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An Interview with Marie Vitulli, Part 2 
 

This is the concluding half of our interview with University of Oregon Professor Emeritus Marie 
Vitulli. 
 
Ken: Will you please describe a mathematical result that you proved? 
 
Marie: Together with my late colleague David Harrison, I developed a valuation theory for 
commutative rings that generalized both Krull valuations and Archimedean valuations (also 
known as absolute values) for fields.  Valuations, particularly Archimedean valuations, measure 
the size of the objects in a field.  The usual notion of absolute value on the field of real numbers 
is an Archimedean valuation. 
 A field is a commutative ring in which the equation ax = 1 has a solution whenever a ≠ 0; 
we also say that every nonzero element in a field is invertible.  A valuation on a field is a 
special function from the field to another mathematical structure called a totally ordered 

Abelian group.  A group is Abelian if the operation is commutative.  A totally ordered Abelian 
group is an Abelian group together with an ordering of the objects of the group that is compatible 
with the group operation and in which any two objects may be compared.  Totally ordered 
Abelian groups are better behaved and understood than fields and we can use them and 
valuations to put more structure on fields with the aim of better understanding them.  
 
Ken: How did you find the result and how did you prove it? 
 
Marie: Dave Harrison asked me to co-advise his doctoral student Ken Valente when Dave left 
Eugene to work in Germany on a Humboldt Research Fellowship.  The area that Ken was 
working on was new to me so I had to do some reading to be able to advise him.  As I began to 
reflect on what they were doing I realized that if you replaced a totally ordered Abelian group by 
a more general object that we later called a V-monoid and replaced a field by a commutative ring 
you could describe some of what they were doing in terms of valuations.  Dave and I later 
developed an entire theory and demonstrated the usefulness of this theory.  
 
Ken: What are the outstanding mysteries in math that you find alluring? 
 
Marie: There are many questions that are still unanswered that I would like to know how to 
solve.  Many are not easy to state without a lot of background.  One outstanding problem that I 
can easily describe is the Jacobian Conjecture.  The conjecture was initially posed for 
polynomials in two variables by Ott-Heinrich Keller in 1939.  The conjecture was named later by 
the late mathematician Shreeram Abhyankar who used it to illustrate a deep problem in algebraic 
geometry that could be stated and understood by anyone with some knowledge of calculus.  
Given a polynomial function F from complex n-space Cn to Cn, where 
 

1 1 1 1( , , ) ( ( , , ), , ( , , ))
n n n n

F c c f c c f c c=… … … …  

 

and f1, ..., fn are polynomials in n variables x1, ..., xn, we define the Jacobian determinant of F, 

denoted by JF, to be the determinant of the matrix of partial derivatives ( / )
i j

f x∂ ∂ .  Notice that 

the Jacobian determinant is a polynomial function.  It is straightforward to show that if the 
polynomial function F(c1, ..., cn) has an inverse function that is also a polynomial function, then  
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the complete interview with 
Prof. Vitulli, and some other content.   We hope that you 
consider the value of such content and decide that the efforts 
required to produce such content are worthy of your financial 
support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
Girls’ Angle: A Math Club for Girls 
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Finding the Maximum Subsequence, Part 11 
by Kate Jenkins | edited by Jennifer Silva 
 

I’m writing today to introduce you to algorithms – to give you some idea of what they 
are, why they are interesting to think about, and why good algorithms are important for solving 
big, hard problems.  My name is Kate Jenkins, and I’m a Principal Software Architect at Akamai 
Technologies.  I have spent most of my career developing algorithms to make the internet work 
better and more efficiently.  Sophisticated algorithms tell computers how to solve all kinds of 
problems that we often take for granted.  For example, they are used for searching the web, 
analyzing DNA sequences, identifying possible new treatments for serious diseases, recognizing 
faces in photos, playing chess, driving cars, and in computational geometry.  And that’s just 
scratching the surface. 
 An algorithm is like a recipe, but instead of making food, it makes the answer to a 
problem.  Like a recipe, you care about whether it works (makes the thing you wanted it to 
make) and how long it takes!  We use math to analyze algorithms, and we also use algorithms to 
solve mathematical problems.  So you can think of algorithms as being at the intersection of 
math and computer science.   
 At the Girls’ Angle club, we talked about Dijsktra’s shortest path algorithm, which finds 
the shortest path to take between two nodes in a network.  Today we’ll look at another problem 
and consider algorithms that can be used to solve it. 
 

Suppose you have a sequence of numbers, which can include both negative and positive 
numbers, such as the following one consisting of 10 members: 
 

10 -8 4 2 -9 8 4 -10 -1 12 

1st
 2nd

 3rd
 4th

 5th
 6th

 7th
 8th

 9th
 10th

 

   
The numbers below the line show the position of each number in the sequence.  For instance, 10 
is the 1st number in the sequence, while 12 is the 10th. 

The sum of the sequence is the sum of all numbers in the sequence, in this case 
 

10 + (-8) + 4 + 2 + (-9) + 8 + 4 + (-10) + (-1) + 12 = 12. 
 
A subsequence is a sequence of numbers between some particular start and end position within 
the sequence.  For example, the subsequence from the 3rd to 6th position is 4, 2, -9, 8, and it has a 
sum of 5. 
 
Here’s the problem we’ll be considering today: 

 
Before continuing, take some time to think about the answer to this question for the sample 
sequence above. 

                                                 
1 This content supported in part by a grant from MathWorks. 

 

Of all of the possible subsequences, which one has the biggest sum, and what is that sum? 
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 Now think about how you came up with your answer.  How would you write down 
instructions that someone (or something) could follow to find the right answer no matter what 
sequence was given? 
 You might say, “Look at all of the possible choices, compute the sum for each one, and 
remember which one was the biggest.” 
 Let’s try that on a simpler example: 
 

1 -2 2 -1 4 

1st 2nd 3rd 4th 5th 

 
To come up with the answer using this algorithm, we would look at all of the possible start and 
end positions and compute the sum for each one.  Here’s a table with a column for each start 
position and a row for each end position.  The entries represent each possible subsequence, with 
each entry showing the sum for that particular subsequence. 
   

          Start 
End 1st 2nd 3rd 4th 5th 

1st 1 = 1     

2nd 1 + (-2) = -1 -2 = -2    

3rd 1 + (-2) + 2 = 1 -2 + 2 = 0 2 = 2   

4th 1 + (-2) + 2 + (-1) = 0 -2 + 2 + (-1) = -1 2 + (-1) = 1 -1 = -1  

5th 1 + (-2) + 2 + (-1) + 4  = 4 -2 + 2 + (-1) + 4 = 3 2 + (-1) + 4 = 5 -1 + 4 = 3 4 = 4 

 
The largest sum here is 5, which is the sum of the subsequence that starts at the 3rd position and 
ends at the 5th position in the sequence, so that is the answer this algorithm would provide. 
 The good news is that this gives the right answer!  We know it does because it considers 
every possible answer and finds the best.  This is often referred to as a “brute force” approach, 
because every possibility is examined. 
 The not-so-good news is that carrying out this algorithm is a lot of work.  How many plus 
signs do you see in the above table?  Whoever or whatever is following this algorithm does that 
many addition problems to come up with the right answer.  (By “addition problem,” I mean 
adding two numbers together.) 
 How many plus signs would you expect to see if there were 6 numbers in the sequence 
instead of 5?  What if there were 10, 100, or 1000 numbers?  Or any length N? 
 The glib answer is “a lot.”  I’ll omit the details, but it turns out that the number of 
addition problems needed for this brute force approach is (N3 – N)/6.  For large N, the N3 term 
dominates, so the computer scientist’s answer is that the number is “on the order of N3.”  This is 
written as O(N3) and means that N3 is the biggest term in the answer, ignoring any constant 
factors. 
 If we study the above table carefully, we see that there are a lot of numbers that get added 
together over and over again.  Perhaps we can exploit this observation and modify our algorithm 
to still get the right answer, but with a lot less work! 
 Looking at any column, we see that each row involves simply adding one new number to 
the sum in the row above it.  If you already know that the sum of the subsequence starting at 
position i and ending at position j is S, then the sum of the subsequence starting in the same place 
but ending at j + 1 is just S plus the number in the sequence at position j + 1. 
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 Utilizing this insight, we can modify the original algorithm to compute the sum for each 
subsequence more quickly, using what it already knows from previous subsequences.  In the 
table below, ‘…’ denotes the sum from the entry above. 
 

1 -2 2 -1 4 

1st 2nd 3rd 4th 5th 

 
      Start 
End 1st 2nd 3rd 4th 5th 

1st 1 = 1     

2nd … + (-2) = -1 -2 = -2    

3rd … + 2 = 1 … + 2 = 0 2 = 2   

4th … + (-1) = 0 … + (-1) = -1 … + (-1) = 1 -1 = -1  

5th … + 4  = 4 … + 4 = 3 … + 4 = 5 … + 4 = 3 4 = 4 

 
Our modified algorithm still comes up with the same answer, but it requires substantially fewer 
addition operations to get there.  Instead of the 20 we had to do with the original version, the new 
way only needs 10. 
 For a sequence of length N, how many addition operations would we need to do?  One 
addition operation is performed for each subsequence that has an end position greater than its 
start position.  There are N – 1 such subsequences with start position 1, N – 2 with start position 
2, N – 3 with start position 3, etc., so the number of such subsequences is 
 

(N – 1) + (N – 2) + (N – 3) + ... + 3 + 2 + 1 = N(N – 1)/2 = N2/2 – N/2. 
 

Since the dominant term, up to a constant factor, is N2, computer scientists would call it O(N2). 
 The table that follows shows how many operations are needed by the two algorithms for 
a few different sequence lengths. 
 

Sequence Length Algorithm 1 Algorithm 2 

5 20 10 

6 35 15 

10 165 45 

100 166,650 4,950 

1000 166,666,500 499,500 

 
Algorithm 2 is much nicer, but it’s still a lot of work for long sequences.  Can we do better? 
 The answer is yes.  It turns out that there’s a way to find the answer with fewer than N 
addition operations.  To do this, you don’t compute the sum for every possible subsequence, only 
for some of them.  But you still can prove that you get the right answer. 

 

Continued at the bottom of page 29...

 

Play with the problem a bit and see if you can figure it out. 
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Brahmagupta was a real person 

who lived in India in the 7th century.  

This is a fictionalized imagining of 

how he discovered his formula for 

the area of a cyclic quadrilateral. 

A Brilliant Mind 
by Valeria Golosov1 | edited by Jennifer Silva 
 

Over a thousand years ago, on a hot, sunny day in 
India, Brahmagupta was walking along the Shipra River.  
The river went on for what seemed like miles.  Around a 
bend, there appeared in the middle of the river a perfectly 
circular island covered in trees.  Brahmagupta was gripped 
with curiosity and decided to investigate more closely.  After a long and refreshing swim, he 
reached the distant shore.  The island was rich with beautiful flowers, delicious fruit and tall 
palm trees.  It was so tranquil and peaceful. 

He walked deeper into the island and discovered a wall.  It was tall and made of dark 
stones.  It seemed to stretch to the edge of the island.  Brahmagupta thought to himself that the 
wall was like the chord of a circle.  Then he heard a voice. 

Wealthy Merchant: Who dares disturb me on my island? 
Brahmagupta looked up and saw, sitting atop the wall, a short, stubby man draped in the 

softest-looking and most colourful silks he had ever seen. 
Brahmagupta: I’m sorry kind sir, but I was only curious to see this island because it 

appeared to be a perfect circle; I didn’t know it belonged to someone. 
The man looked inquiringly at the stranger.  All of a sudden, he recognized him. 
Wealthy Merchant: I know you – you are a famous mathematician.  You are 

Brahmagupta.  I will forget about your trespassing on my island if you can help me with a 
problem I have that requires your brilliant mind. 

Brahmagupta was flattered and decided to help the man. 
Brahmagupta: What is the problem? 
Wealthy Merchant: I am building a grand monument dedicated to my father.  We shared 

a love of mathematics, so I decided that I should build a monument in the shape of a beautiful 
geometric figure in his honour.  My engineer is working on a flying machine so that people will 
be able to see the monument’s perfect geometric shape from up high.  I desire that you find the 
area of my monument so that I know the right amount of material for its roof. 

Brahmagupta looked puzzled; how would he find the area if he could only see a wall? 
Brahmagupta: Merchant, I can only see one side of the monument.  I don’t know what 

shape it is.  For all I know, this wall is the monument.  
Wealthy Merchant: Very well, I tell you that the shape is a cyclic quadrilateral.  My 

engineer knows only its edge lengths. 
Brahmagupta: Fine sir, what are the edge lengths? 
Wealthy Merchant: That is a secret!  Deliver me a formula so that my engineer can 

substitute whatever edge lengths he sees fit. 
Brahmagupta: Kind sir, even knowing the edge lengths, there are still different cyclic 

quadrilaterals... 
Wealthy Merchant: Enough already!  I’ve business to attend to. 

 The Merchant disappeared and left Brahmagupta to think alone. 
Brahmagupta took a stick and started to think.  He decided to call the edge lengths a, b, c, 

and d.  He reasoned that there are 4 × 3 × 2 × 1 / 4 = 6 different ways to order the edges of the 
quadrilateral, but the 6 orderings can be organized into 3 pairs where each pair consists of an  

                                                 
1 Valeria Golosov is entering her last year at the Wimbledon High School in London, England. 
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Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 

By Anna B. 
 

Anna explores paraboloidal cross sections (see the cover). 
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Chocolate Chip 
Cookies Count 
by Addie Summer 
edited by Jennifer Silva 
 

“17 of your choice chocolate 
chip cookies, please!” I requested of Mr. 
ChemCake. 

“17?” responded Mr. 
ChemCake.  “That’s an unusual 
number!  Ah, this must be for Yellow 
Pig Day?” 

“Yep!  I’ve got a friend at 
HCSSiM this summer, and I want to 
surprise her.” 

“Well, let’s see.  I sell them in 
packs of 4 and 7, so how many of each 
size would you like?” 

I began thinking.  I didn’t want to order more than 4 packs of 4, because that would give 
me more than 17 cookies.  If I got 4 packs of 4, I’d have 16 cookies and I’d need 1 more, but I 
couldn’t purchase single cookies.  If I got 3 packs of 4, that would be 12 cookies, and I’d still 
need 5 more – not possible.  If I got 2 packs of 4, I’d have 8 cookies and I’d need 9 more, but 9 is 
also not a multiple of 7.  With 1 pack of 4, I’d need 13 more cookies, which is also not a multiple 
of 7.  And 17 isn’t a multiple of 7, so 17 can’t be had with only packs of 7.  Argh! 

“It’s impossible!” I declared, wondering how I always seem to end up doing math at 
Cake Country.  “Oh well.  I’ll go ahead and get 18 cookies: 1 pack of 4 and 2 packs of 7, please.” 

“How about this, Addie,” said Mr. ChemCake as he slipped on some gloves.  “I’ll sneak 
one out of the pack of 4.  Nobody will know the difference!  Besides, I’m the one who packages 
these.  I’ll charge you for 17, and you can have this extra one compliments of the house!” 

“That’d be perfect!  Thanks, Mr. ChemCake! 
 

On the way home, I wondered this: How many chocolate chip cookies can one buy if 
they only come in packs of 4 and 7?  If I purchase x packs of 4 and y packs of 7, then I would 
have a total of 4x + 7y chocolate chip cookies.  So if I want to be able to purchase N cookies, I 
would need to solve the equation 4x + 7y = N, and the solutions x and y would have to be 
nonnegative integers.  I figured out that there are no such solutions when N = 17, but x = 1 and 
y = 2 is a solution for N = 18 cookies. 

In the xy-coordinate plane, the solutions to the equation 4x + 7y = N correspond to a 
straight line.  Different values of N correspond to different lines that are all mutually parallel to 
each other; they all have slope -4/7.  The points in the xy-coordinate plane that have integral 
x and y coordinates form a square lattice.  So the question of whether N cookies can be 
purchased is equivalent to whether there is a lattice point with nonnegative coordinates on the 
straight line 4x + 7y = N. 

I decided to ignore the nonnegative condition for the moment and focus on understanding 
what lattice points, if any, are on the line 4x + 7y = N.  By writing the equation as 7y = N – 4x, I 
could see that the equation has an integral solution if there is an integer x for which N – 4x is a 
multiple of 7.  Here, I made use of a fundamental fact about numbers: because 4 and 7 are 
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relatively prime, the multiples of 4, when divided by 7, 
leave remainders that cycle through all possible values 
0, 1, 2, 3, 4, 5, and 6 in some fixed order (for proof, see 
the blue box at left).  So not only do I know that there 
are values of x such that N – 4x is divisible by 7, but 
also that such values of x form an infinitely long 
arithmetic sequence with common difference 7.  For 
example, when N = 18, we have the solution x = 1, 
y = 2.  Since x = 1 is 
part of a solution, so 
will be x = 8, 15, 22, 
29, etc., as well as 
x = -6, -13, -20, etc. 
 This regularity 
means that every 7-unit 
wide vertical strip that 
includes its left 
boundary but not its 

right will contain exactly 1 lattice point on the line 4x + 7y = N.  
We could also use strips that include their right boundary but not their left.  By including one 
boundary but not both, we avoid the situation where the strip just manages to contain 2 lattice 
points on the line, one on each boundary. 
 Armed with this knowledge, let’s reinstate the nonnegative coordinate condition.  
Because our lines have negative slope, the smaller x is, the larger y is.  Therefore, if a line has a 
lattice point with nonnegative coordinates, it must have one in the vertical strip of points whose 
x-coordinates satisfy 0 ≤ x < 7.  For this reason, we confine our attention to this strip as indicated 
in the graph below.  I’ve colored the vertical strip green and red.  Red points correspond to points 
with y < 0.  I’ll use the word “segment” to refer to the part of the line 4x + 7y = N inside this 
vertical strip defined by the inequality 0 ≤ x < 7.  (Note that the vertical strip does not include its 
right boundary.) 

When N is large, the segment will be high up on the 
graph and all of its points will have nonnegative coordinates.  
Let’s imagine gradually decreasing N.  As N decreases, the 
segment drops.  When N reaches 4 × 7, the lower tip of the 
segment reaches the x-axis.  As N drops below 4 × 7, the 
segment pokes into the fourth quadrant.  Because the 
segment has negative slope, the first lattice point it will 
“brush by” with negative y-coordinate will be the point 
(7, -1), which sits on the line 4x + 7y = 21.  (Note that (7, -1) 
is the lower tip of the segment, but is not technically part of 
the segment since its x-coordinate is not strictly less than 7.)  
Can we purchase 21 cookies?  Sure we can: because (7, -1) 
is on the right boundary of the strip, the other end of the 
segment, which is (0, 3), will give us a way to get 21 
cookies: buy 3 packs of 7.  To find the largest unobtainable 
number, we must touch a lattice point inside the red region, 

not brush by one on its excluded right border (where (7, -1) is located). 
 As we slide our segment further down, gradually decreasing N, the line segment will slip 
between the lattice points (6, -1) and (7, -1).  All the values of N we pass through on this leg of 

Suppose A and B are relatively prime.  
Consider the first B multiples of A: 

 
A, 2A, 3A, 4A, ..., BA. 

 
If any two of these multiples, say jA 

and kA with j < k, leave the same remainder 
upon division by B, then their difference, 
(k – j)A, is divisible by B.  Since A and B 
are relatively prime, this implies that B must 
divide k – j, but 0 < k – j < B, so this is 
impossible. 

Therefore, if we divide these first B 
multiples of A by B, we will get all B 
possible remainders. 

Since kA and (k + B)A leave the same 
remainder upon division by B, the sequence 
of remainders left by multiples of A is 

periodic with period B. 
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our descent represent numbers of chocolate chip cookies that we can obtain because the lattice 
point on such segments can’t be in the red region.  The first lattice point in the red region that the 
segment will actually touch will be (6, -1).  Here, for the first time, we reach a value of N that 
cannot be obtained.  The lattice point (6, -1) is on the line 4x + 7y = 17. 
 It turns out that 17 is the largest number of chocolate chip cookies that cannot be 
purchased at Cake Country.  What bad luck! 
 We can now completely answer our question.  We just have to check which of the finite 
number of numbers between 0 and 18 cannot be obtained, and this will constitute a complete list 
of unobtainable numbers of cookies.  They are: 1, 2, 3, 5, 6, 9, 10, 13, and 17.  All numbers of 
cookies above 17 are obtainable, as the argument above shows. 
 

Generalizing  As soon as I arrived home, I felt compelled to work through the entire argument 
from the top using packs of A and B cookies, instead of 4 and 7.  If A and B share a common 
factor, then any number of cookies that I purchase would have to be a multiple of that common 
factor, and I would never be able to buy a quantity of cookies that isn’t a multiple of the common 
factor.  For this reason, I assumed that A and B are relatively prime positive integers.  Also, 
without loss of generality, I assumed that A < B.  (If B > A, then I would just switch the packs.) 
 Everything in the argument above goes through without complication in this more 
general setting.  In the general setting, the equation to solve is the line Ax + By = N.  We again 

seek solutions that are lattice points with 
nonnegative coordinates.  For fixed N, 
because A and B are relatively prime, there 
will be lattice points on the line and they will 
be equally spaced every B horizontal units. 

As before, we focus attention on the 
vertical strip in the xy-coordinate plane given 
by 0 ≤ x < B.  For all integers N, the segment 
of the line Ax + By = N inside the strip will 
contain exactly 1 lattice point.  Critically, if 
the line Ax + By = N has a lattice point with 

nonnegative coordinates, it must have one in the strip defined by 0 ≤ x < B. 
When N is large, the segment consists entirely of points with nonnegative coordinates.  

As N decreases, the segment drops.  When N = AB, the lower tip of the segment reaches the x-
axis at the point (B, 0) (which is the endpoint of the segment, but not technically contained in the 
vertical strip; where is the lattice point on Ax + By = AB with 0 ≤ x < B?).  As the segment 
continues to drop, it will brush by the lattice point (B, -1) when N = AB – B, a lattice point at one 
endpoint of the segment on the excluded right border of the vertical strip.  The segment’s other 
endpoint, (0, A – 1), is a lattice point with nonnegative coordinates.  As N further decreases from 
AB – B, the first lattice point with negative coordinates that our segment will actually touch is 
(B – 1, -1), and this lattice point is on the line Ax + By = A(B – 1) + B(-1) = AB – A – B.  Thus, 
N = AB – A – B is the largest number of cookies that cannot be obtained by purchasing packs of 
A and B cookies.  Using this number as an upper limit, we can then check the finite number of 
smaller cases to determine exactly which numbers of cookies are unobtainable. 
 

The number of unobtainable cookie quantities  We can calculate how many quantities are 
unobtainable by carefully counting lattice points in the region of the plane defined by the 
inequalities 0 ≤ x < B, y < 0, and Ax + By ≥ 0.  (When finding the unobtainable quantities of 
cookies, it would be helpful to know exactly how many we should be looking for.) 
 

Challenge.  Try this on your own before reading further! 
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Because every line of the form Ax + By = N, where N is an integer, has precisely 1 lattice 
point inside the vertical strip 0 ≤ x < B, the number of lattice points inside this vertical strip that 
are above the line Ax + By = 0 and below the line Ax + By = AB is exactly equal to AB – 1.  (That 
is, each integer value of N strictly between 0 and AB corresponds to a unique lattice point in the 
described region, and vice versa.)  I’ll refer to the region inside the vertical strip 0 ≤ x < B and 
(strictly) between the lines Ax + By = 0 and Ax + By = AB as R. 

The region R, together with its boundary, is a parallelogram.  This parallelogram, like all 
parallelograms, enjoys 180-degree rotational symmetry about its center – in this case, the point 
(B/2, 0).  Under this symmetry, lattice points are mapped to lattice points.  Lattice points below 
the x-axis are swapped with those above the x-axis. 
 Let U be the number of quantities that are unobtainable.  These unobtainable quantities 
correspond precisely to the lattice points in R that have negative y-coordinates.  By symmetry, 
there are U lattice points in R in the first quadrant (which excludes the axes).  In addition to these 
points, there are also B – 1 lattice points in R on the positive x-axis (namely, the points (1, 0), 
(2, 0), (3, 0), ..., (B – 1, 0)).  We have so far accounted for all lattice points in R except for those 
on the y-axis, of which there are A – 1 (specifically (0, 1), (0, 2), (0, 3), ..., (0, A – 1)).  We 
conclude that AB – 1 = 2U + (B – 1) + (A – 1).  Solving for U, we find 
 

U = 
1

( 1)( 1)
2

A B− − . 

 

(Note that we do not want to count lattice points on the right border of the parallelogram, i.e., 
points whose x-coordinate is equal to B, because then we would make the mistake of double 
counting the numbers N that are multiples of B.) 
 
Take It To Your World  In the setup of the above discussion, show that the second highest 
unobtainable quantity of cookies is AB – 2A – B.  Can you find a formula for the third highest 
unobtainable quantity of cookies?  (Hint: split into cases depending on whether or not A < B/2.) 

Using only 39-cent and 20-cent stamps, what is the largest postage value you would not 
be able to create exactly?  How many postage values would you not be able to (exactly) create? 
 In the past, McDonald’s sold its Chicken McNuggets in boxes of 6, 9, and 20.  If you 
only purchased boxes with 9 or 20 nuggets, what is the largest number of nuggets you would not 
be able to (exactly) purchase?  What would the answer be if you used only the boxes with 6 or 20 
nuggets?  What if you used only the boxes with 6 or 9 nuggets?  What is the largest number of 
nuggets you would not be able to buy (exactly) using all 3 box types? 
 Following W. J. C. Sharp, rederive the formula U = (A – 1)(B – 1)/2 for the number of 
unobtainable quantities by studying the polynomial 
 

p(x) = (1 + xA + x2A + ... + xAB)(1 + xB + x2B + ... + xAB). 
 

(Hint: compute p(1) in two different ways.) 

The problem Addie discusses is a special case of a more general problem known as the 
Frobenius coin problem, after the mathematician F. G. Frobenius.  The Frobenius coin 
problem asks for the largest amount of money that cannot be produced exactly using a finite 
set of coin denominations.  The formulas for the largest unobtainable amount and the number 
of unobtainable amounts for coins of 2 relatively prime denominations were known to James 
Joseph Sylvester in the 19th century.  To see another lattice argument similar to the one used 

to find U, see Cailan Li’s Summer Fun problem set on page 24. 
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The best way to learn math is to do math, so here are the 2014 Summer Fun problem sets. 
 
We invite all members and subscribers to the Bulletin to send any questions and solutions to 
girlsangle@gmail.com.  We’ll give you feedback and might put your solutions in the Bulletin! 
 

In the August issue, we will provide some 
solutions.  You could wait until the 
August issue to see the answers, but you 
will learn a lot more if you try to solve 
these problems before seeing solutions. 
 
Some problems are quite a challenge and 
could take several weeks to solve, so 
please don’t approach these problem sets 
with the idea that you must solve them 
all.  Our main goal is to give you some 
interesting things to think about. 
 
If you get stuck, try to formulate a related 
question that you can see a way to 
actively explore to get your mind moving 
and your pencil writing.  If you don’t 
understand a question, email us. 
 
If you’re used to solving problems fast, it 
can feel frustrating to work on problems 
that take weeks to solve.  But there are 
things about the journey that are 

enjoyable.  It’s like hiking up a mountain.  Getting to the top rewards one with a spectacular 
view, but during the journey, there’s a lot to see and experience.  So here’s a meta-problem for 
those of you who feel frustrated when doing these problems: see if you can dissolve that 
frustration and replace it with a relaxed, optimistic sense of adventure! 
 
This is Summer Fun, not Summer Torture! 
 

 
The goal may be the lake, but who knows what 
wonders you’ll discover along the way? 
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Magic Squares 
by Lightning Factorial 
 
A magic square is a square array of distinct numbers in which the numbers along each row, each 
column, and both diagonals add up to the same number.  In this Summer Fun problem set we’ll 
explore some of the mathematics behind magic squares. 
 
Any number can serve as a 1 by 1 magic square, so let’s move on to 2 by 2 squares. 
 

1. Let 
a b

c d
 be a 2 by 2 square of numbers.  To be a magic square, we must have 

 
a + b = c + d = a + c = b + d = a + d = b + c. 

 
Show that these equations force all 4 numbers to be equal to each other.  Since magic squares are 
supposed to consist of distinct numbers, we conclude that there are no 2 by 2 magic squares. 
 

Let 

a b c

d e f

g h i

 be a 3 by 3 magic square. 

 
2. Before we analyze 3 by 3 magic squares systematically, try to construct one. 
 
3. Let S be the sum of any row, column, or diagonal.  If we add the numbers along both 
diagonals and the middle row and column, we will get 4S.  On the other hand, show that this sum 
is also equal to a + b + c + d + 4e + f + g + h + i.  From these two facts deduce that 
 

e = S/3 = (a + b + c)/3. 
 
4. Problem 3 tells us that once we specify the top row, we have also determined e, the entry in 
the center of the square: 

? ?
3

? ? ?

a b c

a b c+ +
 

 
Express the unknown entries in the square in terms of a, b, and c by applying the fact that the 
numbers in each row, each column, or either diagonal add up to the same number a + b + c. 
 
Using Problem 4, we can construct infinitely many squares whose rows, columns, and diagonals 
add up to the same number.  However, if we just substitute any numbers for a, b, and c, the 
resulting square may have duplicate numbers.  Next, we’ll explore 
criteria that guarantee that all 9 numbers in the 
square will be different from each other. 



 

© Copyright 2017 Girls’ Angle.  All Rights Reserved.                                                                21 

5. Following the 19th century mathematician Edouard Lucas, replace a, b, and c in the square you 
derived in Problem 4 with the following substitutions: 
 

a = x + z 
b = z – x – y 
c = y + z 

 
6. (Lucas) Show that the square will be a magic square of positive numbers when: 
 

0 < x < y < z – x and y ≠ 2x. 
 
7. An n by n magic square is normal if it contains the integers from 1 to n2, inclusive.  Find a 
function of n that gives the sum of any row, column, or diagonal in a normal n by n magic 
square. 
 
8. In a 3 by 3 normal magic square, what must the central number be? 
 
9. Construct a normal 3 by 3 magic square. 
 
10. Construct a normal 4 by 4 magic square. 
 
According to the Online Encyclopedia of Integer Sequences, there are 880 different 4 by 4 
normal magic squares and 275,305,224 different 5 by 5 normal magic squares (see sequence 
A006052).  Here, magic squares are considered “different” if one cannot be obtained from the 
other by rotating or reflecting the square.  It is unknown how many 6 by 6 (or larger) normal 
magic squares there are. 
 
Because there are so many normal magic squares, a variety of ad hoc approaches for devising 
them have been invented.  The remaining problems give an example devised by Euler which he 
published in Commentationes arithmeticae 2, in 1849, under the title, “De quadratis magicis.” 
 
11. First, show that the numbers from 1 to 16 can uniquely be written as X + x, where X is taken 
from the set {0, 4, 8, 12} and x is taken from the set {1, 2, 3, 4}. 
 

12. Examine the following square array of sums: 

a b c d

d c b a

b a d c

c d a b

α δ β γ

β γ α δ

γ β δ α

δ α γ β

+ + + +

+ + + +

+ + + +

+ + + +

 .  Suppose we 

assign the numbers 0, 4, 8, and 12 to the 4 Latin letters a, b, c, and d in some order and assign the 
numbers 1, 2, 3, and 4 to the 4 Greek letters α, β, γ, and δ in some order.  Show that the resulting 
array of numbers will be a 4 by 4 normal magic square. 
 
13. Show that Euler’s method in Problem 12 can be used to produce 576 normal 4 by 4 magic 
squares.  Are they all “different”? 
 
For further reading, check out Magic Squares 

and Cubes, by W. S. Andrews. 
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Center of Mass and Mass Points 
by Johnny Tang and Girls’ Angle Staff, edited by Margo Dawes 
 
The technique known as “Mass Points” is based on the fact that the center of mass can be 
computed piecemeal.  The following problems can be solved using the technique. 
 
If these problems cause you difficulty, please 
review Volume 7, Number 3 of this Bulletin. 
 
1. Let X be the center of mass of two points masses 
located at points A and B.  If AX : XB = 1 : 3, what 
is the ratio of the mass at A to that at B? 
 

2. In triangle ABC, let D, E, and F be the midpoints of sides BC , CA , and AB , respectively. 

 

A. Place a unit mass point at vertex A.  What mass should be placed at vertex B so that the center 

of mass of the two masses is located at F?  What mass should be placed at vertex C so that the 

center of mass of the two masses at A and C is located at E? 

 

B. With masses assigned to the vertices of triangle ABC as in Part A, where is the center of mass 

of the point masses at vertices B and C? 

 

C. Using properties of the center of mass, deduce that the center of mass of all 3 point masses 

must be on AD , BE , and CF .  Conclude that the medians of a triangle are concurrent.  The fact 

that the medians intersect where the center of mass of 3 equal point masses placed at each vertex 

is located is the reason why the common point of intersection is called the centroid of the 

triangle. 

 

D. Using mass points, conclude that the centroid splits each median in the ratio 1 : 2. 

 

3. Varignon’s theorem states that the midpoints of any quadrilateral form the vertices of a 

parallelogram.  Prove this theorem using mass points. 

 

4. Let P be a polygon.  Let P’ be a polygon whose vertices are the midpoints of the edges of P.  

Place unit point masses at the vertices of P and P’.  Show that the center of mass of P is located 

in the same place as the center of mass of P’. 

 

5. Let D be a point outside triangle ABC.  Let X be the centroid of ABC.  Let J, K, and L be the 

midpoints of AD , BD , and CD , respectively.  Let Y be the centroid of triangle JKL. 

What is DX : DY? 
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6. In triangle ABC, the angle bisector at vertex A meets BC  at X and the angle bisector at vertex 

B meets CA  at Y.  Let M be the intersection of AX  and BY .  Given that AB = 7, BC = 3, and 

CA = 6, determine BM : MY. 

 

7. In triangle ABC, cevians AD  and BE  intersect at P.  Suppose that AP = 8, BP = 9, DP = 5, 

PE = 4, and the area of triangle ABC is 13 square units.  What is the area of triangle ABP? 

8. Place unit point masses at the vertices of triangle ABC.  A point mass of mass m is placed on 
the circumcircle of triangle ABC.  The four masses balance at the circumcenter. 
 
A. Show that m2 = 3 + 2(cos 2A + cos 2B + cos 2C), where A, B, and C 
are the angles of the triangle. 
 
B. Using Part A, prove that 
 

9 > 3 + 2(cos 2A + cos 2B + cos 2C) ≥ 0 
 

with equality if and only if triangle ABC is equilateral. 
 
9.  In triangle ABC, points D, E, and F are placed on the sides as shown 

in the figure at left.  Point P is the intersection of DE  and CF .  Given 
that AE : EC = x : y, BD : DC = x’ : y’, and AF : FB = v : w, express 

FP : PC in terms of x, x’, y, y’, v, and w.  When DE  is parallel to AB , 
i.e., when x/y = x’/y’, show that your formula equals x/y. 

 
10. Fix a positive number R.  On the number line, we place a point mass of mass mn at n, for each 
nonnegative integer n.  We start with m0 = 1.  The other masses are chosen so that the center of 
mass of the point masses at 0, 1, 2, 3, …, n is located at Rn. 
 
A. When R = 1/2, show that mk = 1 for all k. 
 
B. When R = 2/3, what is mk? 
 
C. When R = 1 – 1/p, where p is a positive integer greater than 1, what is mk? 
 
11. Here’s a way to approximate π using mass points.  Inscribe a regular n-gon in the unit circle 
centered at the origin of the xy-coordinate plane so that (1, 0) is one of the vertices.  Label the 
vertices 1 through n starting at (1, 0) and going around in the clockwise direction.  Place a point 
mass at each vertex of mass equal to the label of that vertex.  Show that the center of mass of the 
polygon is located at 

1
( 1,cot )

1n n

π
−

+
. 

 

Show that as n tends to infinity, the center of mass tends to (0, 1/π). 
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Quadratic Reciprocity 
by Cailan Li 
 

In this problem set, p and q always denote distinct odd prime numbers. 

In algebra, quadratic equations play a fundamental role.  Quadratic reciprocity arises 
when one studies the modular arithmetic version of quadratic equations.  Recall that in modular 
arithmetic, we write a = b (mod n) if and only if a – b is a multiple of n.   
 
1. Let a, b, and c be constants.  Assume that a ≠ 0 (mod p).  Show that ax2 + bx + c = 0 (mod p) 
can be solved for x if and only if b2 – 4ac is a square modulo p, i.e. if and only if there exists y 
such that y2 = b2 – 4ac (mod p). 
 
Problem 1 leads us to examine which a (this is a different a from the one in Problem 1) admit a 
solution to the modular equation x2 = a (mod p).  In other words, what a are squares modulo p?  
The Legendre symbol was introduced by Legendre to conveniently encapsulate this question: 
 

 

1 if  is a square modulo  and   0 (mod  ),

0 if   0 (mod  ),                                           

1 otherwise.                                                          

a p a p
a

a p
p

≠
  

≡ = 
  −

  

 
2. Let g be a primitive root modulo p.  (A primitive root modulo p is a number g such that the 
exponentials g, g2, g3, ..., gp – 1 contain a complete set of residues modulo p.  For details, see page 
14 of Volume 6, Number 5 of this Bulletin.)  Show that the squares modulo p are given by gx 
where 1 < x < p is even. 

3. Determine 
2

3

 
 
 

, 
2

7

 
 
 

, 
5

13

 
 
 

, and 
3

19

 
 
 

.  Think about how you might determine 
1041

101

 
 
 

. 

4. Assume x ≠ 0 (mod p).  Fermat’s little theorem says that xp – 1 = 1 (mod p).  Use this to show 

that x(p – 1)/2 = ±1 (mod p).  Deduce Euler’s criterion, which says that 
x

p

 
 
 

 = x(p – 1)/2 (mod p). 

5. Use Euler’s criterion to show that 
1

p

 −
 
 

 = 1 if and only if p = 3 (mod 4). 

For the remaining problems, fix b ≠ 0 (mod p).  For each 1 ≤ k ≤ (p – 1)/2, let rk be the unique 
integer such that –p/2 < rk < p/2 and rk = kb (mod p). 
 
6. Show that | rk | = | rj | if and only if k = j.  Therefore, the set of absolute values of rk is equal to 
{1, 2, 3, ..., (p – 1)/2}. 
 
7. Let N be the number of k such that 1 ≤ k ≤ (p – 1)/2 and rk < 0.  Using Problem 6, observe that 
b(2b)(3b) · · ·  ((p – 1)b/2) = (-1)N·1·2·3·· ·((p – 1)/2) (mod p).  By cancelling common factors, we 
deduce Gauss’s lemma: b(p – 1)/2 = (-1)N (mod p). 
 
Combining Euler’s criterion and Gauss’ lemma, 
we see that b is a square modulo p if and only if 
N is even. 
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8. Repeat Problem 5 using Gauss’s lemma by counting how many rk are negative for b = -1. 

9. Again, by counting the number of negative rk, use Gauss’s lemma to show that 
2

p

 
 
 

 = 1 if and 

only if p = ±1 (mod 8). 
 

10. Show that 
xy x y

p p p

    
=    

    
.  For this reason, we will focus on determining 

x

p

 
 
 

 for prime 

numbers x. 
 
Gauss’s Law of Quadratic Reciprocity reveals a beautiful pattern concerning squares in modular 

arithmetic.  The law states that 
p

q

 
 
 

 = 
q

p

 
 
 

 unless p and q are both congruent to 3 modulo 4, in 

which case 
p

q

 
 
 

 = -
q

p

 
 
 

. 

 
11. Before we embark on a proof, use the law to recompute the Legendre symbols in Problem 3. 
 
12. Let N1 be the number of negative numbers obtained when the first (p – 1)/2 multiples of q, 
namely, q, 2q, 3q, ..., (p – 1)q/2, are reduced modulo p to integers between –p/2 and p/2.  
Similarly, let N2 be the number of negative numbers obtained when the first (q – 1)/2 multiples 
of p, namely, p, 2p, 3p, ..., (q – 1)p/2, are reduced modulo q to integers between –q/2 and q/2.  

Show that 
p

q

 
 
 

 = 
q

p

 
 
 

 if and only if 1 2( 1) 1N N+− = . 

 
Consider the figure at right.  Lines BC, AD, and FE 
are parallel.  Let H be the hexagon ABCDEF. 
 
13. Show that there are no lattice points in the 
interior of H on the diagonal AD. 
 
14. Show that there are N1 lattice points in the interior of H that are above the diagonal AD.  
Similarly, show that there are N2 lattice points in the interior of H that are below the diagonal 
AD.  Thus, there are N1 + N2 lattice points in the interior of H. 
 
15. Let (x, y) be a lattice point in the interior of H.  Show that ((p + 1)/2 – x, (q + 1)/2 – y) is also 
a lattice point in the interior of H.  Use this to show that the number of lattice points in the 
interior of H is odd if and only if p = q = 3 (mod 4). 
 
16. Combine Problems 14 and 15 to deduce Gauss’s Law of Quadratic Reciprocity. 
 
The proof of quadratic reciprocity presented in these problems follows the proof by D. H. 
Lehmer in A Low Energy Proof of the Reciprocity Law, which appeared in the American 
Mathematical Monthly, Volume 64, Number 2.  
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Signs of Permutations 

by Ken Fan 
 

A permutation is a rearrangement of objects.  Place five empty boxes in a row and label 
them 1 through 5.  Place a different object in each box.  We can describe a rearrangement of 
these objects by describing which box the object in box x is moved to.  For example, we can say 
that the object in box 1 moves to box 3, the object in box 2 moves to box 5, the object in box 3 
moves to box 2, the object in box 4 stays in box 4, and the object in box 5 moves to box 1.  To 
reduce the amount of writing we have to do, we can conveniently describe all this by writing a 
list of numbers: 3 5 2 4 1.  The kth number in this list tells us which box the object in box k is 
moved to.  For example, 5 4 3 2 1 represents the permutation where the order of the items is 
flipped.  This notation for writing down a permutation is called one-line notation. 
 To be a permutation, each box number must be listed exactly once.  Also, there can be 
any number of boxes, not just 5.  If p represents a permutation, we will also write p(x) to denote 
which box the contents of box x are sent.  For example, if p = 3 5 2 4 1, then p(3) = 2. 
 
1. Suppose there are n boxes.  In one-line notation, what permutation leaves each object in place. 
 
2. With n boxes, show that there are n! permutations.  Compute the values of n! for n = 1, 2, 3, 4, 
and 5.  The extreme growth of these numbers is referred to as combinatorial explosion. 
 
3. Consider the permutations s = 3 1 5 2 4 and t = 5 2 4 1 3.  We can get another permutation by 
applying t and then s.  If we do this, the object that started in box 1 will end up in box 4.  That’s 
because the permutation t will move the object in box 1 to box 5, and the permutation s will then 
move that object from box 5 to box 4.  If you apply t then s, where will the objects in boxes 2, 3, 
4, and 5 end up? 
 
4. Using the notation in Problem 3, write down the one-line notation for the permutation that is 
obtained by applying s first, and then t.  Notice that this permutation is different from the one 
where you apply t first, followed by s. 
 
We will write st for the permutation obtained by applying t first and then s.  It may seem 
strange to do that because in st, the s is written first.  Sometimes people do use the opposite 
convention, but we’ll let st mean “t first, then s” because this is consistent with thinking of 
permutations as functions and st as function composition.  The permutation st is also called the 
product of s and t.  To underscore our convention, when you multiply s by t to get st, it means the 
permutation obtained by applying t first, then s. 
 
Let’s fix a positive integer n and use n boxes.  All permutations on these n boxes can be built 
from special permutations called transpositions.  A transposition is a permutation that 
exchanges the contents of two boxes while leaving all other objects in place. 
 
5. Convince yourself that all permutations can be built by multiplying together transpositions.  
For example, if n = 3, the permutation 3 1 2 is equal to the product of the transposition 1 3 2 with 
the transposition 2 1 3. 
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6. Show that there are n(n – 1)/2 transpositions. 
 
Some permutations don’t mess up the order of our objects very much.  Others reorder things 
quite a bit.  One way we can measure just how much a permutation reorders things is to count 
how many pairs of box labels (x, y), with 1 ≤ x < y ≤ n, have their contents moved to boxes with 
the reverse order.  In other words, if p is a permutation, we count how many pairs (x, y), with 
1 ≤ x < y ≤ n, satisfy p(x) > p(y).  We will denote by N(p) this count.  Since there are a total of 
n(n – 1)/2 such pairs we know that 0 ≤ N(p) ≤ n(n – 1)/2. 
 
7. Let 1 be the permutation that leaves every object in place.  Show that N(1) = 0.  If N(p) = 0, 
show that p = 1. 
 
8. What permutation p has N(p) = n(n – 1)/2? 
 
By definition, the sign of a permutation p, denoted σ(p), is equal to (-1)N(p).  For example, since 
N(1) = 0, we have σ(1) = 1. 
 
The following problems are somewhat more challenging than the first 8 problems. 
 
9. Show that the sign of any transposition is equal to -1. 
 
10. Let p be a permutation and t a transposition.  Show that σ(pt) = -σ(p) and σ(tp) = -σ(p). 
 
Problems 9 and 10 imply that if you write a permutation as a product of transpositions in 2 ways, 
the number of transpositions in each product will differ by an even number. 
 
11. Let p and q be permutations.  Show that σ(pq) = σ(p)σ(q). 
 

We’ll conclude with a lemma of Y. I. Zolotarev that connects the sign of a permutation to 
modular arithmetic.  In Robert Donley’s series on Fermat’s little theorem, he has shown us how 
to solve any linear equation, modulo a prime number p.  That is, he explained how to solve 
equations of the form ax + b = 0 (mod p), with a ≠ 0 (mod p).  Here, we ask, when is there a 
solution to the equation z2 = a (mod p) where a is constant and z is unknown?  If a = 0 (mod p), 
then z = 0 (mod p) is a solution.  So let’s assume that a ≠ 0 (mod p). 
 Assume (or see pages 14-15 of Volume 6, Number 5 of this Bulletin) that there exists g 
such that the p – 1 numbers g, g2, g3, g4, …, gp – 1 constitute a complete set of nonzero remainders 
modulo p.  Then a = gk (mod p) for some k. 
 
12. Show that z2 = a (mod p) has a solution if and only if k is even. 
 
13. Consider p – 1 boxes.  Consider the permutation s that sends the contents of box x to box ax 
(modulo p).  For example, if p = 7 and a = 3, then s = 3 6 2 5 1 4.  Show that σ(s) = -1 if and only 
if k is odd. 
 
In other words, z2 = a (mod p) has a solution if and only if σ(s) = 1. 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  They are far from being 
complete.  In these notes, we include some of the things that you can try or think about at home 
or with friends.  We also include some highlights and some elaborations on meet material.  Less 
than 5% of what happens at the club is revealed here. 
 

Session 14 - Meet 11 
May 1, 2014 

Mentors: Jennifer Matthews, Wangui Mbuguiro, Liz Simon 
 
Field trip to MIT’s Dept. of Aeronautics and Astronautics 

 
A special Thank You to Prof. Karen Willcox who organized our tour of MIT’s 

Department of Aeronautics and Astronautics.  The tour began with a visit to MIT’s Wright 
Brothers Wind Tunnel, where Richard Perdichizzi warned us to remove our glasses before 
entering.  The Wright Brothers Tunnel is the largest wind tunnel at MIT and can blow at speeds 
up to about 170 mph.  Even at 35 mph, it was challenging to stand.  It was... a blast. 
 Next, Patrick Blonigan demonstrated wind flow over various airfoils using a small wind 
tunnel and some dry ice.  With no model inside, the flow was straight and smooth.  With a block 
placed inside, you could see eddies form indicating drag.  When he placed a wing inside, the air 
flowed over without the slightest hitch.  Patrick concluded by showing us what happens when a 
wing stalls. 
 Karen then led a mathematical activity designed to illustrate how computers are used to 
model airflow.  Each girl became a node in a 1-dimensional mesh.  Each girl had to sit, kneel, or 
stand.  With each round, girls used an explicit mathematical formula to compute whether they 
should be sitting, kneeling, or standing at the beginning of the next round.  Each girl’s 
computation depended on her current state and the state of her nearest neighbors.  After several 
rounds, the girls could see a global behavior emerging.  Simulation of airflow is achieved in a 
similar manner using a 3-dimensional mesh and a computer.  Each node in the mesh represents a 
point in space.  The state of each node is the speed and direction of wind at that point, and 
possibly, additional information, such as pressure and temperature.  Assuming the physical 
assumption that the wind speed and direction depend only on local conditions, each node 
computes and recomputes its wind speed and direction using a mathematical rule that depends 
only on the states of nearby nodes.  The finer the mesh, the more accurate the simulation. 
 Next, Gwen Gettliffe took us to the Space Systems Lab where she works.  For one of her 
projects, she helped to design “microsatellites,” satellites about the size of a shoebox, that search 
for exoplanets.  Because of their size, microsatellites are unable to see deep into space.  But, they 
are inexpensive.  The idea is to trade depth of vision for the ability to deploy several for wide 
coverage of nearby star systems.  Gwen pointed out that one of the challenges with Hurricane 
Katrina was that at the time, there weren’t enough satellites to give a detailed sense of the 
hurricane’s movements making it impossible to accurately predict where Katrina would make 
landfall.  With microsatellites, one can string out several in orbit so that frequent updates can be 
made.  To move, they sometimes use carbon dioxide canisters like those found in paint ball guns. 
 

Session 14 - Meet 12 
May 8, 2014 

Mentors: 
 
 

Jennifer Matthews, Liz Simon 
 

 We hosted our traditional end-of-session Math Collaboration! 
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Calendar 
 
Session 14: (all dates in 2014) 
 

January 30 Start of the fourteenth session! 
February 6  
 13  
 20 No meet  
 27  
March 6  
 13 Sarah Spence Adams, Olin College 
 20  
 27 No meet 
April 3  
 10 Anna Frebel, Department of Physics, MIT 
 17  
 24 No meet 
May 1 Karen Willcox, Dept. of Aeronautics and Astronautics, MIT 
 8  

 
Session 15: (all dates in 2014) 
 

September 11 Start of the fifteenth session! 
 18  
 25 No meet 
October 2 Emily Pittore, iRobot 
 9  
 16  
 23  
 30  
November 6  
 13  
 20  
 27 Thanksgiving - No meet 
December 4  
 11  

 

Finding the Maximum Subsequence, Part 1 (continued from page 8) 
 

Still thinking about how to find the maximum subsequence using fewer than N addition 
operations?  If you’d like a hint, read on. 

Are you sure? 
Here’s the hint.  Think about the following: If you know the sum for the biggest 

subsequence that ends at position j, how does that help you figure out the sum for the biggest 
subsequence that ends at position j + 1?  (Here, “biggest subsequence” means the subsequence 
with the biggest sum – i.e., the one you are looking for.) 

Check back next issue for the answer! 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $36 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $36 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll?  You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay?  The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 12 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, graduate student in mathematics, Princeton 
Julia Elisenda Grigsby, assistant professor of mathematics, Boston College 
Kay Kirkpatrick, assistant professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Moore Instructor, MIT 
Lauren McGough, MIT ‘12 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, assistant professor, UCSF Medical School 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, Tamarkin assistant professor, Brown University 
Karen Willcox, professor of aeronautics and astronautics, MIT 
Lauren Williams, assistant professor of mathematics, UC Berkeley 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives today 
and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their daily 
lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 

 

Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $36 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 
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Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 

Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  
 


