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An Interview withMarie Vitulli, Part 1

Marie Vitulli is professor emerita at the Part of creating mathematics

University of Oregon.She received her Ph.D. . : :
in mathematics from the University of IS aSkmg gOOd questions and

Pennsylvania under the supervision of Dock  the othe part is having the
Rim. She has been at the University of capacity to solve the problems

Oregon since 1976. In addition to her : .
mathematical research, she published studie by using machlnery that

on gender differences first jobs for new already exists or coming up
Ph.D.s with Mary E. Flahive in the Notices of  with new machinery.
the American Mathematical Society.

Ken: You have been a professional mathematician for a long tirnébegin, | am hoping to

gain some wisdom from you in three areas: learning and stuthatizematics, creating
mathematics, and leading a life as a mathematicianthat end, would you, in each case, look
back over your career and share with us advice and wisdom that you gained that helped you in
each area.

So, starting with learning anduslying mathematics?

Marie : Mathematics is not a spectator sport. To learn and study it you must be actively engaged.
You need to verify what you read and eventually either accept or challenge each statement you
come across. There are many branchésprpes of mat hemati cs. I f on
interest try another branch before giving up on mathematics.

Ken: And creating mathematics?

Marie: If you start generating questions as you study mathematics tresdlneady been
discovered you wilhave a leg up on creating mathematics on your own. Part of creating
mathematics is asking good questions and the other part is having the capacity to solve the
problems by using machinery that already exists or coming up with new machinery. | love
building new theories that set a framework for asking and answering questions.

Ken: And, finally, leading the life of a mathematician, or, career advice?

Marie:A research mathematiciands | ife is deeply
frustrating abther times. When you solve a problem that you have been thinking about for a
while you feel |l i ke youdre on the top of the

quite frustrated over not being able to make progress on it. The life is cjiradjém that you

have to somehow figure out how to juggle teaching, research, service to your institution and the
profession and still have part of you left over for a personal life. On the positive side, you get to
do something that you love and you haeene flexibility in setting your own schedule. There

are always opportunities to travel to attend conferences and workshops and to present your own
work. You should realize that a mathematician at a research university works many more hours
than someonavho has a 9 to 5 job. You frequently work in the evenings and on the weekends.
There are many other satisfying careers where knowledge of higher mathematics is beneficial. |
went from college to graduate school and then accepted a-eackgob athe University of
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Dear Reader,
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content and make every effort to provide this content to you
for free.

We are also committed to surviving as aonprofit!

For this issue, those who do not subscribe tthe print
version will be missing out on the complete interview with
Prof. Vitulli, and some other content We hope that you
consider the valueof such contentand decide that the efforts
required to produce such content are wortly of your financial
support.

We know that mathematical interest and talent is
unrelated to economic status, which is why we provide so
much content for free. But we hope that those of you who are
comfortable financially will help us to continue in our efforts.

So, please conder subscribing tothe Bulletin. Thanks
to our sponsors, subscriptions cos$36/year. With a
subscription, you have also gained access to our mentors via
email and the ability to influence content in this Bulletin. Visit
www.girlsangle.org/page/bulletin_sponsor.html for more
information.

Thank you and best wishes,

Ken Fan
President and FouAnder A o
"EOI 06 !'TCciAg ' -AOE #1 OA £
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Learnby Do_mg

Angle Measuré
by Addie Summet edlted by Jennifer Silva an angle

What is an angle?
Angles are formed whenever line segments intersect.

The figure above right shows two line segments that share an endpoint. The spacethetween
isanangle. Thelie segments t hat de fddeseThdchremomemdpbire ar e
of the line segments is thvertex of the angle.

\ Hereb6s another picture with one |
‘ / blue | ine segments. Youdre meant
\\ ~ segment rotating around. As the blue line segment rotates, it
' / forms several different angles with the black line segment.

Problem 1 Imagine the blue line segment rotating around and
around. Do any angles formed stand out to you as being special
in sorre way? Which ones?

At right, | 6ve dr a ri ke
me as specialActually, these two angles
have stood out to many people and they
have special names. Theshaped angle,

which is the angle found in the corner of
piece ofcopypaper, isalledaright

angle. The other angle, which may hardly seem like an angle at all, is caltagght angle.

Angle Measure

Problem 1 shows that angles and circular moti
common to measure the size ofagle in terms of circles. We draw a small circle centered at

the common endpoint of the two line segments that define the angle, and we ask what fraction of
the circle is cut out by the angle. Thus, a right angle is a quarter circle, and a strdeig ang

half circle.

People also usdegreesandgradsto measure anglesn a full circle, here ae 360 degrees and
there are 400 grads.

Problem 2 How many degrees are there in a right andt®w many are therenia straight
angle?

The sy nstaods foriilegteed right angle is 90°and a straight angle is 180°. Was that
your answer for Problem 2? An angle whose measure is between 0° and 90° is catiate an
angle and an angle whose measure is between 90° and 180° is calddsaanglke.

1 This content was supported in part by a grant from MathWorks.



Problem 3. On a clock with an hour and minute hand, what is the angle between the two h
when the time showing is 8 p.mWhatabout 2:45 a.m.?

Problem 4. Find all the times when the hour and minute hand obakcform a 90° angle.

Mathemati@ans use a third measure for anglastians. To compute radian measure, center a
circle at the anglebs vertex. The rhedr¢ an mea
that is cut out by the angle divided by the radius of the circle. Beaadlians are the ratio of

two lengths, radian measure igdimmensionlesgjuantity.

Problem 5. Technically, to define radian measure, we need to know that the ratio of the arc
l ength of circle cut out by andegendgphtbesideioVvi ded
the circle. Why is this true?

Problem 6. Express the radian measures of a right angle and a straight angle in terms of the
mathematicalconstant (i s t he ratio of a circleds circumf

Problem 7. Letd be the degree measure of an angle andbetits radian measure. Write down
a conversion equation that relateandr.

Youbr e wal ki ng alshoutgatywhue n isTaamero e ayelgyore e s! 0 W
turn? | t OTbe parsobwhg shoutedybu should have told you whether to turn left

or right. I n other words, therebés an ambiguli
line segments that share a common endpoint, there are really two angles formed, and you sweep
through one or thether depending on whether you rotate the first line segment clockwise or
counterclockwise to get to the other. Usually, people are referring to the smaller sector, but not
always. If the context does not make it clear which angle is meant, it mystdiesl.

Problem 8 Letl, m, andn be line segments that share a common endpoimtssume that as
you rotate aboutP in the counterclockwise direction, you pass avdrefore reaching. Show
that the measure of the angle formed bypdn is equ&to the sum of the measures of the angles
formed byl andmandmandn, with all angles being measured in the counterclockwise
direction.

If two angles add up to a straight angle, they are calipglementaryangles. If two angles add
up to a right agle, they are calledomplementaryangles.

Problem 9. Imagine walking around the perimeter of a triangle in such a way that the triangle is
always on your left. Start your walk in the middle of one of the sides. You approach one of the
corners of theriangle. When you go around the corner, you turn counterclockwise through an
angle that measurdsdegrees. The measure of the angle at the corner you just went around is
18071 T degrees. When you complete one full circuit and return to your starting fwough

how many degredsaveyou turredin the counterclockwise direction? What does this imply
about the sum of the angles of a triangle?

Problem 10 Use the argument hinted at in Probl@to show that the sum of the angles in a
polygon withn sides is equal to 180§ 2) degrees.



Problem1l Let 6s move on t o ax-aldeay-axie sDia\aa]Iinqotrhrcw:‘nX‘ wi t h
the origin. Such a line has equatipn mx wheremis the slope of the line. For the moment,

| et 0 s amis paiege, so that the line goes through the first quadrant. Notice that

specifying the slope is an effective way of specifying an angle in the first quadrant between the
positivex-axis and the line. Let(m) be the degree measure of this angle. Whi(l)l? What

isd(+/3)? Asmtends to infinity, what doed(m) approach?

The functiond defined in Problem 9 is also known as #netangent function. The arctangent
function can be regarded as the function that converts thedaplene into the angle the line
makes with the positive horizontal axis.

When 2 lines intersect, they form 4 angles (see figure at right).

Problem 12 Which pairs of angles are supplementary to each otr

Angles 1 and 3 are calleertical angles Likewise, angles 2 and 4
are vertical angles.

Problem 13 Show that vertical angles have the same measure.

Another way to think aboubhe equality of the measureswatrtical
angles is to imagine standing back to back with a friend at the point of
intersection of the 2 lines. You and your friend are attached on your

'\I 2 backs, so whenever you turn, your friend turns with you. Now face
1 X 3 out along the blue line segment (in the figure at left). Your friend
4 will be looking out along the red line segmentydii are asked to

turn counterclockwise by the measure of angle 1, you will then be

facing down the black line segment. However, your friend will now

be facing down the green line segmsinte the black and green line

segments are part of the same likaving turned through the same
amount that you divhen you swept through angleififollows that angle 1 and angle 3 have the
same measure.

Problem 14 Under what circumstance do all 4 angles created by 2 intersecting lines have the
same measure?

Pe@le often say that the wall and the ceiling meet at right angles. When people refer to the
angle between two planes, they are referring talthedral angle Imagine 2 planes that
intersect in a line. The intersection of these 2 plavittsa plane pgrendicular to their line of
intersection will be 2 inters#ing lines. The 2 intersectinimes form 4 angles. The dihedral
angle between the 2 planes can be taken to be any one of these 4 angles.

Problem 15 Take a piece of paper and fold it to forrdilaedral angle.Fold a paper
contraption that contains a 60° dihedral angle.

Problem 16 What is the dihedral angle between adjacent faces of a cube?



Mathematical Bufféet

PlanarConfigurations by Nadine Alisend Leah Berman

Two points define a lineBut if you arbitrarily pick out 3 pointshey most likely wil not sit on

a line. When 3or morepoints sitonaline i t 6 andts Ip e a&wod@d describe that
collinear. In fact, there are theorems whasain pointis that 3 points are collear. (For an
example,googl@ Eul er | i neo.)

If you arbitrarily pick out 2 lines, they will intsect in a point, except in tispecial
situationwhere the lines are parallel. But it is unusual when 3 lines intersect in apdittiere
is a special wat to describe when that happeas: concurrent.

A planar configuration is a finite set of lines and poinitsthe planghat exhibit a
fascinating regularity with respect ¢ollinearity and concurrencyif you haveP points and-
lines and if every lhe hag of thepointsand every point is ohof thelines then you have

a (P, Lp) configuration.

The upper left shows a{46,) configuration: every line has 2 of thélue points and every blue
pointsits on3 of the 6lines. The other three aal (93, %) configurations.The vertices of a
regularN-gonand the lines that contain its edges form/sdn K2) configuration.

In thisMathematical Buffetwe present images of configurations created by Nadine Alise
and Leah BermanHow many point@and lines do they have? How many of the lines pass
through each point and how many of the posgiten each line”Do you see a relationship
betweerP, L, p, andl?

The cover displays a magnificef@40s, 24G) configuraton.

1 This content was supported in part by a grant from MathWorks.
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StainedGlass Angles

by Lightning Factorial edited by Jennifer Silva

Emily and Jasmine are designing a stained gl a
Emily: There are so many possibilities!

Jasmine Too many!

Emi | y: We could depict sea |ife in a coral r
Jasnine Or we could make an abstract designeée

Emily: | suppose we could just make something random. Maybe we can shatter a piasg of g
and use that as our design.

Jasmine Toodangerous!

Emi | y: Staring at this btobhagik. sheet of paper,
Jasmine Why donét we start by I imiting possibil
Emi | y: Ok ayé [

——~—+~—-'-~' i
Jasmine Hmm. That doesndt 100 ery ‘ J'

interestigmgpaper! t 6s TTKe

I
11T

Emily: Or a brick wall. Thoughdo like ’
straight edges. P

Jasmine Yes,straight edgeswilna ke it easi er to buil d. Let 6s
Emily: What if we also insist thatll edgeshavethe same length? Would that be too restrictive?
Jasmine: We could makegular polygos. O maybe they

dondédt have to be regul ar. hey |

lengths.

Emily: Empty polygondook like window frames, not stained
glass windows.

Jasmine What if we draw in the spokes?

Emily: Okay. But if we stick to edges all the salegth, then it means that wi
have to join the ends of adjacent spokes to form equilateral triangles.

Jasmine Oh, t hat 8w awindavwein the shipeafta regular e 3?
hexagon.



Jasmine We could make a tiling that uses polygons
that all have the same edge length.

Emily: Like thebrick pattern?
Jasmine Yes, only | was thinking of using more than
one type of polygon, such as an equilateral triangle,

square, and hexagon.

Emily: Oh, Ithirk 1 6 v diling l&esthrat. H goes
i ke thisé

A

Jasmine Ye s, t hat 6s it

Emily: | t 6s pr et t ynorebuilablefomraybe it 6s
bathroom floor

Jasmine Maybe. Wel |l , anysway; ook for ot

Emily: What if we go back to the spokieea, except that
we make the spokes out of several edges?

Jasmine How do you mean?

Emil ynot |l wmr eé | 0loudjWhsttifwa hi n
imagine a long spoke made up of several edges, all the same
length, and then rotate copies of it around tikh i ?s é

Jasmine Then you just get one piece of glass with some mete
edges running out frotie center. | suppose we could try to
bunch up the spokes so that adjacent spokes touch each othe
That would close dfsome pieces of glass.

Emily: Hmm. How about this: V& draw an angle and then
bounce back and forth between the sides of the angle to form
spoke, like this

Jasmine Tahcaribudspoke.] 6 m i ntri g
Emily: We have to make the angle in such a way that

copiesofitwillfitsnug y i nsi de like pikza |
slices.

Jasmine Right, the angle has to measure B60égrees, wherlisanintegerLet 6 s see wha
happensf we start with a right angle, which correspond#\te 4.
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By Anna B.

Mathematics is a journeyf discovery As mathematians take this journeyheyfollow many wrong
turns, believe many incorrect facts, and encounter many myst@résfthese twists and turns comes
the reward of tuth and understanding. However, if you lookvadth booksyoumight get the impressior
that mathematiciangarely err. In this column, Anna gives us a peek into her mathematical process
discovery, bravely allowing us watch even ahe stumbles.

Annacontinues her investigation into the equatds n.

There's something about

: = e & . Last time, I found this
the exponentials that I o T " i identity for a > 0. The
worked on last time that 7 LN &\ identity shows how to write
makes me feel like there's " _ |/ 0 4| L 20O numbers between 1/e and 1
mo!'e.tobemd. I want to \ CA ) - ) as x to the power of x in
revisit that. T1l start by / two different w
summarizing what I found S
';‘(Al = O —Ca (}C“/ = QA R /(i) Il define 2 functions fand g
! ( ) to be the 2 values of x such
B that x to the x are equal.
Last time, I also showed l i | i
that both f{«) and g(a) tend [/7.\ o Ay
to l/easagoesto 1. M i) = ('M (]) = ¢
x ‘?l G =
As a tends to infinity, 1 -a
2 goes to negative infinity much
T oLt | & - ed.- faster than log ¢, 0 the
_“_( a) = G - e — ~ exponent tends to 0. So
fla)tends to 1.
A\
I'll sketch a graph of \ - | = |
the function £ Ata=1, St
Il define it to be 1/e since > =
that's it's limit as a tends Vo A Y
to 1. o
i —
<
Let o< a <|. Since the range of fincludes
all values between 0 and 1,

Key:

Anna's afterthoughts

for any a between 0 and 1,
there must be a 5 > 1 that
satisfies f{a) to the f{a) equals
() to the f{5)... that is {&)
equals g(a).

© Copyright2014GirlsbAngle. All Rights Reserved. 17
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Ya ) a
\b -k - G
miry!heslmcap that X
worked before. Since I have - b =k \ " &
different bases on the left and - — _— =
right side of the equation, Tl = By R F a_
express b as a power of a. _L) = 0~ J
X a
|t =0~ Hm. This doesn't seem to

help much. I can't see how
to solve this equation for x.

A
I feel this is a peculiar situation. \ T =L
I think I'l go shead and graph o 0
both functions fand ¢ on the v Ny =N
same m ¥ = P .
- b e OO,
t's sec... b is defined so that < ; , X e Y
fib) = g(a). Hm. But f{a) is “
the other value which, when ", p Huh.. that nmst fla)is
D 45 JaviL. wconla o) W Ta)s 4h) gra) =) equal to g(b).. which means
the g(a) and so is g(5)...hum... | ) v ‘ ‘ this is a rectaugle.
PR [H% b =
A .(/ j lj‘. Lo
That is... L v X )
But this equation surely means &) k—-'b | - t -6
ab=11 Oh,s0b=1/a, /
A\l '
| O = 43 = |
t‘ ,—f;. — e
_\—
a- -\ - A
=@ o V=) . It works!
So fand g are different
ol \ LA ways of expressing what is
T (f-. ): Lia | essentially the same function,
. I can get by with just £..
and [ satisfies these properties.
~ \_ Neat!
X (1-a)<ali-¢")/ Why couldn't I see that
Key: x = -] was a solution of my
= | —( if1-a )= -l Vv equation relating x and a?
Anna's thoughts That's amusing!
Anna's afterthoughts
Ark 1.27.14
— et 0 P S ST At N 3 i I Ry S S 0 B N S S i SR TN L o TR
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Solid Geometry:
Wood Sculptures
by Kosticks

by Ken Fan
edited by Jennifer Silva

Art and geometry combine in the mind
of John andlane Kostick. The result is
a collection of wondrous wood
sculptures that manifest a wealth of
interesting mathematical facts.

The best way to get a feel for
this mix of math and art is to play with
an actual exampl e,
we 61 | drticle contdirts allsyou

need to make your own paper model o

one of the Kost i QuistdiraAssemidyst creati ons: the

Inspiration To appreciate the elegance of the Quintetra Assembly, it helps to think about a few
more basic shapes with special¢ us on t he directions of their
paying particular attention to its 12 edges. Notice that the edges of a cube pointin 1 of 3
different directions, just like the axes of a 3D Cartesian coordinate system.
This observationaises the following question: What solids have all of their edges
restricted to the same 3 directions as the edges of a cube? Because this restriction is severe, we
can get a very good idea of what these shapes look like with a little bit of experiorentaty
brick shape is possible, and so is any solid built by joining bricks together, provided that all of
the bricks are consistently oriented to respect the restriction on edge directions. Of these shapes,
only the isolated brick will be convex, anfitbese bricks, the cube is the most symmetric and is
the only convex one with edges all of the same length. (A shape is convex if it contains the line
segment joining any two of its points. For example, a circular disk is convex, but an annulus is
not.)
Letds make a game of this, now using a dif
directions specified by thmajor diagonalsof a cube. The major diagonals are the line
segments that connect opposite vertices. What shapes can you find whose egles are
parallel to one of these 4 directions? Note that if we use only 2 of the 4 directions to travel in a
circuit by moving in one direction, then the other, then back in the first direction, then back to
the starting point in the second direction, wed wéce out a parallelogram. Also, keep in mind
that if we wish to stay within a plane, we have to restrict ourselves to using just 2 of the 4
directions. Therefore, such solids, if convex, must have faces that are parallelograms. By
analyzing the angtebetween pairs of directions, we find that these parallelograms involve 2
specific angles, namelycéd / 3 & 70.5A and-1i/ 83s dsupPPl. &Ment , c ¢
Is there an equilateral convex solid whose edges are each parallel to one of the 4 major
diagonals of a cube? If such a shape existed, all of its faces would have to be congruent rhombi.

Think about this before reading further.

Continuedon page23
19



Pythagorean Triples Challenge

by Tom Mooré | edited by Jennifer Silva

If you know a lot about Pythagorean tripleselffree to skip right to the 5 challenge problems at
the end of this article. Otherwidggre is some background information.

A Pythagorean triple (a, b, c) is a triple of positive integers that can be used to form the sides of
a right triangle with legs of lengtlasandb and hypotenuse of length According to the
Pythagorean theorerd? = a®> + b>. Conversely, i&, b, andc are positive integers that satisfy the
Pythagorean equatia = a® + b?, thena, b, andc can be used as the lengths of the sides of a
right triangle.

A Pythagorean triplea( b, c) is calledprimitive if aandb share no common factor other than 1.
For example, (3, 4, 5), (5, 12, 13), (8, 15, 17), and (7, 24, 25) are all primitive Pythagorean
triples, but (6, 8, 10) is not primitive, even though it is a Pythagorean triple.

Supposed, b, ) is a primitive Pythagorean triple. Show thatndb have opposite parity.

A Little History

From the ancient Gek manuscripElementswhich was
written by Euclid over D00 years ago, we learn both the
statement and ptheoreni. Indbok Po¥
the Elementswe find Proposition 471n right-angled
triangles the square on the side opposite the ragigle
equals the sum of the squares on the sides containing t
right angle? That is, the area of the red square is equal
the combined areas of the green and blue squares in th
figure at right.

In Book X, Proposition 29, Lemma&,we learn how to
generate all primitive Py
statement is geometribut we can put it algebraically, like
this: if m> n are positive integers of opposite parity and their highest common factor is 1, then
(2mn 21 n?, n? + n?) is a primitive Pthagorean triple. Furthermore, all primitive Pythagorean
triples may be obtained in this manner (switching the leg lengths if necessary so that the even
one comes first).

| es.

Since every Pythagorean triple can be obtained by scaling a primitive Pythagpleaoytan

integer scale factor, the problem of finding all Pythagorean triples is reduced to that of finding all
primitive Pythagorean triples. So Euclidds p
Pythagorean triples.

1 Thomas Moore is professor emeritus at Bridgewater State University.
2 Seealeph0.clarku.edu/~djoyce/java/elements/bookl/propl47.html
3 SeealephO.clarku.edu/~djoyce/java/elements/bookX/propX29.html
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The first few primitive Pythagr ean tri pl es derived using Euc

m | n 2mn | m?i n? | m?+n?
2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 11 61

During the year800through200 BCE, bookemergedn Indiathat ae now grouped under the
nameSulbasutras The following primitive Pythagorean triples appear in the Sulbasutras:

(3,4,5), (5,12,13), (85,17), (7,24,25), (12,35, 37).

There are geometric constructions in the Sulbasutras that lely@boaac formulas that can be
used to produce Pythagorean triples. For example, in one construction of a square with a given
areat, the algebraic identify
(Al 5 ta’
=% 6"
(; 2 - _?

can be inferred. If we substitute (2x + 1)? into this identity, ve get the identity
(2x+ 1P = (2 + 2x+ 1P 71 (2x% + )2

This identity yields the Pythagorean triplesi2 2x, 2x + 1, 22+ 2x + 1), wherexis a positive
integer. Similarly, substituting= x? into the identity yields Pythagorean triples af fiorm
(2x,x®1 1,x*+1),wherexi s any integer greater than 1.
Pythagorean triples produced by these formulas:

X | (2C+2x X+1,2%+2+1) X (2x, x?7 1,x*+ 1)
1 4, 3, 5) 2 (4, 3, 5)

2 (12, 5, 13) 3 (6, 8 10)

3 (24, 7, 25) 4 (8, 15, 17)

4 (40, 9, 41) 5 (10, 24, 26)

5 (60, 11, 61) 6 (12, 35, 37)

In ancient Babylon, archeologists unearthed thousands of clay tablets with writing oindimem

a systentalledcuneiform. One of these tablets, knownRIgmpton 322, lists some

Pythagorean triples, although it is not known whether the Babylonians interpreted these numbers
as the sides of a right triangle. The cuneiform system used a base 60 number system. To learn
more about this and try your hand atigdering the contents of Plimpton 322, look up Plimpton

322 on the internet.

4 Seewww.math.tifr.res.in/~dani/pyth.pdf
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Pythagorean Triples Challenges
| have gathered a few problems that | have published overtheyear i r | s 6 An
related tathis topic. You are hereby challenged to try and solve son professor Moore

of the m! The | ast one is a new P for problem #5! 2ated
Angle.

We welcome you to submit your solutions! Send them to girlsangle@gmail.com.

1. From thePi Mu Epsilon Journal1993 (used with permission from Steve Milter)

Fora < b < c positiveintegers, if gcd§, b) = 1 anda? + b? = ¢?, then we sayd( b, ¢) is a
primitive Pythagorean. If bothandc are primes, we call it a prime primitive Pythagorean
triple. (i) If (a, b, ) is a prime primitive Pythagorean triple, deduce batci 1. (ii) Find all
prime primitive Pythagorean triples in whiela andc are twin primegsb) both are Mersae
primes c) both are Fermat primgd) one is Mersenne and the other Fermat.

2. FromThe Pentagon2012 (used with permission from Pat Costello):

Prove that there are infinitely many primitive Pythagorean tri@gls, €), such agb, 12, 13),
with hypotenuse& such that the odd leg is a pentagonal number and the even leg is consecutive
with the hypotenuse.

3. Submitted td’he Pentagor?013(usedwith permission from Pat Costello):

Prove that there are infinitely many Pythagorean trideb,c) wi t haarnil, eng af 0
which is an abundant number and the other a deficient number.

4. FromMathProblems Journal013 (used with permission froMathProblem
The examples (34, 5), (5, 12, 13), and(13, 84, 85) show that the same odd number may occur as

t he AhypoaschaesBdoddndego of ps iPronide éxplieit Pyt hagor
constructions of such triples to show that theeeiafinitely many such odd numbers
5.FortheGi r 1| s6 Angl e Bull etin

Let (a b, ¢) be a Pythagorean triple. (i) Prove that the highest power of 2 divadiagnot
equal the highest power of 2 dividibg (ii) Prove the same for the highest power divdding
a.

For More

Seewww.hps.cam.ac.uk/people/robson/neitskerlock.pdfor more on Plimpton 322.
For a proof of the Pythagor ean idedfearingina,

c
Petkova. Also, check out thésual Proof of the Pythagorean Theorerm t he Gi r | s
YouTube channel.
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Solid Geometry: Wood Sculptureg Kostickscontinued

There is such a solid, and it is callechambic dodecahedron
A nonmnvex example of a shape whose edges are a
parallel to the 4 major di e
Tetraxis puzzle The name comes from the fact that the edg
directions are parallel to the 4 major diagonals of a cube. T
video TetraxisGeometryisually explains the geometry of the
rhombic dodecahedron afi@traxis You can watch it on the

A

Girlsdé Angle YouTube channe

Restrict yourselfa the directions defined by théadonals
of the faces of a fixed cube. Find an equilateral convex
solid whose edges each run parallel to one of these 6
directions.

A rhombic dodecahedron.

A Leap of Imagination We 6 r e ready to explain the Quintetr
shapes whose edges are aligflal to a fixed set of 3 or 4 directions, as we have done so far, the

Kosticks explored shapes whose edges are parallel to a fixed set of 30 directions!
What 30 directions? Start with a regular dodecahedron. A
regular dodecahedron is one of the fRlatonic solids It has 12
faces that are congruent regular pentagons, with 20 vertices and 30
edges. Three edges emanate from every vertex. To get a good
\\ / feeling for the shape, build one! If you make 12 copies of the
\ / regular pentagon shown at left,wwill find that the dodecahedron
\ practically assembles itself because there is little choice for how to
\ / put the faces together. You can also turn to page 11 of Volume 3,
Number 4 of thiBulletinand find the net of a regular
dodecahedron that you canrprout and fold.
The 20 vertices of the dodecahedron can be grouped into 5 sets of 4 vertices each. In
each set, the 4 vertices are the vertices of a regular tetrahedron. If done properly, each of the 5
vertices of any pentagonal face will belong tifferent
tetrahedron. A tetrahedron has 6 edges, so these 5
tetrahedra collectively have 30 edges. These 30 edge:
represent the 30 directions to which the Kosticks
restricted their explorations.
The Kosticks managed to discern the amazing
equilateralconvex polyhedrohshown at right. By
construction, each of its edges runs parallel to one of tl
30 directions. The polyhedron consists of 20 equilater:
triangular faces and 60 congruent rhombic faces. It ha
72 vertices and 150 edges. The centéthetriangular
faces form the vertices of a regular dodecahedron, anc
rhombi are laid out like a path between the triangles.
Most of the vertices are surrounded by 3 rhombi and a
triangle, but at 12 of the vertices, 5 rhombi come together An equilateral polyhedron wit60
form 5-pointed stars. These 12 special vertices form the ~congruent rhombic faces and 20
vertices of a regular icosahedron. triangular faces.

1 According to John Kostk, Zometool isa terrfic aid to explore possibilities.
© Copyright2014GirlsbAngle. All Rights Reserved. 23
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In order to make a model of this polyhedron, the
W Kosticks had to compute the angles of the rhombic face.

One way to find the angles is to determine which of the

_ 30 drections correspond to the adjacent sides of a
2 o rhombic face and compute the angle between those 2
: directions. l 61 | sketch anotl
x / that enables computation of the Cartesian coordinates of
P all vertices. To follow this approach, yoeed to be

‘ : comfortable with trigopnometry, vectors, and matrices.
The figure ateft shows part of the Quintetra

1'/ \ —‘:\\-‘
l Q r.. ‘ Assembly. Leti= (1++/5)/2. Verticesv andWare 2

of the 12 vertices where 5 rhombi meet. These 12
vertices form the vertices of an icosahedron. We exploit the fact that the 12 points whose
Cartesian coordinates are (1, @) H+0, +1, 0), and(, #i, +1) are the vertices of an
icosahedron (where all possible combinations of signs are taken). Without loss of generality, we
may assume that= (1, 0,04) andW = (-1, 0,Q).

The 180° rotation about the line that passes through the origin anddpeimh of
segmeniWinterchange®6 &6 d Ther efP@id ei, s spagmalnitel to the
perpendicular to the axis of rotation, which includexyeoordinate plane. ThatiBp &6 d
have the samecoordinate. BecauséPQP6 aMQBEEQ6 ar e r homb PYandve know
WQare parallel td”8Q0 . R,.&/nQ; amdW all have the samecoordinate, which ifi. Let
P=(xy, (). We seek andy. By symmetry, we know th& = (-x, -y, Q).

The 72° rotation about the line that passes through the origiW amthe direction
indicated by the blue arrow sen$o P6 . We use this f wesdPbt onexpr e
terms of the coordinates Bf After some linear algebra, we find

& [y 4 Ly Ly SR, Y 493
7 2/" 2 2f 4

Next, we use the factth@®é i s parall el t ®V.dmsktantbdh e s a me
expressed by saying that the vector that pointsf@ggnoR6 1 s t he same as t he
from P to V. When this condition is expressed mathematically and simplified, we arrive at the
following system of linear equations in the unknowrdy:

2x+0y=0
Xty =1
Solving these fok andy and substituting into our expressionsfoandP6 , we f i nd
aj -2 . ail 1 . 2

P= ,——,/ andP'= ) = .
& +2 /+2/ ] +2 /+2/ j 2

From these, we can compute the arRpeP (for instance, by using the dot product).e\fihd
that anglePdvP = cos! ((i/4), which is approximately 66.14°.

Janewent beyond understanding the surface of the polyhedsbedesigned a unique
block, called theQuintetra block, from which the polyhedron can be built. The Quintetra block
conssts of 4 rhombic faces, 2 pentagonal faces, and 1 parallelogram face. It takes 30 Quintetra
blocks to build the polyhedron.
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The

image on the right shows the completed model.

The

| ower |l eft i

Take It To Your World Make 30
copies of the net shown at right.
Cut on the solid lines and fold on
the dotted lines. Glue or tape the
blocks together so that the dark
circles connect to the light circles.

Angles The tablebelowgives the
measures of angles in the net. If an
angle is unmarked, it is part of a
parallelogram with a marked angle.

Kost i

Angle | Exact Measure (gsgrr;i?
A cos}((i/4) 66.14°
B cos}(1/4) 75.52°
C 60° 60°
D |cosl((11 3G)/4)| 164.48°
E 210°7 D/2 127.76°
F tar® 65.91°

Photo coumsy of the Kosticks

cksd6 Quintetra Ass:¢

shows the Kosticks©o
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