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An Interview with Marie Vitulli, Part 1 
 

Marie Vitulli is professor emerita at the 

University of Oregon.  She received her Ph.D. 

in mathematics from the University of 

Pennsylvania under the supervision of Dock S. 

Rim.  She has been at the University of 

Oregon since 1976.  In addition to her 

mathematical research, she published studies 

on gender differences in first jobs for new 

Ph.D.s with Mary E. Flahive in the Notices of 

the American Mathematical Society. 

 

Ken: You have been a professional mathematician for a long time.  To begin, I am hoping to 

gain some wisdom from you in three areas: learning and studying mathematics, creating 

mathematics, and leading a life as a mathematician.  To that end, would you, in each case, look 

back over your career and share with us advice and wisdom that you gained that helped you in 

each area. 

 

So, starting with learning and studying mathematics? 

 

Marie : Mathematics is not a spectator sport.  To learn and study it you must be actively engaged.  

You need to verify what you read and eventually either accept or challenge each statement you 

come across.  There are many branches or types of mathematics.  If one branch doesnôt hold your 

interest try another branch before giving up on mathematics. 

 

Ken: And creating mathematics? 

 

Marie : If you start generating questions as you study mathematics that have already been 

discovered you will have a leg up on creating mathematics on your own.  Part of creating 

mathematics is asking good questions and the other part is having the capacity to solve the 

problems by using machinery that already exists or coming up with new machinery.  I love 

building new theories that set a framework for asking and answering questions.   

 

Ken: And, finally, leading the life of a mathematician, or, career advice? 

 

Marie : A research mathematicianôs life is deeply satisfying at times and just as deeply 

frustrating at other times.  When you solve a problem that you have been thinking about for a 

while you feel like youôre on the top of the world.  If the problem is untouchable you can get 

quite frustrated over not being able to make progress on it.  The life is challenging in that you 

have to somehow figure out how to juggle teaching, research, service to your institution and the 

profession and still have part of you left over for a personal life.  On the positive side, you get to 

do something that you love and you have some flexibility in setting your own schedule.  There 

are always opportunities to travel to attend conferences and workshops and to present your own 

work.  You should realize that a mathematician at a research university works many more hours 

than someone who has a 9 to 5 job.  You frequently work in the evenings and on the weekends.  

There are many other satisfying careers where knowledge of higher mathematics is beneficial.  I 

went from college to graduate school and then accepted a tenure-track job at the University of  

Part of creating mathematics 

is asking good questions and 

the other part is having the 

capacity to solve the problems 

by using machinery that 

already exists or coming up 

with new machinery. 
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Dear Reader, 
 

7ÅȭÒÅ ÃÏÍÍÉÔÔÅÄ ÔÏ ÐÒÏÄÕÃÉÎÇ ÑÕÁÌÉÔÙ ÍÁÔÈ ÅÄÕÃÁÔÉÏÎÁÌ 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit ! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the complete interview with 
Prof. Vitulli, and some other content.   We hope that you 
consider the value of such content and decide that the efforts 
required to produce such content are worthy of your financial 
support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
'ÉÒÌÓȭ !ÎÇÌÅȡ ! -ÁÔÈ #ÌÕÂ ÆÏÒ 'ÉÒÌÓ 

 

http://www.girlsangle.org/page/bulletin_sponsor.html
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Learn by Doing 
Angle Measure1  

by Addie Summer | edited by Jennifer Silva 

 

What is an angle? 
 

Angles are formed whenever line segments intersect. 

 

The figure above right shows two line segments that share an endpoint.  The space between them 

is an angle.  The line segments that define the angle are the angleôs sides.  The common endpoint 

of the line segments is the vertex of the angle. 

 

Hereôs another picture with one black line segment and several 

blue line segments.  Youôre meant to imagine a single blue line 

segment rotating around.  As the blue line segment rotates, it 

forms several different angles with the black line segment. 

 

Problem 1.  Imagine the blue line segment rotating around and 

around.  Do any angles formed stand out to you as being special 

in some way?  Which ones? 

 

At right, Iôve drawn two angles that strike 

me as special.  Actually, these two angles 

have stood out to many people and they 

have special names.  The L-shaped angle, 

which is the angle found in the corner of a 

piece of copy paper, is called a right  

angle.  The other angle, which may hardly seem like an angle at all, is called a straight angle. 

 

Angle Measure 
 

Problem 1 shows that angles and circular motion are intimately related.  Thatôs why it is very 

common to measure the size of an angle in terms of circles.  We draw a small circle centered at 

the common endpoint of the two line segments that define the angle, and we ask what fraction of 

the circle is cut out by the angle.  Thus, a right angle is a quarter circle, and a straight angle is a 

half circle. 

 

People also use degrees and grads to measure angles.  In a full circle, there are 360 degrees and 

there are 400 grads. 

 

Problem 2.  How many degrees are there in a right angle?  How many are there in a straight 

angle? 

 

The symbol ñÁò stands for degrees.  A right angle is 90°, and a straight angle is 180°.  Was that 

your answer for Problem 2?  An angle whose measure is between 0° and 90° is called an acute 

angle and an angle whose measure is between 90° and 180° is called an obtuse angle. 

                                                 
1 This content was supported in part by a grant from MathWorks. 



 

© Copyright 2014 Girlsô Angle.  All Rights Reserved.                                                                7 

 

Problem 3.  On a clock with an hour and minute hand, what is the angle between the two hands 

when the time showing is 8 p.m.?  What about 2:45 a.m.?  

 

Problem 4.  Find all the times when the hour and minute hand of a clock form a 90° angle. 

 

Mathematicians use a third measure for angles: radians.  To compute radian measure, center a 

circle at the angleôs vertex.  The radian measure of the angle is the ratio of the length of the arc 

that is cut out by the angle divided by the radius of the circle.  Because radians are the ratio of 

two lengths, radian measure is a dimensionless quantity. 

 

Problem 5.  Technically, to define radian measure, we need to know that the ratio of the arc 

length of circle cut out by an angle divided by the circleôs radius does not depend on the size of 

the circle.  Why is this true? 

 

Problem 6.  Express the radian measures of a right angle and a straight angle in terms of the 

mathematical constant ́.  (  ́is the ratio of a circleôs circumference to its diameter.) 

 

Problem 7.  Let d be the degree measure of an angle and let r be its radian measure.  Write down 

a conversion equation that relates d and r. 

 

Youôre walking along when someone shouts at you, ñTurn 90 degrees!ò  Which way do you 

turn?  Itôs ambiguous!  The person who shouted at you should have told you whether to turn left 

or right.  In other words, thereôs an ambiguity in our definition of angle.  When you draw two 

line segments that share a common endpoint, there are really two angles formed, and you sweep 

through one or the other depending on whether you rotate the first line segment clockwise or 

counterclockwise to get to the other.  Usually, people are referring to the smaller sector, but not 

always.  If the context does not make it clear which angle is meant, it must be specified. 

 

Problem 8.  Let l, m, and n be line segments that share a common endpoint P.  Assume that as 

you rotate l about P in the counterclockwise direction, you pass over m before reaching n.  Show 

that the measure of the angle formed by l and n is equal to the sum of the measures of the angles 

formed by l and m and m and n, with all angles being measured in the counterclockwise 

direction. 

 

If two angles add up to a straight angle, they are called supplementary angles.  If two angles add 

up to a right angle, they are called complementary angles. 

 

Problem 9.  Imagine walking around the perimeter of a triangle in such a way that the triangle is 

always on your left.  Start your walk in the middle of one of the sides.  You approach one of the 

corners of the triangle.  When you go around the corner, you turn counterclockwise through an 

angle that measures T degrees.  The measure of the angle at the corner you just went around is 

180 ï T degrees.  When you complete one full circuit and return to your starting point, through 

how many degrees have you turned in the counterclockwise direction?  What does this imply 

about the sum of the angles of a triangle? 

 

Problem 10.  Use the argument hinted at in Problem 9 to show that the sum of the angles in a 

polygon with n sides is equal to 180(n ï 2) degrees. 
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Problem 11.  Letôs move on to a Cartesian plane with an x- and a y-axis.  Draw a line through 

the origin.  Such a line has equation y = mx, where m is the slope of the line.  For the moment, 

letôs assume that m is positive, so that the line goes through the first quadrant.  Notice that 

specifying the slope is an effective way of specifying an angle in the first quadrant between the 

positive x-axis and the line.  Let d(m) be the degree measure of this angle.  What is d(1)?  What 

is d( 3 )?  As m tends to infinity, what does d(m) approach? 

 

The function d defined in Problem 9 is also known as the arctangent function.  The arctangent 

function can be regarded as the function that converts the slope of a line into the angle the line 

makes with the positive horizontal axis. 

 

When 2 lines intersect, they form 4 angles (see figure at right). 

 

Problem 12.  Which pairs of angles are supplementary to each other? 

 

Angles 1 and 3 are called vertical angles.  Likewise, angles 2 and 4 

are vertical angles. 

 

Problem 13.  Show that vertical angles have the same measure. 

 

Another way to think about the equality of the measures of vertical 

angles is to imagine standing back to back with a friend at the point of 

intersection of the 2 lines.  You and your friend are attached on your 

backs, so whenever you turn, your friend turns with you.  Now face 

out along the blue line segment (in the figure at left).  Your friend 

will be looking out along the red line segment.  If you are asked to 

turn counterclockwise by the measure of angle 1, you will then be 

facing down the black line segment.  However, your friend will now 

be facing down the green line segment since the black and green line 

segments are part of the same line.  Having turned through the same 

amount that you did when you swept through angle 1, it follows that angle 1 and angle 3 have the 

same measure. 

 

Problem 14.  Under what circumstance do all 4 angles created by 2 intersecting lines have the 

same measure? 

 

People often say that the wall and the ceiling meet at right angles.  When people refer to the 

angle between two planes, they are referring to the dihedral angle.  Imagine 2 planes that 

intersect in a line.  The intersection of these 2 planes with a plane perpendicular to their line of 

intersection will be 2 intersecting lines.  The 2 intersecting lines form 4 angles.  The dihedral 

angle between the 2 planes can be taken to be any one of these 4 angles. 

 

Problem 15.  Take a piece of paper and fold it to form a dihedral angle.  Fold a paper 

contraption that contains a 60° dihedral angle. 

 

Problem 16.  What is the dihedral angle between adjacent faces of a cube?
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Mathematical Buffet1 
Planar Configurations by Nadine Alise and Leah Berman 

 

Two points define a line.  But if you arbitrarily pick out 3 points, they most likely will not sit on 

a line.  When 3 or more points sit on a line, itôs special and thereôs a word to describe that: 

collinear.  In fact, there are theorems whose main point is that 3 points are collinear.  (For an 

example, google ñEuler lineò.) 

 If you arbitrarily pick out 2 lines, they will intersect in a point, except in the special 

situation where the lines are parallel.  But it is unusual when 3 lines intersect in a point and there 

is a special word to describe when that happens too: concurrent. 

 A planar configuration is a finite set of lines and points in the plane that exhibit a 

fascinating regularity with respect to collinearity and concurrency.  If you have P points and L 

lines, and if every line has p of the points and every point is on l of the lines, then you have 

a (Pl, Lp) configuration. 

 
 

The upper left shows a (43, 62) configuration: every line has 2 of the 4 blue points and every blue 

point sits on 3 of the 6 lines.  The other three are all (93, 93) configurations.  The vertices of a 

regular N-gon and the lines that contain its edges form an (N2, N2) configuration. 

 In this Mathematical Buffet, we present images of configurations created by Nadine Alise 

and Leah Berman.  How many points and lines do they have?  How many of the lines pass 

through each point and how many of the points sit on each line?  Do you see a relationship 

between P, L, p, and l? 

 The cover displays a magnificent (2406, 2406) configuration. 

                                                 
1 This content was supported in part by a grant from MathWorks. 
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Stained Glass Angles 
by Lightning Factorial | edited by Jennifer Silva 

 

Emily and Jasmine are designing a stained glass window.  Letôs listen in. 

 

Emily:  There are so many possibilities! 

 

Jasmine:  Too many! 

 

Emily:  We could depict sea life in a coral reefé 

 

Jasmine:  Or we could make an abstract designé 

 

Emily:  I suppose we could just make something random.  Maybe we can shatter a piece of glass 

and use that as our design. 

 

Jasmine:  Too dangerous! 

 

Emily:  Staring at this blank sheet of paper, I donôt know how to begin. 

 

Jasmine:  Why donôt we start by limiting possibilities?  Letôs insist that every piece be a square. 

 

Emily:  Okayé 

 

Jasmine:  Hmm.  That doesnôt look very 

interesting.  Itôs like graph paper. 

 

Emily:  Or a brick wall.  Though I do like 

straight edges. 

 

Jasmine:  Yes, straight edges will make it easier to build.  Letôs insist on using straight edges. 

 

Emily:  What if we also insist that all edges have the same length?  Would that be too restrictive? 

 

Jasmine:  We could make regular polygons.  Or maybe they 

donôt have to be regular.  They just have to have equal side 

lengths. 

 

Emily:  Empty polygons look like window frames, not stained 

glass windows. 

 

Jasmine:  What if we draw in the spokes? 

 

Emily:  Okay.  But if we stick to edges all the same length, then it means that we 

have to join the ends of adjacent spokes to form equilateral triangles. 

 

Jasmine:  Oh, thatôs true.  That gives us a window in the shape of a regular 

hexagon. 
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Emily:  Iôd like to see something more intricate. 

 

Jasmine:  We could make a tiling that uses polygons 

that all have the same edge length. 

 

Emily:  Like the brick pattern? 

 

Jasmine:  Yes, only I was thinking of using more than 

one type of polygon, such as an equilateral triangle, 

square, and hexagon. 

 

Emily:  Oh, I think Iôve seen a tiling like that.  It goes 

like thisé 

 

Jasmine:  Yes, thatôs it! 

 

Emily:  Itôs pretty, but maybe itôs more suitable for a 

bathroom floor. 

 

Jasmine:  Maybe.  Well, anyway, letôs look for other ideas. 

 

Emily:  What if we go back to the spokes idea, except that 

we make the spokes out of several edges? 

 

Jasmine:  How do you mean? 

 

Emily:  Iôm not sureé Iôm just thinking aloud.  What if we 

imagine a long spoke made up of several edges, all the same 

length, and then rotate copies of it around like thisé? 

 

Jasmine:  Then you just get one piece of glass with some metal 

edges running out from the center.  I suppose we could try to 

bunch up the spokes so that adjacent spokes touch each other.  

That would close off some pieces of glass. 

 

Emily:  Hmm.  How about this: We draw an angle and then 

bounce back and forth between the sides of the angle to form the 

spoke, like this. 

 

Jasmine:  Thatôs a curious spoke.  Iôm intrigued. 

 

Emily:  We have to make the angle in such a way that 

copies of it will fit snugly inside a full circleé like pizza 

slices. 

 

Jasmine:  Right, the angle has to measure 360/N degrees, where N is an integer.  Letôs see what 

happens if we start with a right angle, which corresponds to N = 4. 
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What patterns do you see in Emily and Jasmineôs stained glass window?  How many 
differently shaped rhombi are there?  What is the simplest way you can think of to describe 

the design? 
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Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 

By Anna B. 
 

Anna continues her investigation into the equation xx = n. 
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Think about this before reading further. 

Solid Geometry: 

Wood Sculptures 

by Kosticks 
by Ken Fan 

edited by Jennifer Silva 

 

Art and geometry combine in the minds 

of John and Jane Kostick.  The result is 

a collection of wondrous wood 

sculptures that manifest a wealth of 

interesting mathematical facts. 

The best way to get a feel for 

this mix of math and art is to play with 

an actual example, and thatôs just what 

weôll do.  This article contains all you 

need to make your own paper model of 

one of the Kosticksô latest creations: the Quintetra Assembly. 

 

Inspiration   To appreciate the elegance of the Quintetra Assembly, it helps to think about a few 

more basic shapes with special focus on the directions of their edges.  Letôs start with a cube, 

paying particular attention to its 12 edges.  Notice that the edges of a cube point in 1 of 3 

different directions, just like the axes of a 3D Cartesian coordinate system. 

 This observation raises the following question: What solids have all of their edges 

restricted to the same 3 directions as the edges of a cube?  Because this restriction is severe, we 

can get a very good idea of what these shapes look like with a little bit of experimentation.  Any 

brick shape is possible, and so is any solid built by joining bricks together, provided that all of 

the bricks are consistently oriented to respect the restriction on edge directions.  Of these shapes, 

only the isolated brick will be convex, and of these bricks, the cube is the most symmetric and is 

the only convex one with edges all of the same length.  (A shape is convex if it contains the line 

segment joining any two of its points.  For example, a circular disk is convex, but an annulus is 

not.) 

 Letôs make a game of this, now using a different set of allowed directions: the 4 

directions specified by the major diagonals of a cube.  The major diagonals are the line 

segments that connect opposite vertices.  What shapes can you find whose edges are each 

parallel to one of these 4 directions?  Note that if we use only 2 of the 4 directions to travel in a 

circuit by moving in one direction, then the other, then back in the first direction, then back to 

the starting point in the second direction, we will trace out a parallelogram.  Also, keep in mind 

that if we wish to stay within a plane, we have to restrict ourselves to using just 2 of the 4 

directions.  Therefore, such solids, if convex, must have faces that are parallelograms.  By 

analyzing the angles between pairs of directions, we find that these parallelograms involve 2 

specific angles, namely cos-1 1/3 å 70.5Á and its supplement, cos-1 -1/3 å 109.5Á. 

 Is there an equilateral convex solid whose edges are each parallel to one of the 4 major 

diagonals of a cube?  If such a shape existed, all of its faces would have to be congruent rhombi. 

 

 

Continued on page 23 
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Pythagorean Triples Challenge 
by Tom Moore1 | edited by Jennifer Silva 

 

If you know a lot about Pythagorean triples, feel free to skip right to the 5 challenge problems at 

the end of this article.  Otherwise, here is some background information. 

 

A Pythagorean triple (a, b, c) is a triple of positive integers that can be used to form the sides of 

a right triangle with legs of lengths a and b and hypotenuse of length c.  According to the 

Pythagorean theorem, c2 = a2 + b2.  Conversely, if a, b, and c are positive integers that satisfy the 

Pythagorean equation c2 = a2 + b2, then a, b, and c can be used as the lengths of the sides of a 

right triangle. 

 

A Pythagorean triple (a, b, c) is called primitive  if a and b share no common factor other than 1.  

For example, (3, 4, 5), (5, 12, 13), (8, 15, 17), and (7, 24, 25) are all primitive Pythagorean 

triples, but (6, 8, 10) is not primitive, even though it is a Pythagorean triple. 

 

A Little History  
 

From the ancient Greek manuscript Elements, which was 

written by Euclid over 2,000 years ago, we learn both the 

statement and proof of Pythagorasôs theorem.  In Book I of 

the Elements, we find Proposition 47: In right-angled 

triangles the square on the side opposite the right angle 

equals the sum of the squares on the sides containing the 

right angle.2  That is, the area of the red square is equal to 

the combined areas of the green and blue squares in the 

figure at right. 

  

In Book X, Proposition 29, Lemma 13, we learn how to 

generate all primitive Pythagorean triples.  Euclidôs 

statement is geometric, but we can put it algebraically, like 

this: if m > n are positive integers of opposite parity and their highest common factor is 1, then 

(2mn, m2 ï n2, m2 + n2) is a primitive Pythagorean triple.  Furthermore, all primitive Pythagorean 

triples may be obtained in this manner (switching the leg lengths if necessary so that the even 

one comes first). 

 

Since every Pythagorean triple can be obtained by scaling a primitive Pythagorean triple by an 

integer scale factor, the problem of finding all Pythagorean triples is reduced to that of finding all 

primitive Pythagorean triples.  So Euclidôs proposition 29 solves the problem of finding 

Pythagorean triples. 

                                                 
1 Thomas Moore is professor emeritus at Bridgewater State University. 
2 See aleph0.clarku.edu/~djoyce/java/elements/bookI/propI47.html. 
3 See aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html. 

Suppose (a, b, c) is a primitive Pythagorean triple.  Show that a and b have opposite parity. 

http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI47.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX29.html
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The first few primitive Pythagorean triples derived using Euclidôs Proposition 29 are: 

 

m n 2mn m2 ï n2 m2 + n2 

2 1 4 3 5 

3 2 12 5 13 

4 1 8 15 17 

4 3 24 7 25 

5 2 20 21 29 

5 4 40 9 41 

6 1 12 35 37 

6 5 60 11 61 

 

During the years 800 through 200 BCE, books emerged in India that are now grouped under the 

name Sulbasutras.  The following primitive Pythagorean triples appear in the Sulbasutras: 

 

(3, 4, 5),   (5, 12, 13),   (8, 15, 17),   (7, 24, 25),   (12, 35, 37). 

 

There are geometric constructions in the Sulbasutras that lead to algebraic formulas that can be 

used to produce Pythagorean triples.  For example, in one construction of a square with a given 

area t, the algebraic identity4 
2 2

1 1

2 2

t t
t

+ -å õ å õ
= -æ ö æ ö
ç ÷ ç ÷

 

 

can be inferred.  If we substitute t = (2x + 1)2 into this identity, we get the identity 

 

(2x + 1)2 = (2x2 + 2x + 1)2 ï (2x2 + 2x)2. 

 

This identity yields the Pythagorean triples (2x2 + 2x, 2x + 1, 2x2 + 2x + 1), where x is a positive 

integer.  Similarly, substituting t = x2 into the identity yields Pythagorean triples of the form 

(2x, x2 ï 1, x2 + 1), where x is any integer greater than 1.  Hereôs a table of some of the 

Pythagorean triples produced by these formulas: 

 

x (2x2 + 2x, 2x + 1, 2x2 + 2x + 1) 

 

x (2x, x2 ï 1, x2 + 1) 

1 (4, 3, 5) 2 (4, 3, 5) 

2 (12, 5, 13) 3 (6, 8, 10) 

3 (24, 7, 25) 4 (8, 15, 17) 

4 (40, 9, 41) 5 (10, 24, 26) 

5 (60, 11, 61) 6 (12, 35, 37) 

 

In ancient Babylon, archeologists unearthed thousands of clay tablets with writing on them from 

a system called cuneiform.  One of these tablets, known as Plimpton 322, lists some 

Pythagorean triples, although it is not known whether the Babylonians interpreted these numbers 

as the sides of a right triangle.  The cuneiform system used a base 60 number system.  To learn 

more about this and try your hand at deciphering the contents of Plimpton 322, look up Plimpton 

322 on the internet. 

                                                 
4 See www.math.tifr.res.in/~dani/pyth.pdf  

http://www.math.tifr.res.in/~dani/pyth.pdf
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Pythagorean Triples Challenges 

 

I have gathered a few problems that I have published over the years 

related to this topic.  You are hereby challenged to try and solve some 

of them!  The last one is a new problem created especially for Girlsô 

Angle. 

 

We welcome you to submit your solutions!  Send them to girlsangle@gmail.com. 

 

1. From the Pi Mu Epsilon Journal, 1993 (used with permission from Steve Miller): 

 

For a < b < c positive integers, if gcd(a, b) = 1 and a2 + b2 = c2, then we say (a, b, c) is a 

primitive Pythagorean.  If both a and c are primes, we call it a prime primitive Pythagorean 

triple.  (i) If (a, b, c) is a prime primitive Pythagorean triple, deduce that b = c ï 1.  (ii) Find all 

prime primitive Pythagorean triples in which a) a and c are twin primes; b) both are Mersenne 

primes; c) both are Fermat primes; d) one is Mersenne and the other Fermat. 

 

2. From The Pentagon, 2012 (used with permission from Pat Costello): 

 

Prove that there are infinitely many primitive Pythagorean triples (a, b, c), such as (5, 12, 13), 

with hypotenuse c such that the odd leg is a pentagonal number and the even leg is consecutive 

with the hypotenuse. 

 

3. Submitted to The Pentagon, 2013 (used with permission from Pat Costello): 

 

Prove that there are infinitely many Pythagorean triples (a, b, c) with ñlegsò a and b, one of 

which is an abundant number and the other a deficient number. 

 

4. From MathProblems Journal, 2013 (used with permission from MathProblems): 

 

The examples (3, 4, 5), (5, 12, 13), and (13, 84, 85) show that the same odd number may occur as 

the ñhypotenuseò and as the ñodd legò of primitive Pythagorean triples.  Provide explicit 

constructions of such triples to show that there are infinitely many such odd numbers. 

 

5. For the Girlsô Angle Bulletin: 

 

Let (a, b, c) be a Pythagorean triple.  (i) Prove that the highest power of 2 dividing a cannot 

equal the highest power of 2 dividing b.  (ii) Prove the same for the highest power of 3 dividing 

a. 

 

For More 

 

See www.hps.cam.ac.uk/people/robson/neither-sherlock.pdf for more on Plimpton 322. 

 

For a proof of the Pythagorean theorem, check out the Girlsô Angle WIM Video featuring Ina 

Petkova.  Also, check out the Visual Proof of the Pythagorean Theorem on the Girlsô Angle 

YouTube channel. 

Girlsô Angle thanks 

Professor Moore 

for problem #5! 

http://www.hps.cam.ac.uk/people/robson/neither-sherlock.pdf
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Restrict yourself to the directions defined by the diagonals 

of the faces of a fixed cube.  Find an equilateral convex 

solid whose edges each run parallel to one of these 6 

directions. 
A rhombic dodecahedron. 

Solid Geometry: Wood Sculptures by Kosticks, continued 

 

There is such a solid, and it is called a rhombic dodecahedron. 

 A nonconvex example of a shape whose edges are all 

parallel to the 4 major diagonals of a cube is the Kosticksô 

Tetraxis puzzle.  The name comes from the fact that the edge 

directions are parallel to the 4 major diagonals of a cube.  The 

video Tetraxis Geometry visually explains the geometry of the 

rhombic dodecahedron and Tetraxis.  You can watch it on the 

Girlsô Angle YouTube channel. 

 

 

 

 

 

A Leap of Imagination  Weôre ready to explain the Quintetra Assembly.  Instead of exploring 

shapes whose edges are all parallel to a fixed set of 3 or 4 directions, as we have done so far, the 

Kosticks explored shapes whose edges are parallel to a fixed set of 30 directions! 

 What 30 directions?  Start with a regular dodecahedron.  A 

regular dodecahedron is one of the five Platonic solids.  It has 12 

faces that are congruent regular pentagons, with 20 vertices and 30 

edges.  Three edges emanate from every vertex.  To get a good 

feeling for the shape, build one!  If you make 12 copies of the 

regular pentagon shown at left, you will find that the dodecahedron 

practically assembles itself because there is little choice for how to 

put the faces together.  You can also turn to page 11 of Volume 3, 

Number 4 of this Bulletin and find the net of a regular 

dodecahedron that you can print out and fold. 

 The 20 vertices of the dodecahedron can be grouped into 5 sets of 4 vertices each.  In 

each set, the 4 vertices are the vertices of a regular tetrahedron.  If done properly, each of the 5 

vertices of any pentagonal face will belong to a different 

tetrahedron.  A tetrahedron has 6 edges, so these 5 

tetrahedra collectively have 30 edges.  These 30 edges 

represent the 30 directions to which the Kosticks 

restricted their explorations. 

 The Kosticks managed to discern the amazing 

equilateral convex polyhedron1 shown at right.  By 

construction, each of its edges runs parallel to one of the 

30 directions.  The polyhedron consists of 20 equilateral 

triangular faces and 60 congruent rhombic faces.  It has 

72 vertices and 150 edges.  The centers of the triangular 

faces form the vertices of a regular dodecahedron, and the 

rhombi are laid out like a path between the triangles.  

Most of the vertices are surrounded by 3 rhombi and a 

triangle, but at 12 of the vertices, 5 rhombi come together to 

form 5-pointed stars.  These 12 special vertices form the 

vertices of a regular icosahedron. 

                                                 
1 According to John Kostick, Zometool is a terrific aid to explore possibilities. 

An equilateral polyhedron with 60 

congruent rhombic faces and 20 

triangular faces. 
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 In order to make a model of this polyhedron, the 

Kosticks had to compute the angles of the rhombic face.  

One way to find the angles is to determine which of the 

30 directions correspond to the adjacent sides of a 

rhombic face and compute the angle between those 2 

directions.  Iôll sketch another way to find these angles 

that enables computation of the Cartesian coordinates of 

all vertices.  To follow this approach, you need to be 

comfortable with trigonometry, vectors, and matrices. 

 The figure at left shows part of the Quintetra 

Assembly.  Let ű = (1 5) / 2+ .  Vertices V and W are 2 

of the 12 vertices where 5 rhombi meet.  These 12 

vertices form the vertices of an icosahedron.  We exploit the fact that the 12 points whose 

Cartesian coordinates are (±1, 0, ±ű), (±ű, ±1, 0), and (0, ±ű, ±1) are the vertices of an 

icosahedron (where all possible combinations of signs are taken).  Without loss of generality, we 

may assume that V = (1, 0, ű) and W = (-1, 0, ű). 

 The 180° rotation about the line that passes through the origin and the midpoint of 

segment VW interchanges Pô and Qô.  Therefore, segment PôQô is parallel to the planes that are 

perpendicular to the axis of rotation, which include the xy-coordinate plane.  That is, Pô and Qô 

have the same z-coordinate.  Because VPQôPô and WQPôQô are rhombi, we know that PV and 

WQ are parallel to PôQô.  Hence, P, V, Q, and W all have the same z-coordinate, which is ű.  Let 

P = (x, y, ű).  We seek x and y.  By symmetry, we know that Q = (-x, -y, ű). 

 The 72° rotation about the line that passes through the origin and V in the direction 

indicated by the blue arrow sends P to Pô.  We use this fact to express the coordinates of Pô in 

terms of the coordinates of P.  After some linear algebra, we find 

 

1 1 1 4 3
' , ,

2 2 2 2 2 2 2 2 2 4

x y
P y x y x

j j j j

j j j

å õ+
= + + - + + - +æ ö

+ç ÷
. 

 

 Next, we use the fact that QôPô is parallel to and the same length as PV.  This can be 

expressed by saying that the vector that points from Qô to Pô is the same as the vector that points 

from P to V.  When this condition is expressed mathematically and simplified, we arrive at the 

following system of linear equations in the unknowns x and y: 
 

2x + űy = 0 

x ï y = 1 
 

Solving these for x and y and substituting into our expressions for P and Pô, we find 
 

2
, ,

2 2
P

j
j

j j

å õ-
=æ ö

+ +ç ÷
 and 

1 1 2
' , ,

2 2 2
P

j
j

j j j

å õ-
= +æ ö

+ + +ç ÷
 . 

 

From these, we can compute the angle PôVP (for instance, by using the dot product).  We find 

that angle PôVP = cos-1 (ű/4), which is approximately 66.14°. 

 

Jane went beyond understanding the surface of the polyhedron.  She designed a unique 

block, called the Quintetra block, from which the polyhedron can be built.  The Quintetra block 

consists of 4 rhombic faces, 2 pentagonal faces, and 1 parallelogram face.  It takes 30 Quintetra 

blocks to build the polyhedron. 
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Photo courtesy of the Kosticks 

 

The Kosticksô Quintetra Assembly. 

 

The lower left image shows the Kosticksô Quintetra block in 3 different types of wood.  The 

image on the right shows the completed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Take It To Your World   Make 30 

copies of the net shown at right.  

Cut on the solid lines and fold on 

the dotted lines.  Glue or tape the 

blocks together so that the dark 

circles connect to the light circles. 

 

Angles  The table below gives the 

measures of angles in the net.  If an 

angle is unmarked, it is part of a 

parallelogram with a marked angle. 

Angle Exact Measure 
Degrees 

(approx.) 

A cos-1(ű/4) 66.14° 

B cos-1(1/4) 75.52° 

C 60° 60° 

D cos-1((1 ï 3ű)/4) 164.48° 

E 210° ï D/2 127.76° 

F tan-1  65.91° 

 


