aeronautics and astronautics, MIT 
Lauren Williams, associate professor of mathematics, UC Berkeley 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $36 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


