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An Interview with Kirsten Wickelgren 
 
Kirsten Wickelgren is a fellow at Harvard University and 
holds an American Institute of Mathematics Five-Year 
Fellowship.  She was a graduate student of Gunnar 
Carlsson at Stanford University and will be joining the 
faculty at Georgia Tech University in the fall. 
 
Ken: Hi Kirsten, Thank you so much for doing this interview!  I’ll start by asking, what do you 
enjoy most about being a mathematician? 
 
Kirsten: I have two favorites I think: the moment when you solve a problem, and hearing a 
compelling story about a powerful mathematical object.  For example, I’ve always been intrigued 
by unique factorization.  It lets you conclude that 11 × 13 × 19 does not equal 7 × 17 × 23 
without doing any multiplying at all.  Later, in college, I learned about other number systems, 
like Z[i]1, which are the complex numbers that have integer real and imaginary parts.  So 
naturally I wondered whether there was unique factorization in these other number systems too.  
It turns out, often there isn’t.  For example, consider the set of complex numbers of the form 

5a b+ − , where a and b are integers.  In this set of numbers, 6 can be factored in two different 

ways: 2 × 3 and 1 5+ −  × 1 5− − .  Then, even later, I learned about a marvelous object called 

the “Picard group” which beautifully measures just how much factorization in these number 
systems falls short of unique factorization.  Math is filled with stories like this. 
 
Ken: What are your goals, as a mathematician? 
 
Kirsten: I would like to understand to what extent solutions of polynomial equations are 
controlled by topological invariants or their analogues.  For example, Gerd Faltings proved that 
there are only finitely many solutions in the rational numbers to polynomial equations if the 
solutions over C [the complex numbers] are a genus g curve with g ≥ 2.  Here, “curve” means 
complex dimension 1, so that’s real dimension 2, and the genus is the number of holes.  Such a 
curve looks like a donut with 2 or more holes. 
 
Ken: What sparked your own interest in mathematics? 
 
Kirsten: I think it was the fact that you could prove things.  This isn’t what I enjoy most now, 
but I was very impressed by this at first.  I thought it meant that mathematics is true in a way 
other things can not be.  I still find it amazing how robust math is.  No matter how many ways 
you solve a problem, if you don’t make a mistake, you get the same answer.  In “The Brothers 
Karamazov,” Dostoyevsky describes psychology as a “knife that cuts both ways” because you 
can prove both an assertion and its opposite with the same tools.  Math is exempt from this 
criticism. 
  
Ken: Can you describe one of the first mathematical concepts that got you excited about 
mathematics? 
 
 

                                                 
1 For more on Z[i] and unique factorization, see the Summer Fun problem set on page 25. 

…one good way to 

understand something, 

and know that you have 

understood it, is to use it. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the rest of this interview with 
Dr. Wickelgren, and some other content.   We hope that you 
consider the value of such content and decide that the efforts 
required to produce such content are worthy of your financial 
support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
Girls’ Angle: A Math Club for Girls 
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by Ken Fan  

 
Sigma Notation 
 
Each day, a stuffed animal exchange acquires new stuffed animal dolphins.  We can define a 
function D(n) to be the number of dolphins acquired on day n.  Here’s a table of the values of 
D(n) for the first ten days: 
 

n 1 2 3 4 5 6 7 8 9 10 

D(n) 7 9 4 5 8 4 6 6 51 2 
 
Day 9 was a good day for dolphins at the stuffed animal exchange!  How many dolphins were 
acquired in total over the first 20 days?  Unfortunately, the table above doesn’t give us data for 
days 11 through 20.  But we can still write down a formula for this number.  All we have to do is 
sum up the values of D(n) for each value of n from 1 through 20: 
 
D(1) + D(2) + D(3) + D(4) + D(5) + D(6) + D(7) + D(8) + D(9) + D(10) + D(11) + D(12) + 
     D(13) + D(14) + D(15) + D(16) + D(17) + D(18) + D(19) + D(20). 
 
That’s a long formula!  Would you want to write down the formula for the number of dolphins 
this company acquired in its first year of operation?  It wouldn’t be pleasant to do so.  Even in 
words it feels long to write, though one can imagine that the formula could be of great interest. 
 
And so a new notation is born! 
 
Sigma notation was invented so that such sums could be written down much more efficiently.  
Here’s how the long sum written out in full above can be written using sigma notation: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sigma Notation 

Through time, ways to notate mathematical ideas have become standard.  Learning the 
notational conventions is important for communication.  The best way to learn new notation is 
the same way we learned the alphabet: repetition.  Practice makes perfect! 

The top number gives the 
last value of n in the sum. 

The “summation symbol” Σ is the 
Greek capital letter “sigma.”  It tells 
us to sum up instances of the 
expression that follows the symbol. 

The information below the Σ tells 
us which variable we are summing 
over and its first value.  The variable 
summed over, n in this case, is called the index of summation. 

This is the expression that 
will be summed.  It depends 
on n, and the information 
around the Σ symbol tells us 
to substitute the values 1 
through 20 for n to get 20 
different numbers (namely, 
D(1), D(2), D(3), …, D(19), 
and D(20)) and add these 
numbers up. 
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To gain facility with sigma notation, study the following examples and do the exercises. 
 

Here’s the sum of the first 10 (positive) perfect squares: 
10

2

1k

k
=

∑ .  Written out in full: 

12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102. 
 

Here’s the sum of the odd numbers between 101 and 125, inclusive: 
62

50

(2 1)
m

m
=

+∑ , which is short 

for: 101 + 103 + 105 + 107 + 109 + 111 + 113 + 115 + 117 + 119 + 121 + 123 + 125. 
 

The above sum can also be written 
13

1

(2 99)
m

m
=

+∑ .  Be careful not to write it like this: 
62

50

2 1
m

m
=

+∑ .  

Technically, the summation symbol applies only to the expression immediately following it, so 
62

50

2 1
m

m
=

+∑  actually stands for the sum: 

 

(100 + 102 + 104 + 106 + 108 + 110 + 112 + 114 + 116 + 118 + 120 + 122 + 124) + 1. 
 

Exercise 1.  Use sigma notation to write down the sum of the even numbers between 1 and 101. 
 

Exercise 2.  Write out 
10

1

1

( 1)k k k= +
∑  as a sum without using sigma notation. 

Exercise 3.  Use sigma notation to write down the sum of an n term geometric series with first 
term a and common ratio r. 

(See page 29 for answers to the above exercises.) 
 

Here’s the binomial theorem written using sigma notation: (x + y)n = 
0

!

!( )!

n
k n k

k

n
x y

k n k

−

= −
∑ . 

 

Sometimes, instead of placing indexing information above and below the Σ symbol, this 
information is provided by a condition, or a list of conditions, written below the Σ symbol: 
 

4 10

log
p

p
< <

∑ , which stands for log 5 + log 6 + log 7 + log 8 + log 9. 

 

Here’s another example: 
100 125
     odd

n
n

n
≤ ≤

∑ , which is another way to write 
62

50

(2 1)
m

m
=

+∑ .  For another 

example, take a look at how Lola Thompson uses it in her article, An Euler φ-For-All on page 8. 
 

Exercise 4.  Convince yourself that 
1 1

( ) ( )
n n

m m

a f m af m
= =

=∑ ∑ , where a is constant. 

 

Exercise 5.  Show that 
1 1

M N

a b

ab
= =

∑∑  = 
1 1

M N

a b

a b
= =

  
  
  
∑ ∑ .  (This can be done by using exercise 3 twice.) 

Remember: If you find yourself confused by sigma 
notation, you can always write out the sum in full. 
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An Euler φ-For-All1 
by Lola Thompson 
 
What is φ? 

 
Primes are the atoms of the number universe: every whole number greater than 1 can 

be factored uniquely into a product of primes.  When two numbers share no common prime 
factors, we say that they are relatively prime.  Don’t let the terminology fool you.  Being 
“relatively prime” is not like being “relatively smart” or “relatively popular,” wherein the subject 
is “smart” or “popular” compared with her peers.  Relatively prime numbers are not necessarily 
any closer to being prime than other numbers.  For example, 4 and 15 are relatively prime and 
they are both composite.  As a silly example, we see that 1 is relatively prime to all other positive 
whole numbers, since 1 doesn’t have any prime factors to share! 
 Rather than looking at individual pairs of numbers and asking whether they are relatively 
prime to one another, one could instead take a specific number like 8 and ask, “How many 
numbers between 1 and 8 are relatively prime to 8?”  This question can be generalized by using n 
to represent any positive integer greater than 1, and asking, “How many numbers between 1 and 
n are relatively prime to n?”  In fact, we have a special name for this counting function: we 
define φ(n) to be the number of integers between 1 and n that are relatively prime to n.  We call 

φ(n) the Euler totient function (the symbol φ is the Greek 
letter “phi” and the word “totient” rhymes with “quotient”).  
To answer the question posed above, we observe that 1, 3, 5, 
and 7 are all relatively prime to 8.  However, 2, 4, 6, and 8 all 
share a common factor with 8 because they’re all divisible by 
2.  As a result, we can conclude that φ(8) = 4.  On the other 
hand, if p is any prime number then φ(p) = p – 1, since 

1, 2, 3, …, p – 1 are all relatively prime to p (remember, primes are only divisible by 1 and 
themselves, and 1 is relatively prime to everything). 
 
The Arithmetic of φ 
 
 The Euler totient function has a number of neat properties.  For example, we can show 
that if n and m are any two relatively prime numbers then φ(n · m) = φ(n) · φ(m).  However, this 
property does not hold when n and m share 
common factors.  For example, φ(6) = 2 and 
φ(4) = 2, so φ(6) · φ(4) = 2 · 2 = 4.  Contrast 
this with the fact that 6 · 4 = 24 and φ(24) = 8.  
In short, while 6 and 4 may be lucky to have 
something in common, they don’t play so 
nicely with φ. 
 We will illustrate a general method for 
proving that φ(n · m) = φ(n) · φ(m) holds for 
any relatively prime numbers n and m by 
looking at the case n = 7 and m = 6.  If n = 7 
and m = 6, we write the numbers between 1 
and 42 (= n · m) in the chart at right. 

                                                 
1 This content was supported in part by a grant from MathWorks. 

The Euler totient function 
φ(n) is defined as the 
number of integers 
between 1 and n that are 
relatively prime to n. 
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 To compute φ(42), we need to determine how many entries in the chart are relatively 
prime to 42.  This is not so difficult because 42 is a fairly small number; in theory, we could just 
go through the numbers one by one and cross off any number that is not a multiple of 2, 3, or 7.  
However, if we had chosen larger numbers for n and m, this would not be a fun task.  Imagine 
trying to compute φ(n · m) in this way when n and m are both in the thousands — it would 
probably take an entire afternoon!  Fortunately, we have organized our chart in a way that makes 
it easier to get rid of the entries that are not relatively prime to 42.  Namely, the entries in a given 
row all have the same remainder when divided by 6.  As a result, if an entry in the first column is 
not relatively prime to 6, then all of the other entries in the same row will also fail to be 
relatively prime to 6.  So, we can immediately eliminate all of the entries in several of the rows. 
 

 
 
 Next, we examine the remaining rows.  The entries of each row are of the form 
i, i + 6, i + 2 · 6, i + 3 · 6, i + 4 · 6, i + 5 · 6, and i + 6 · 6 (where i = 1 or 5).  Since i and 6 are 
necessarily relatively prime (because we eliminated the rows where i and 6 share a common 
factor!) then all 7 entries in each row are 
relatively prime to 6.  Moreover, if we divide 
each of the entries in a given row by 7, we 
will get all of the numbers between 0 and 6 as 
remainders.  So, exactly φ(7) = 6 of these 
entries will be relatively prime to 7.  Since 
these 6 entries are relatively prime to both 6 
and 7, they will be relatively prime to 42. 
 We can summarize what we have done 
in more general terms.  We start by writing 
the numbers 1 through n · m in a rectangular 
array that has n columns and m rows.  We 
place the 1 in the upper left and then place the 
numbers sequentially top to bottom then left 
to right.  We have argued that exactly φ(m) 
rows in the chart contain numbers that are 
relatively prime to n · m.  Each of these φ(m) 
rows contains exactly φ(n) numbers that are relatively prime to n.  So, there are φ(n) · φ(m) 
numbers in the chart that are relatively prime to n · m.  But, by the very definition of Euler’s 
totient function, there are φ(n · m) integers relatively prime to n · m that are between 1 and n · m 
(which is exactly what this chart was designed to count in the first place!).  So, we have shown 
that φ(n · m) = φ(n) · φ(m). 

Recall that if D is relatively prime to N, then the 
remainders of the numbers 
 

M, M + D, M + 2D, …, M + (N – 1)D 
 
upon division by N produce a complete set of 
remainders (where M is any integer).  To see this, pick 
two of the numbers in the list: M + KD and M + JD, 
where 0 ≤ K < J < N.  Suppose they both leave the 
same remainder upon division by N.  Then N divides 
their difference, i.e., N divides (M + JD) – (M + KD) 
or, simplifying, N | (J – K)D.  Since D and N are 
relatively prime, N must divide evenly into J – K.  But 
0 < J – K < N, a contradiction.  Therefore, the 
remainders of the numbers are all distinct.  Since there 
are N numbers in the list and N total possible 
remainders, we must get them all. 



 

© Copyright 2013 Girls’ Angle.  All Rights Reserved.                                                                10 

The Arithmetic of φ, Part II 
 
 We know how to multiply together totients of different numbers (provided that they are 
relatively prime to one another), but what if we want to add them instead?  It turns out that, if we 
add the totients of just the right numbers, we will discover another neat property of Euler’s 
totient function.  First, we will need some new notation.  We write d | n as shorthand for “d 
divides n.”  In other words, d | n means that, if we compute n/d, we will get a whole number 
answer (without a remainder). 
 One more piece of notation2 that will be useful to us is 
 

|

( )
d n

dϕ∑ , 

 
which tells us that we are summing φ(d) for each value of d that divides n.  For example, 
 

|4

( ) (1) (2) (4)
d

dϕ ϕ ϕ ϕ= + +∑ , 

 
since the divisors of 4 are precisely 1, 2, and 4.  Our “neat” property about summing totients can 
now be stated in the following manner: 
 

|

( )
d n

d nϕ =∑ . 

 
In order to show why this is true, we will give an argument in the case where n = 12.  However, 
the same argument will work when 12 is replaced with any whole number n. 
 If n = 12, we observe that the (positive) divisors of n are 1, 2, 3, 4, 6, and 12.  So, using 
the notation from above, our goal is to show that 
 

|12

( ) (1) (2) (3) (4) (6) (12) 12
d

dϕ ϕ ϕ ϕ ϕ ϕ ϕ= + + + + + =∑ . 

 
Of course, we could just compute φ(1), φ(2), φ(3), φ(4), φ(6), and φ(12) and add them together.  
That said, since we want to write a proof that generalizes to any value of n, we will give a 
different argument (one that doesn’t rely on knowing the specific φ-values!).  The first step is to 
write down all of the fractions with denominator 12 and numerator between 1 and 12: 
 

1

12
 

2

12
 

3

12
 

4

12
 

5

12
 

6

12
 

7

12
 

8

12
 

9

12
 

10

12
 

11

12
 

12

12
 

 
Next, we will go through the list of fractions and rewrite each of them in “lowest terms”: 
 

1

12
 

1

6
 

1

4
 

1

3
 

5

12
 

1

2
 

7

12
 

2

3
 

3

4
 

5

6
 

11

12
 

1

1
 

 

                                                 
2 See Notation Station on page 6 for more information on sigma notation. 
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Now, we will go through and count the number of fractions with a given denominator, compiling 
our data into the following list: 
 

d # of fractions with denominator d 

1 1 

2 1 

3 2 

4 2 

6 2 

12 4 

 
 Notice that there are always φ(d) fractions with denominator d (for d = 1, 2, 3, 4, 6, and 
12) and that the total number of fractions in our list is (still) equal to 12.  This pattern will always 
hold, regardless of the number that we choose for n.  As an exercise, try to think about why this 
argument works for any choice of n.  (Hint: It has to do with the fact that we are making the 
numerator and denominator relatively prime when we rewrite each of the fractions in lowest 
terms.) 
 
The History (and Future) of φ 
 
 The Euler totient function dates all the way back 
to 1760, when Leonhard Euler unveiled it to the world.  
However, it wasn’t until forty years later when Gauss 
wrote his famous Disquisitiones Arithmeticae that the 
modern-day “φ” notation started to be used.  In spite of 
the fact that mathematicians have studied Euler’s totient 
function for over 250 years, there is still a lot that we do 
not know about this (somewhat mysterious) function.  For 
example, D. H. Lehmer posed the question, “Are there 
any composite numbers n such that φ(n) | (n – 1)?”  This 
question has not yet been answered, in spite of the best 
efforts of many experts in the field. 
 Another unsolved problem about Euler’s totient 
function is called Carmichael’s conjecture, which says 
that if there is a number n for which φ(n) = m then there 
is at least one other number (call it n’) with φ(n’) = m.   In 
other words, if we were to list the totients of all the 
positive numbers, every totient would appear on our list 
at least twice.  Carmichael’s conjecture has been checked 
for all “small” values of n.  Here, “small” is a relative 
term — with the help of computers, mathematicians have 
shown that any counterexample to Carmichael’s 

conjecture must be at least 
101010 !  However, since there 

are infinitely many positive whole numbers, we are still 
infinitely far away from finding a solution.  The good 
news is that there are still plenty of interesting questions 
about the φ-function that are waiting to be answered.  
Perhaps some of you will answer them one day! 

n φ(n) 
1 1 

2 1 

3 2 

4 2 

5 4 

6 2 

7 6 

8 4 

9 6 

10 4 

11 10 

12 4 

13 12 

14 6 

15 8 

16 8 

17 16 

18 6 

19 18 

20 8 

21 12 

22 10 

23 22 

24 8 

25 20 

26 12 

27 18 

28 12 

29 28 

30 8 

 

Table of the first 30 φ values. 
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Eyeballing the 
Distance 
by Ken Fan 
edited by Jennifer Silva 
 

Have you ever looked out the 
window of an airplane and wondered how 
far away the buildings you saw were?  
Judging distance without any method can be 
difficult.  Victims of a boat capsize will 
often underestimate the distance to shore.  
And though we can spot the moon quite 
easily, it took some time before people 
figured out how far away it is. 

But with a little method, we can turn 
ourselves into a spiffy distance-measuring 
machine by exploiting the fact that we have two eyes.  Because our eyes are in to separate 
locations, they each receive a different view of the world.  These two distinct views enable stereo 
pair photography to produce a 3D illusion (see the cover).  They also explain why perspective 
paintings (see page 21) work best when viewed from a very specific spot. 

 
The Setup  Imagine that you are sitting on an airplane looking out the window at a distant 
building.  Close your right eye and position yourself so that the left edge of the window lines up 
with the left edge of the building.  Now, without moving your head, close your left eye and open 
your right eye.  You will see the building shift away from the left edge of the window.  This shift 
is known as parallax.  To understand parallax, consider the lines of sight from your two eyes 
when you are positioned as described above.  By design, the line of sight from your left eye 
continues on to the building.  By contrast, the line of sight from your right eye will end up 
somewhere to the left of the building (see the figure below for a top view of the situation).  Take 
note of how much the building shifts and estimate this distance.  It’s much easier to estimate left-
to-right distances than near-to-far distances.  In estimating left-to-right distances, you can often 
use other objects located at the same distance to assist, such as a football field, truck, or house.  
Let’s call the shifted distance S. 

The lines of sight from each eye that pass right by the left edge of the window form the 
sides of two triangles.  The line segment connecting your pupils forms the 3rd side of one of these 
triangles.  The line segment represented by the shifted distance S forms the 3rd side of the other 
triangle.  These two triangles are roughly similar. 

Let D be the distance 
from the left edge of the 
window to the building.  Let d 
be the distance from your eyes 
to the left edge of the window.  
Finally, let s be the distance separating your two pupils. 

Similarity means that ratios of corresponding lengths are equal.  Hence, D/S = d/s.  
Rearranging terms, we find that D = dS/s.  With this formula, we can estimate the distances to 
objects that we see from afar. 

Let’s put this formula to work in a real life situation. 
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Transamerica Pyramid  Here are the left- and right-eye views of San Francisco from a plane: 
 

 
 

 
                                                               Photos by C. Kenneth Fan 

Left-eye view. Right-eye view. 

 

The Transamerica Pyramid is a well-known landmark there.  In fact, it is the tallest building in 
San Francisco.  Let’s figure out about how far away the building was from the plane. 

The red line segment in the right image shows how far the Transamerica Pyramid shifts 
from the left-eye view to the right-eye view.  The distance looks like it is about 2 city blocks.  If 
we estimate that a city block is 300 feet, then the distance shifted is approximately 600 feet.  In 
the notation set up on the previous page, we have S = 600. 
 The distance between the left and right pupils of the viewer is about s = 1/5 of a foot. 
 The distance from the viewer’s eye to the left edge of the window was about 20 inches or 
5/3 feet, so d = 5/3. 
 Substituting these values into our formula, we find that D = 5 × 600 × 5/3 = 5,000 feet, or 
about a mile. 
 

Take it to Your World 
 

 When you use this technique, you don’t have to align with the left edge of a window.  
You could hold up your thumb (as though you were hitchhiking) with outstretched arm and 
memorize the distance from your eyes to your thumb, as well as the distance between your 
pupils.  (Or, more efficiently, memorize the ratio of these two distances.)  You will then have all 
of the information you need to apply this formula wherever you go! 
 Why don’t you use this method to estimate the distance to the moon, given that the 
diameter of the moon is about 3,500 km?  If you measure s, S, and d carefully, you might be 
surprised at how accurate your measurement turns out to be.  In fact, this is essentially the 
method that the Greek astronomer Hipparchus used to be the first to compute the lunar distance. 
 What factors affect the accuracy of this method?  How much do errors in your 
measurements affect the accuracy of the approximation? 
 Another way to measure distance using your two eyes is triangulation (see “Math in Your 
World,” Volume 5, Number 5).  In triangulation, one measures the distance between the pupils 
and the angles that the lines of sight make from each pupil to the object.  This information 
determines a unique triangle from which desired measurements can be computed using 
trigonometry.  Which method is more practical? 
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Primitive Roots 
by Ken Fan 
 
 
 
 
 
 

In Part 2 of Robert Donley’s series on Fermat’s little theorem (see Volume 6, Number 2), 
readers were challenged to show that there exists x with o(x) = p – 1, where o(x) is the order of 
x, i.e., the smallest positive integer n such that xn = 1. 
 

For example, if p = 5, then o(2) = 4.  We can verify this by computing powers of 2: 
 

21 = 2, 22 = 4, 23 = 8 = 3, and 24 = 16 = 1. 
 
(If this makes no sense to you, be sure you’ve read the contents of the red box above!  Also, 
review Robert’s articles.) 
 
Exercise.  When p = 31, check that o(3) = 30.  However, o(2) = 5. 
 

A primitive root for p is a number x that satisfies o(x) = p – 1.  So Robert’s challenge 
was to show that every prime has a primitive root.  The purpose of this article is to prove this. 
 

We present a well-known proof attributable to the French mathematician Legendre. 
 
Polynomials modulo p 
 

Polynomials modulo p share some behavior with regular polynomials over the rational 
numbers or the real numbers.  Over the rational numbers, if you have a polynomial p(x) and r is a 
root, then p(r) can be written as a product of the form (x – r)q(x), where q(x) is a polynomial of 
degree 1 less than the degree of p(x).  To see this, you can perform polynomial long division. 
 Modulo p, you can do the same.  For example, the polynomial x2 + 5x – 1 has the root 4, 
modulo 7, since 42 + 5(4) – 1 = 0 (mod 7).  And, as you can verify, x2 + 5x – 1 = (x – 4)(x + 5) 
(mod 7). 
 This implies that a polynomial p(x) of degree d can have at most d roots, modulo a prime 
p.  To see this, we proceed by induction on the degree.  A polynomial of degree 1 has exactly 
one root.  Indeed, if ax + b = 0 with a ≠ 0, then the unique root is –ba

-1 (recall that modulo a 
prime p, nonzero numbers, i.e., numbers not divisible by p, have multiplicative inverses).  Now 
suppose p(x) has degree d > 1.  If p(r) = 0, then we write p(x) = (x – r)q(x).  Modulo a prime p, if 
a product is equal to 0, then at least one of the factors must be 0 (mod p).  So if s is another root 
of p(s), then either (s – r) = 0 or q(s) = 0.  By induction, q(s) has at most d – 1 roots.  Therefore, 
p(x) has a maximum of d roots. 
 
If d divides p – 1, then x

d
 – 1 has exactly d roots 

 
Fermat’s little theorem tells us that xp – 1 – 1 has exactly p – 1 distinct roots.  If d divides 

p – 1, we can factor xp – 1 – 1 like this: xp – 1 – 1 = 1 1 2 1 3( 1)( 1)d p d p d p d dx x x x x− − − − − −
− + + + + +� .  

In this article, all equations are to be interpreted modulo p, where p is a prime 
number.  For instance, if you see x ≠ 0, it means that x is not divisible by p. 
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(This can be checked directly by multiplying out the right-hand side and collecting like terms.)  
From the above discussion, the polynomial xd – 1 has at most d roots and the polynomial 

1 1 2 1 3 1p d p d p d d
x x x x

− − − − − −
+ + + + +�  has at most p – 1 – d roots.  But since their product, 

x
p – 1 – 1, does have p – 1 roots, both factors must have the maximal possible number of roots.  

Thus, xd – 1 must have exactly d roots modulo p. 
 
If o(a) and o(b) are relatively prime, then o(ab) is the product of o(a) and o(b) 
 

Suppose o(a) and o(b) are relatively prime.  Let s be o(a) and t be o(b).  Notice that 
(ab)st = 1.  Therefore, o(ab) must divide st.  This means we can write o(ab) as a product s’t’ 
where s’ divides s and t’ divides t, and s’ and t’ are relatively prime.  We have 
 

1 = (ab)s’t’ = as’t’
b

s’t’. 
 
If we raise both sides of this equation to the s/s’ power, we get 
 

1 = ast’
b

st’ = bst’. 
 
This means that o(b) divides st’.  Since o(b) is relatively prime to s, it must be that o(b) divides 
evenly into t’.  Since t’ divides evenly into o(b), t’ and o(b) must be equal.  Similarly, s’ and o(a) 
must be equal, and this shows that o(ab) is, indeed, the product of o(a) and o(b). 
 
There exists a primitive root 
 

A primitive root for the prime p would have order p – 1.  Let 31 2

1 2 3
mn nn n

m
p p p p�  be a 

prime factorization of p – 1.  The above discussion informs us that if we can find xk with 

o(xk) = kn

k
p , then we can build a primitive root by taking the product of the xk. 

 Consider the polynomial 1
nk

kp
x − .  Any root of this polynomial will have order m

k
p  for 

some nonnegative integer m less than or equal to nk.  Therefore, if r is a root of 1
nk

kp
x −  but is 

not a root of 
1

1
nk

kp
x

−

− , then o(r) would have to be kn

k
p . 

 But we know that 1
nk

kp
x −  has exactly kn

k
p  roots and 

1

1
nk

kp
x

−

−  has exactly 1kn

k
p

−  roots.  

Since kn

k
p  > 1kn

k
p

− , there are exactly 1k kn n

k k
p p

−
−  roots of 1

nk
kp

x −  that are not roots of 
1

1
nk

kp
x

−

− . 

 So we can find xk with o(xk) = kn

k
p .  (In fact, we can find 1k kn n

k k
p p

−
−  such numbers.)  

We multiply these together and obtain a primitive root for p, and we’re done! 
 
More to think about 
 

Show that the number of primitive roots for p is equal to φ(p – 1). 
 Use a primitive root to prove Wilson’s theorem, which says that when p is a prime 
number, (p – 1)! + 1 = 0.  (Hint: Suppose that g is a primitive root for p.  This means that the 
remainders obtained by dividing the numbers g, g2, g3, …, and gp – 1 by p will be a complete list 
of nonzero remainders.  Therefore, (p – 1)! = g1 + 2 + 3 + … + (p – 1) (mod p).) 
 The observations we made about polynomials depend on the modulus being a prime 
number.  For example, show that x2 – 1 has more than 2 roots modulo 8. 
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by Barbara Remmers | edited by Jennifer Silva 
 

Owning it:  Fraction Satisfaction, Part 11 

 
You:  Hi, 3/7.  Boy am I glad to see you!  I’m stuck. 

 
 What?  How is this haystack of papers talking to me?  And in the voice of my little Egyptian 
fraction friend! 

 
You:  It is me.  I ended up buried in paper from all the examples I’ve calculated. 

 
 Such industry is always a cheery sight.  I’ve been wondering how your investigation of 
Fibonacci’s Egyptian fraction algorithm has been going.  I’ll get you unstuck in a jiffy.  I’ll 

dash home for my crane so I can extract you. 
 
You:  No, I’m not that kind of stuck – I’m climbing out.  I’m just not making headway on 
showing whether the algorithm always stops. 

 
 Oh, for that sort of stuck we don’t need my crane.  Tell me everything. 
 

You:  I definitely have the hang of computing the calculations, and in every example I’ve done, 
the algorithm stops.  So that makes me suspect that it always stops, but I don’t know for sure.  If 
my suspicion is correct, I want to know the reason it is so. 

 
 A very noble aspiration.  Let’s fulfill it. 
 

You:  How? 
 
 Your calculations are filled with useful information.  If the algorithm always stops, there 
might be clues as to why in all the examples you’ve done.  So let’s start by looking through 

these papers for clues: they may suggest a line of reasoning that helps us establish whether the 
algorithm always stops. 
 
You:  What kind of clues?  I’ve certainly looked at all of my calculations as I’ve done them, but 
nothing jumped out at me. 

 
Patterns.  To find them, your best bet is to consider your examples together, in an organized 
way.  Can you present your work in a systematic manner, including all of the steps you took 

3

7
: 

3

7
: 

3

7
: 

3

7
: 

3

7
: 

3

7
: 

The Egyptian Fraction Algorithm 
 
1. Start with original target fraction, a/b, between 0 and 1. 
2. Find the smallest counting number c such that 1/c ≤ a/b. 
3. Record 1/c as one of the unit fractions that will sum to the original target fraction. 
4. Update the target fraction by subtracting 1/c from it.  Use a/b to refer to this updated target. 
5. If a/b = 0, stop.  Otherwise, continue from step 2. 
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along the way?  There might be clues in those intermediate steps, and it would be a terrible 
shame to miss them. 
 
 
 
 
 

Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on the rest of this interview with 
Prof. DeMarco, Part 4 of the Stable Marriage Algorithm, and 
other content.   We hope that you consider the value of such 
content and decide that the efforts required to produce such 
content are worthy of your financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 
Girls’ Angle: A Math Club for Girls 
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The best way to learn math is to do math, so here are the 2013 Summer Fun problem sets. 
 
We invite all members and subscribers to the Bulletin to send any questions and solutions to 
girlsangle@gmail.com.  We’ll give you feedback and might put your solutions in the Bulletin! 
 

In the August issue, we will provide some 
solutions.  You could wait until the August issue 
to see the answers, but you will learn a lot more 
if you try to solve these problems before seeing 
solutions. 
 
Some of these problems are very challenging 
and could take several weeks to solve, so please 
don’t approach these problem sets with the idea 
that you must solve all of them.  The main goal 
of these problems is to give you some 
interesting things to think about. 
 
If you are stuck, try to formulate a related 
question that you can see a way to actively 
explore to get your mind moving and your 
pencil writing.  If you don’t understand a 
question, feel free to email us. 
 
If you are used to solving problems quickly, it 
can feel frustrating at first to work on problems 
that take weeks to solve.  But there are things 
about the journey that are enjoyable.  It’s like 

hiking up a mountain.  Getting to the top rewards one with a spectacular view, but during the 
journey, there’s a lot to see and experience.  So here’s a meta-problem for those of you who feel 
frustrated when doing these problems: see if you can dissolve that frustration and replace it with 
a relaxed, optimistic sense of adventure! 
 
This is Summer Fun, not Summer Torture! 
 

 
The goal may be the lake, but who knows what 
wonders you’ll discover along the way? 
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Perspective Drawing 

by Ken Fan 
 
A perspective drawing is a drawing that 
gives the viewer the illusion of a 3 
dimensional world.  This is accomplished 
by making the drawing represent the view 
of the 3D world beyond the drawing as if 
the drawing were a window.  Albrecht 
Dürer showed a way to make a perspective 
drawing in his wood cut A Man Drawing a 

Lute, shown at right.  In this drawing, a 
man and his assistant are carefully 
constructing a perspective drawing of a lute, the 
musical instrument placed on the table.  A string 
is stretched taut between points on the lute and the point that represents the location of the eye of 
the person looking at the drawing.  The place where this string, which represents a line of sight, 
intersects the plane of the drawing is carefully noted, and a mark is made on the drawing at this 
location.  This is tedious work, but the result is the illusion of a 3D world from a flat drawing. 
 If you are interested in creating 3D illusions in your own drawings and paintings, 
perspective is an important concept to master.  In this Summer Fun problem set, we’ll explore 
perspective from the ground up.  When you’ve gotten a handle on this material, you will be able 
to make realistic 3D renditions and fool people into believing in 3D worlds that don’t exist. 
 Here’s the setup: we’ll call the object(s) being drawn the model.  The drawing will be on 
a flat piece of paper, oriented so that its plane is perpendicular to a flat ground.  We’ll assume 
that the location of the viewer’s eye relative to the drawing is fixed.  Points on the model are 
rendered in the drawing at points corresponding to where the line of sight from the viewer’s eye 
to the point on the model intersects the plane of the drawing. 
 Okay, let’s get started! 
 
1. We’ll begin with a very simple model: an idealized dot.  An idealized dot is a figment of our 
imagination.  It is a dot that we imagine you can see, but has no physical size.  Imagine a dot 
hovering before you.  What would a perspective drawing of this dot look like? 
 
2. A perspective drawing of the dot would be a dot on the paper.  Take one of your perspective 
drawings of the dot.  Using only your drawing, is it possible to determine how far away the 
model dot is supposed to be from the viewer’s eye?  What are the possible locations of other 
model dots that would be depicted by the same perspective drawing? 
 
3. Let’s move on to line segments.  What do perspective drawings of line segments look like?  
Under what circumstances would a perspective drawing of a line segment look like a dot? 
 
4. A perspective drawing of a line segment could represent many different line segments.  
Describe all line segments depicted by the same perspective drawing.  Because of this, the length 
of the model line segment cannot be determined 
from the drawing of it.  Can the direction of the 
model line segment be determined from a 
perspective drawing of it? 

A Man Drawing a Lute by Albrecht Dürer 
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5. Let’s move from line segments onto lines, which can be thought of as line segments extended 
forever on both sides.  What do perspective drawings of lines look like?  Can a perspective 
drawing of a line look like a dot?  If so, which lines would be depicted as a dot?  Which lines are 
depicted by vertical lines in the drawing? 
 
6. Now imagine that the model consists of a whole bunch of parallel lines in space.  What will 
the perspective drawing of this model look like? 
 
7. Notice that parallel lines not parallel to the drawing canvas will appear as radial lines 
emerging from a common point.  How can this point on the canvas be located?  This point is 
called a vanishing point. 
 
8. Imagine several sets of lines, each consisting of parallel lines that are not only parallel to each 
other, but also parallel to the ground (which we are assuming is perpendicular to the drawing 
canvas).  Show that the vanishing points of each set of lines all lie on a single horizontal line.  
This horizontal line is called the horizon line. 
 
9. The model will now be a floor with a checkerboard tiling.  In a checkerboard tiling, there are 4 
natural sets of parallel lines to consider.  Two consist of lines parallel to the sides of the tiles and 
two consist of lines parallel to the diagonals of the tiles.  Use your understanding of vanishing 
points to construct a proper perspective rendering of a checkered floor.  You can see an example 
of this by the artist Jan Vermeer in his painting The Art of Oil Painting. 
 
10. Make a proper perspective drawing of a straight railroad track going off into the distance, 
lined by evenly spaced telephone poles.  Use your understanding of vanishing points to ensure 
that the drawing of the railroad track slats depict evenly spaced slats and the drawing of the 
telephone poles depict evenly spaced poles all of the same height. 
 
The following exercises are somewhat more challenging. 
 
11. Make several perspective drawings of perfect cubes.  Note that the 3 sets of parallel lines 
defined by the edges of the cube could, potentially, define 3 vanishing points.  Think carefully 
about the placement of these 3 vanishing points.  Note that the edges of a rectangular block with 
faces parallel to or perpendicular to the faces of the cube would define the same vanishing points 
as those of the edges of the cube.  This means that knowing the locations of the vanishing points 
defined by the edges of the cube does not determine the drawing.  How can you ensure that the 
drawing will depict a true cube and not a rectangular block? 
 
12. Make a proper perspective drawing of a cityscape filled with streets and buildings.   
 
13. Explain how the stereo pair on the cover works to produce a 3D illusion. 
 
14. People’s faces often imply parallel lines.  For example, the lines that pass through the corners 
of the eye and the corners of the mouth are typically parallel.  Think about how these 
considerations could affect portraiture.
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Vieta’s Formulas 
by Shravas Rao 
 
If you don’t yet know Vieta’s formulas, do this Summer Fun problem set and you will. 
 
1. For each quadratic, determine the sum of the roots and the product of the roots. 
Do you see a pattern? 
 

Quadratic Sum of Roots Product of Roots 

x
2 – 6x   

x
2 – 4x + 3   

x
2 – x – 30   

x
2 + 7x + 6   

x
2 – 3x – 28   

 
2. What is the sum of the roots of the quadratic x2 + bx + c, where b and c are constants?  What 
about the product of the roots?  Do these answers agree with the answers in the previous question 
when you plug in values for b and c?  Make a conjecture and try to prove it. 
 
3. For each quadratic, determine the sum of the roots and the product of the roots. 
Do you see a pattern? 
 

Quadratic Sum of Roots Product of Roots 

2x
2 + 8x + 4   

3x
2 – 6x – 18   

5x
2 – 15x + 5   

2x
2 + 5x + 2   

4x
2 – 12x – 16   

 
4. What is the sum of the roots of the quadratic ax

2 + bx + c where a, b, and c are constants.  
What about the product of the roots?  Do you see how the coefficient of x2 affects the answer to 
these questions? 
 
5. Now find the sum and product of the roots of the quadratics x2 + 2x – 4 and 3x

2 + 4x + 5, but 
this time, find them without calculating the roots.  Instead use your answer to #2 and #4. 
 

6. Let p and q be the roots of the polynomial x2 + 6x + 3.  Can you calculate the value of 
3 3

p q
+  

without calculating the values of p and q? 
 
7. Let p and q be the roots of the polynomial 2x

2 + 4x + 8.  Can you calculate 
the value of p2 + q2 without calculating the values of p and q? 
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8. Let p and q be two different numbers so that 
4 4

p q
p q

+ = + .  What is the product of p and q? 

 
9. Let the roots of the polynomial x2 – 13x + 25 be the lengths of the legs of a right triangle.  
What is the length of the hypotenuse of the triangle?  Compute this without finding the roots. 
 
10. Now we’re going to move on to cubic polynomials.  For each cubic in the table below, 
compute the sum and the product of the roots. 
 

Cubic Sum of Roots Product of Roots 

x
3   

x
3 – x   

x
3 + 3x

2 + 3x + 1   

x
3 + 3x

2 – x – 3   

 
11. Let p, q, and r be the roots of a cubic in x where the coefficient of x3 is 1.  What are the 
coefficients of x2, x, and the constant term in terms of p, q, and r?  Note the coefficient of x in 
particular. 
 
12. Let p, q, and r, be the roots of the polynomial x3 – 4x

2 + 2x – 3.  Can you calculate the value 
of (p + q + r)(p + q + r) without determining p, q, and r?  What about p2 + q2 + r2? 
 
13. Let p, q, and r be the roots of a cubic in x where the coefficient of x3 is a.  What are the 
coefficients of x2, x, and the constant term in terms of a, p, q, and r? 
 
14. The length, width, and height of a block are the roots of the cubic x3 – 20x

2 + 120x – 210.  
What are the surface area and volume of this block? 
 

15. Let the side lengths of a triangle be the roots of the 
polynomial x3 – 9x

2 + 26x – 24.  What is the radius of the incenter 
of the triangle?  (Hint: Heron’s formula tells us that the area of a 

triangle with side lengths p, q, and r is ( )( )( )s s p s q s r− − −  

where 2s = p + q + r.) 
 

16. Let the roots of the polynomial x3 + ax
2 + bx – 1 be positive real numbers, where a and b are 

constants.  Prove that a must be less than or equal to -3. 
 
17. Let p1, p2, . . ., pd be the roots of a polynomial in x of degree d, where the coefficient of xd is 
a.  What are the coefficients of xk, where 0 ≤ k < d, in terms of p1, p2, . . ., pd, and a?  These 
formulas are referred to as Vieta’s formulas. 
 
18. Show that the value for any one of the coefficients you found in #16 remains 
unchanged if you permute the pk’s.  Why should this be expected? 
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Z, Z[ 1− ], and Z[ 5− ] 
by Addie Summer 
 
Kirsten Wickelgren mentioned systems of numbers different from the integers in her interview 
on page 3.  Let’s explore some of them in this Summer Fun problem set!  We’ll begin by 
reviewing some facts about the integers, which we’ll denote by Z. 
 
A set of numbers S that contains the sum of any two of its members, is closed under addition.  
Similarly, if S contains the product of any two of its members, it is closed under multiplication.  
The numbers in S whose multiplicative inverses are also in S are called the units in S. 
 
1. The set of integers Z is closed under addition and multiplication.  What are the units in Z?  
That is, for which integers a is 1/a also an integer? 
 
2. Some integers can be written as a product of integers where neither factor is a unit.  For 
example, -6 = -2 × 3.  Give an example of an integer that is not a unit and cannot be expressed as 
a product of two integers, neither of which is a unit.  Such integers are called irreducible. 
 
In Z, the irreducible numbers are the same as the prime numbers.  Every number can be written 
as a product of irreducible numbers in a unique way, if we ignore the order of factors and 
multiplication by units.  For instance, while 6 is 2 × 3 and 3 × -1 × -2, the expressions differ only 
by the order of factors and multiplication by units.  This is known as unique factorization. 
 
Let Z[i] denote the set of complex numbers of the form a + bi, where a and b are integers and 

i = 1− .  We add and multiply these numbers as complex numbers. 
 
3. Show that Z[i] is closed under addition and multiplication. 
 

4. If z = a + bi, show that z-1 = 
2 2 2 2

a b
i

a b a b
−

+ +
.  What are the units in Z[i]? 

 

5. Although 5 is irreducible in Z, show that 5 is not irreducible in Z[i]. 
 
6. Determine which a + bi in Z[i] with 0 ≤ a, b ≤ 6 are irreducible.  Make a picture by circling the 
irreducible numbers in Z[i] in the complex plane. 
 
7. Do you think that Z[i] has unique factorization? 
 

Let Z[ 5− ] denote the set of complex numbers of the form a + b 5− . 
 

8. Do #3 and #4 for Z[ 5− ] in place of Z[i]. 
 

9. Find all irreducible numbers a + b 5−  in Z[ 5− ] with | a |, | b | < 5. 
   

10. Show that Z[ 5− ] does not have unique 

factorization by showing two different ways to 
express 6 as a product of irreducible numbers. 
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The Meddling Gnomes 

by Lauren McGough 
 
Katie and Sarah are best friends.  They are neighbors and like to play together.  They also love 
codes.  Every day, each one leaves a secret message for the other by tying colored yarn in 
between two sticks in the ground, as shown above right.  Blue meant “yes, I can play today”; red 
meant “no, I cannot.”  We’ll call this shape a “goalpost.” 
 But there’s a problem!  Tiny, pesky gnomes live in their backyards.  These gnomes have 
magical powers.  If a gnome touches one of the sticks, any piece of yarn tied to that stick flips its 
color, red to blue and blue to red!  This ruins the girls’ messages.  But the girls aren’t giving up.  
They have many sticks and lots of yarn!  Is there a way to send a message using yarn and sticks 
even though they can’t control the gnomes?  
 
1. At first, the girls wonder if they can fix the problem using two 
goalposts instead of one, as shown at right. 
 
a. If they agree to read the two goalposts in a specific order, how many different sequences of red 
and blue are there? (For example, one combination could be left- red, right- blue.) 
b. Suppose the girls set up the goalposts to be “red, red,” and leave the message overnight.  The 
gnomes can touch any of the sticks in any order and any number of times.  The girls have no 
control over that.  What possible color combinations could they see when they check the 
message in the morning, depending on the gnomes’ behavior? 
c. Would one girl ever be able to look at the yarn in the morning and know anything about which 
colors the other girl set the night before? 
d. Can you answer a, b, and c for 3 goalposts in a row? 4?  What happens with n goalposts, 
where n can be any number?  Show that no matter how many goalposts there are, if they are 
arranged in a row, it is impossible to know what message her friend set the night before. 

 
 
2. The girls realize that separate goalposts won’t work, but they know 
that isn’t the only possibility! They try stringing together goalposts 
together in a line, as shown at right. 
 
a. Suppose the girls set up the goalposts to be “red, red,” and leave the message overnight.  As 
always, the pesky gnomes can meddle with the message, and the girls have no control over them.  
What possible sequences could they see the next morning?  Would one girl ever be able to look 
at the yarn in the morning and know anything about which colors the other girl set up the night 
before? 
b. Can you answer part a for a line of 3 attached goalposts?  What about n attached goalposts 
(see below)? Show that it’s still impossible to know what message was set the night before. 
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3. Neither disconnected goalposts nor a line of goalposts will 
work... but the girls still aren’t giving up!  They sit and think 
until suddenly, they have an idea!  What if they make a line, 
and then connect the first and last sticks?  That is, what if they 
make a loop, as shown at right, for example. 
 

a. Let’s first analyze the case where there are just two sticks and two pieces of 
yarn going between them (shown at left).  They set the yarn’s colors to be “red, 
red.”  They leave the message overnight. After the gnomes’ mischief, what 
possible sequences could they see in the morning?  

b. If Katie observes “red, red” in the morning, what could Sarah have set the night before? 
c. Show that now there is a way for the girls to communicate “yes” and “no.” 
d. What if the girls wanted to add a set of “maybe” color patterns that represent different levels 
of sureness?  Is it possible? If so, how many levels between “yes” and “no” are possible? 
e. Analyze a, b, c, and d for a loop made with n sticks?  (The figure above right shows such a 
loop made with 6 sticks.) 
 

Notice what we just found!  Even though the gnomes can make changes at any stick – 
and even though this is completely out of the girls’ control – the girls can still define a system 
where they can communicate information to each other with 100% certainty.  
 Let’s go further.  Can the girls communicate more information if they add more loops?  
In order for the girls to send a greater number of distinct messages, they must collect all the 
possible configurations of colors into groups such that if a girl sets the configuration to be in one 
group, it is sure that when she checks in the morning, the other girl will see a message that is also 
in that group no matter how hard the gnomes try to change the message during the night!  The 
number of groups they can define is the number of distinct messages they can send. 
 
4. Suppose the girls use two loops, as shown at right.  How many 
different messages can they send to each other? 
 
5. Analyze the situation with n loops, where the loops can involve any number of sticks.  How 
many messages can they send?  How can they quickly check the meaning of a given message? 
How do these answers depend on how many sticks are in each loop?  
 
6. Now suppose the girls connect loops by making a 2 by 3 grid of 
sticks and connecting them with yarn as shown at right.  Now how 
many different messages can they send to each other? What if they 
extend this to a 2 by n rectangular grid of sticks, connecting the 
yarn between nearest neighbors?  How can they quickly check the 
meaning of a given color configuration? 
 
7. Finally, what happens if the girls create an even bigger rectangular network with an n by m 
grid work of sticks with yarn strung between nearest neighbors?  How many different messages 
can they send?  How does this compare to making (n – 1)(m – 1) separate loops? 
 
8. Invent your own configuration of yarn and 
sticks.  Analyze it for its gnome-proof 
message sending properties.  Share your 
designs with us! 
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The Gauss-Wilson Theorem 
by Robert Donley 
 
Fix n > 2.  Let Un be the set of all integers k, with 1 ≤ k < n, that are relatively prime to n, and 
denote by Un! the product of all the numbers in Un. 
 
In this Summer Fun problem set, you’ll prove the 
 
Gauss-Wilson Theorem:  If n = 4, or n is a power of an odd prime, or n is twice a power of an 
odd prime, then Un! = -1 (mod n).  Otherwise, Un! = 1 (mod n). 
 
1. Verify the theorem for n = 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, and 20. 
 
2. Prove that x2 = 1 (mod n) if and only if x = x-1 (mod n). 
 
3. Let In be the set of all elements s in Un such that s2 = 1 (mod n), and let In! be the product of all 
elements in In.  Show that Un! = In! (mod n) and (In!)

2 = 1 (mod n).  (Hint: Seek pairs that can be 
cancelled because their product is 1 and use #2.) 
 
4. For each of the cases in #1, find all x in Un such that x2 = 1 (mod n).  Verify #3 in these cases. 
 
5. Suppose that there exists an a in Un such that every number in Un may be written as a power of 
a (mod n).  When n > 2, show that In has exactly 2 elements.  What are they? 
 
6. Challenge: Let p be a prime number.  Show that Up enjoys the property in #5, i.e., there is an a 
in Up such that the powers of a yield all elements of Up.  Using #5, we deduce that (p – 1)! = -1 
(mod p).  This proves part of the Gauss-Wilson theorem and is known as Wilson’s theorem. 
 
7. Suppose a and b are distinct elements in In, neither equal to 1 (mod n).  Show that ab is 
another element of In not equal to 1, a, or b (mod n). 
 
8. Show that In has 2k elements for some k ≥ 0.  If In has more than 1 element, show that there is 
an element s ≠ 1 (mod n) and a subset I’ of In such that In = '   'I sI∪  as a disjoint union.  (Hint: 

Build In stepwise in the following way: add a new element, take all products, count, and repeat.  
Use #7 to relate your new set of elements to the old set.) 
 
9. Using the second half of #8, prove that In! = -1 (mod n) if and only if there are exactly 2 
elements in Un that satisfy x2 = 1 (mod n).  Otherwise, In! = 1 (mod n). 
 
10. Cliffhanger/Challenge: To finish, show that the first part of #9 occurs precisely when n = 4, 
or n is a power of an odd prime, or n is twice a power of an odd prime.  For this, we need 
 1. if m and n are relatively prime, then | Imn | = | Im | | In |, 
 2. if p is an odd prime and n = pk (k > 1), then Un is cyclic, and 
 3. if n = 2k and k > 2, then In has exactly 4 elements. 
Here | X | denotes the number of elements in X. 
Verify for all n in #1. 
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Calendar 

 
Session 12: (all dates in 2013) 
 

January 31 Start of the twelfth session! 
February 7  
 14  
 21 No meet  
 28  
March 7  
 14 Iris Ortiz, Cambridge Systematics, Inc. 
 21 No meet 
 28  
April 4 Crystal Fantry, Wolfram Research 
 11  
 18 No meet 
 25 Ashlee Ford Versypt, MIT Dept. of Chemical Eng. 
May 2 Emily Riehl, Harvard University 
 9  

 
Session 13: (all dates in 2014) 
 

September 12 Start of the thirteenth session! 
 19 No meet 
 26  
October 3  
 10  
 17  
 24  
 31  
November 7  
 14  
 21  
 28 Thanksgiving - No meet 
December 5  
 12  

 
Here are answers to some of the Notation Station exercises on page 7. 
 

1. There are many answers.  One way is 
50

1

2
k

k
=

∑ . 

2. 
1 1 1 1 1 1 1 1 1 1

2 6 12 20 30 42 56 72 90 110
+ + + + + + + + + . 

 

3. Again, there are many answers.  One way is to write 
1

0

n
p

p

ar
−

=

∑ . 
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Girls’ Angle: A Math Club for Girls 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
What is Girls’ Angle?  Girls’ Angle is a math club for girls and a supportive community for all girls and 
women engaged in the study, use and creation of mathematics.  Our primary mission is to foster and 
nurture girls’ interest and ability in mathematics and empower them to be able to tackle any field, no 
matter the level of mathematical sophistication required.  We offer a comprehensive approach to math 
education and use a four component strategy to achieve our mission: Girls’ Angle mentors, the Girls’ 
Angle Support Network, custom content production including our magazine, the Girls’ Angle Bulletin, 
and various outreach activities such as our Math Treasure Hunts and Community Outreach. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is the Girls’ Angle Bulletin? The Girls’ Angle Bulletin is a bimonthly (6 issues per year) 
publication that features interviews, articles and information of mathematical interest.  The electronic 
version is free.  The print version (beginning with volume 3, number 1) costs $36 for an annual 
subscription and brings with it access to our mentors through email.  Subscribers may send us their 
solutions, questions, and content suggestions, and expect a response.  The Bulletin targets girls roughly 
the age of current members.  Each issue contains a variety of content at different levels of difficulty 
extending all the way to the very challenging indeed. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We also aim to overcome math anxiety and build solid foundations, so we 
welcome all girls regardless of perceived mathematical ability.  There is no entrance test. 
 
How do I join?  Membership is granted per session.  Members have access to the club where they work 
directly with our mentors exploring mathematics.  You can also pay per meet, but it is slightly more 
expensive.  We currently operate in 12 meet sessions, but girls are welcome to join at any time.  The 
program is individually focused so the concept of “catching up with the group” doesn’t apply.  If you 
cannot attend the club, you can purchase a Remote Membership which comes with a year-long 
subscription to the Bulletin.  Remote members may email us math questions (although we won’t do 
people’s homework!), send us problem solutions for constructive comment, and suggest content for the 
Bulletin.  To become a remote member, you can simply subscribe to the print version of the Bulletin. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 12 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
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When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
 

Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Pierce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science and worked 
in the mathematics educational publishing industry.  Ken has volunteered for Science Club for Girls and 
worked with girls to build large modular origami projects that were displayed at Boston Children’s 
Museum.  These experiences have motivated him to create Girls’ Angle. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 
mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 

Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, graduate student in mathematics, Princeton 
Julia Elisenda Grigsby, assistant professor of mathematics, Boston College 
Kay Kirkpatrick, assistant professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Moore Instructor, MIT 
Lauren McGough, MIT ‘12 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, assistant professor, UCSF Medical School 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, Tamarkin assistant professor, Brown University 
Lauren Williams, assistant professor of mathematics, UC Berkeley 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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For membership applicants only, please fill out the information in this box. 
 

Emergency contact name and number: ___________________________________________________ 
 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  They will have to 
sign her out.  Names: _______________________________________________________________________________ 
 
Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
_________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media 
forms. We will not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for 
these purposes?             Yes  No 
 
Eligibility: For now, girls who are roughly in grades 5-11 are welcome.  Although we will work hard to include every girl 
no matter her needs and to communicate with you any issues that may arise, Girls’ Angle has the discretion to dismiss any 
girl whose actions are disruptive to club activities. 
 

Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Applying For (please circle): Membership                       Remote Membership/Bulletin Subscription 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address: ___________________________________________________________ Zip Code: _________ 
 
Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Membership-Applicant Signature: _________________________________________________________ 
 

□ Enclosed is a check for (indicate one) (prorate as necessary) 

□  $216 for a one session Membership (which includes 12 two-hour club meets) 

□  $36 for a one year Remote Membership (which includes 1-year subscription to Bulletin) 

□  I am making a tax free charitable donation. 
 

□ I will pay on a per meet basis at $20/meet.  (Note: You still must return this form.) 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 
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Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 
 
 
 
 
 
 

 
A Math Club for Girls 

 


