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From the Founder 
 
Two big announcements: 
 First, over the last few months, we have transitioned to a 
new printer for the Girls’ Angle Bulletin: the American 
Mathematical Society.  This transition was brought about 
through the efforts of Girls’ Angle Advisor Bianca Viray.  The 
main reason for this switch was that it saves us some money.  
Indeed, we thank our friends at Ambit Press, especially Jarrett 
Brimmer, for their wonderful work on the first ten printed issues. 

Second, we’re teaming up with MIT’s Undergraduate 
Society of Women in Mathematics to bring the traditional end-
of-session Treasure Hunt out of Girls’ Angle and to the general 
public.  Eventually, we aim to make this a new kind of math 
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An Interview with Sophie Morel, Part 1 
 
Dr. Sophie Morel is Professor of Mathematics at Harvard University and a Research Fellow at 
the Clay Mathematics Institute. She is a native of France. 
 
Ken: Hi Professor Morel. Thank you for agreeing to do this interview with Girls’ Angle! I guess 
I’ll start with an obvious question: How did you become interested in mathematics? 
 
Sophie: Everybody asks that question. I don’t know. As far as I remember, I was always 
interested, although I was by no means a mathematical wunderkind.  There are no 
mathematicians or scientists in my family (at least in my parents’ and grandparents’ generations), 
so I was not exposed to much mathematics at an early age, but my parents left me free to explore 
whatever subjects I liked and were always willing to provide me with the books I asked for. 
(They are both French teachers.) 
 
When I was in the 9th grade, my mother brought home from her high school a maths magazine 
for high-school students called “Tangente.” I liked it very much and immediately subscribed. It 
had articles about mathematical concepts that were not taught in school, book recommendations, 
and maths challenges (I won two HP calculators thanks to them). That’s also where I heard about 
the mathematical summer camp of the FFJM (the French Federation of Mathematical Games), 
and I convinced my parents to send me there. Later (from 11th grade), I asked my parents to buy 
me college-level and grad school-level textbooks and read them in my free time. I didn’t always 
understand everything, but it was fun. 
 
Ken: You work on mathematics that takes years of study before one can begin to even 
understand the questions of interest. But I am hoping to understand something about how you 
think about math. To that end, would you please describe some relatively elementary piece of 
mathematics that you find interesting? 
 
Sophie: For about 2 years (last year of high school, first year of higher education - the French 
system is a bit different and I did not really go to college, but that’s another story), I was trying 
to solve an elementary geometric problem, and here it is: 
 
(a) What are the positive integers n such that there exists a 
triangle that admits a decomposition into n isometric1 
triangles? (“Decomposition” means that the bigger triangle 
is the union of the smaller triangles, and the interiors of the 
smaller triangles don’t overlap. At right is an example with 
n = 16.) 
 
(b) What are the positive integers n such that there exists a 
triangle that admits a decomposition into n isometric 
triangles that are also similar to the bigger triangle? The 
picture above is actually an example of this. For an 
example of (a) that is not an example of (b), take an 
isosceles triangle (that does not have a right angle) and cut it in 2 along its axis of symmetry. 

                                                 
1 “Isometric” means “congruent.” 

 
Drawing by Dr. Randall Pyke. 
Reprinted with permission from 
Randall Pyke. 
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I know that n = 3, any [perfect] square, and any sum of two [perfect] squares work for (b). For 
(a), there’s also n = 6. I don’t know, even today, if these are all the possibilities. I once came 
across a reference to an article that claimed to have proved that there are no other solutions to 
(b), but I was unable to find the article; I wrote to the author, but he answered that he didn’t 
know where to find a copy of the article and couldn’t remember the argument. 
 
By the way, I came across this problem during a problem-solving evening at maths summer 
camp. 

 
Ken: Can you please elaborate on why you regard 
this piece of mathematics as interesting? What 
makes it interesting? 
 
Sophie: The immediate appeal of it is that it’s 
very easy to grasp and you can experiment to try 
to guess what the answer is. What makes it 
difficult to solve is that you don’t know what kind 
of mathematics you can apply to it. But there are 
other reasons I chose to tell you about this 
problem, here they are: 
 

(i) It was my introduction to research. Here is a problem, anybody can understand it, nobody 
knows the answer, and you can play with it for hours (or days, or months). I should note that 
there are no “Research Experience for Undergraduates” programs in France, as far as I know. 
There was no maths club in my high school. There was also no official possibility to take more 
advanced classes; we all had the same classes, and that was it. (Not totally true, because once 
you get to a certain level and if you’re lucky, you can do something about it, but I was not at that 
level yet.) 
 
(ii) It made me learn new mathematics. While I was trying to solve it, I started asking myself 

questions like “what are the rational numbers x such that the angle xπ is constructible with a ruler 
and a compass?” and other questions about constructibility. I asked my maths teacher and he 
directed me to an introductory book on Galois theory and constructibility. This is how I first 
learned about extensions of fields and Galois theory. 
 
(iii) It made me interested in “cut, move the pieces around and reassemble” problems. For 
example, I read a book about the Banach-Tarski paradox2 (that contained a full proof, plus lots of 
set-theoretic considerations that I didn’t really understand at the time). 
 
I also researched Hilbert’s third problem. We had to write a report about a maths (or physics) 
subject that we found interesting at the end of what you would call our sophomore year, and I 
chose Hilbert’s third problem. Here is the statement: “Given any two polyhedra of equal volume, 
is it always possible to cut the first into finitely many polyhedral pieces which can be 
reassembled to yield the second?” The analogous problem in dimension 2 was known to have a 
positive answer, and the problem in dimension 3 was solved very quickly by a student of Hilbert 
called Max Dehn. (The answer is “no.”) I read up on the proofs, in dimensions 2 and 3, and this 

                                                 
2 The Banach-Tarski paradox says that you can partition a unit sphere into a finite number of pieces and rearrange 
the pieces to form a sphere with radius two. 

When I think a statement 
might be true, I try to see 
all the consequences of that 
statement, until I arrive at 
obviously false things; if I 
can’t do that, then I will try 
to prove my statement. 
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was my first contact with research articles. (Actually, you can show that the answer to the 
analogous question in any dimension n > 2 is “no,” using the same kind of methods. But the 
answer is less satisfying in dimension > 3.) I had to learn some algebra before I could understand 
the proofs, and I also read about related problems, such as the same problem when you only 
allow yourself to move the pieces of the decomposition by a subgroup of the group of isometries 
(for example, the group of translations; in that case, the question has a full answer in any 
dimension). 
 
I learned about an important mathematical concept, which is the concept of an invariant of an 
object (here, a polyhedron) under certain transformations (here, cut, move the pieces around and 
reassemble).  Volume is such an invariant, and Dehn’s solution to Hilbert’s third problem was to 
construct another invariant, then to exhibit two polyhedra that had the same volume but different 
values for this other invariant. That was great. Then you can go further and ask yourself if there 
are any other invariants that you can’t get from volume and the Dehn invariant, and the answer 
is, in dimension 3, “no.” But in dimension > 3, we don’t know a complete family of invariants 
(i.e. a basis of the space of invariants), or at least we didn’t last time I checked, which was in 
1999 so don’t take my word for it. 
 
It also made me wonder about other things, such as the 
notion of area or volume. Until now I had only learnt 
formulas to calculate the area/volume of certain 
geometric shapes, but I started to wonder what “volume” 
actually meant, how it was defined in general. For 
example, for polygons in the plane, you can define area 
as follows: (1) define the area of a triangle by the usual formula; (2) define the area of a polygon 
by cutting it into triangles and adding the areas of the triangles; (3) show that the sum in (2) does 
not depend on the decomposition you choose. This is possible and elementary, though a bit 
messy of course. Then you can define the area of more complicated shapes by drawing a little 
square grid over them, looking at how many squares your shape contains (or intersects), and 
taking grids with smaller and smaller squares. That will work for “reasonable” shapes, and 
generalizes to dimension n. Eventually, I read about measure theory and Lebesgue measure on 
R

n, which is the most general notion of volume that I know about. But my point was, the notion 
of area is by no means obvious. Do people never wonder about that? 
 
Ken: What process do you employ to gain mathematical insight? 
 
Sophie: Well, anything I can think about? I try to work out examples, I make calculations. I 
actually really enjoy calculations, but sometimes I’m bad about examples (I try to see the general 
case directly and it’s a dangerous thing to do). Or I try to generalize the problem. I try to 
compare it with other problems I know about, I read up on things I think are related to see if it 
will give me an idea. When I think a statement might be true, I try to see all the consequences of 
that statement, until I arrive at obviously false things; if I can’t do that, then I will try to prove 
my statement. 
 
Ken: How do you think about mathematics? Do you think geometrically? Algebraically? 
 

To be continued… 

 

I didn’t always 
understand everything, 
but it was fun. 
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Winding Numbers I 
written and illustrated by Søren Galatius 
 
Angles 
 

Chris is riding his bicycle on the soccer field. His friend Hanna is standing in the middle, 
watching him. As he bikes around her, she turns so that she can always see him. She starts 
wondering if there is a way to keep track of how much she turns back and forth while watching 
him. She has been to the soccer field many times, and she knows what direction is north, south, 
east and west, but she is wondering if there is a better way to describe what direction she’s 
turning to watch Chris. Sometimes she’s looking due east, and sometimes due north, but there 
are a lot of different directions in between, and she’s not very happy with just “between east and 
north”. It’s not very accurate—a bit like saying the temperature is in the 50’s, where a good 
thermometer might say something precise, like 57. Is there a precise way of measuring what 
direction she’s looking? Chris is still happily biking around while Hanna ponders this question 
and watches where he is. Suddenly, she remembers that she learned about angles in school, and 
that angles can be used as a precise measure of direction. Then all the directions between north 
and east can be described by a number, namely the angle between that direction and east. 

In this way, east is 0°, 

north is 90°, but in-between 
directions can be described very 

precisely now. For example 37° 

and 51° (without angles she 
could only describe both as 
“between east and north”). She 

also decides that west is 180° 

and south is 270°, and in this 
way she can describe any 
direction on the compass by a 
number. (A normal compass 

usually has north being 0° and 

east being 90°, but we’ll use 
Hanna’s system.) 

Chris is still biking around happily, and as 
Hanna keeps watching him, she thinks to herself 

“now he’s at 15°, now he’s at 30°, 50°, 90° (just 

north of me!), now he’s back at 50°”. 
As Chris bikes back and forth (mostly 

between 0° and 90°), Hanna becomes a little bored 
with watching him, and almost starts thinking about 
something else, but then he suddenly starts going 

around her in a big circle. “30°, 60°, 90°, 120°, 

150°, 180°—that’s due west of me!” she thinks. 
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Chris speeds up, and she counts through bigger and bigger angles, passing 270° (due south), and 

360°.  When she gets to 375°, she realizes that Chris is back to where he started, but then she 

gets a little confused, because he started at 15° and ended at 375°, and yet he’s back where he 
started? How could that happen? Are angles not so useful after all? 
 The answer is of course (as she quickly realizes) that a direction corresponds to an angle 

between 0° and 360°, and that 360° is the same as 0°. In the same way, 15° is the same as 375°. 

“Ah,” she thinks, “I made a mistake—when Chris passed 359°, I should have said 0° instead of 

360°, and continued from there. Then he would be at 15° when he got back.” Problem solved. 
 But then she realizes that perhaps her mistake was not so stupid after all, and perhaps it 

actually contains an interesting idea The number she had first counted when he got back, 375°, 
tells her something about the way that he got there. Namely, it tells her that Chris went around 

her exactly once. If she had counted to 735° instead, he would also be back where he started, but 
she would know that he had gone around her twice. 
 “Hmm, that’s interesting,” she thinks, and wonders if there’s some underlying principle. 
It seems to her that if Chris starts somewhere on the soccer field, bikes around, and gets back to 
where he started, and if she watches him and keeps track of the direction by counting degrees 

(without replacing 360° by 0°), then the number of degrees she ends up with, minus the number 
of degrees she started with, divided by 360, is the number of times Chris went around her. 
 
Winding numbers 

 
Chris’ bicycling is 

modeled mathematically by a 
closed curve in the plane, and 
I’ll first explain what that 
means. A curve in the plane is 
what you get when you draw 
on a piece of paper without 
lifting the pen from the paper. 
The curve has a starting point 
and an end point, and a curve is 
closed if it starts and ends at the same point. If for example you draw a circle or a square, then 
you’ve drawn a closed curve, but you could of course draw something much more complicated 

If you also draw an extra point somewhere on the paper, but not directly on the curve, we 
can define the winding number of the curve around the point, inspired by Hanna’s observations 

on the soccer field. Let’s say the curve is 
called C and the point is called P. For each 
point on C, we can imagine drawing a line 
from the point to P, and another line from P 
that goes straight to the right, and measure the 
angle between these two lines. 

If the point on the curve is right above 

P, then the angle will be 90°, if it’s straight to 

the left the angle will be 180°, if it’s right 

below P the angle will be 270°, and if it’s 

straight to the right the angle will be 0° 

(which is the same as 360°). Of course, the 
angle depends on which point on C we pick,  
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but we can observe how it changes as we move along the curve. Inspired by Hanna’s 

observations on the soccer field, we don’t change to 0° when we pass 360°, but keep counting. 
We can plot the changing angle in a diagram. 
 

 
 

Definition: The winding number of C around P is the angle when the curve ends 

minus the angle when the curve begins, divided by 360°. If we write w(C, P) for 
the winding number, we can write the formula 

 

end angle begin angle
( , )

360
w C P

−
=

�

 (1) 

 
Let’s look at an example. In the following picture, the curve C has winding number 2 around the 
point P. 

 
 

Why? At the point on the curve marked X, the angle is 120°. If we follow the curve in the 

direction of the arrow, the angle first increases up to 420° (passing 360° on the way), then 

decreases down to 330° (passing 360° again, but backwards), then increases up to 840° (passing 

both 360° and 720° on the way). Then we calculate (840 – 120)/360 = 2. 
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Exercise: Can you calculate the winding number of the curve in the next picture? 

 

 
 

If you’re very attentive, you might have noticed that there are a couple of things I haven’t 
told you about yet. The first is that direction is important: If you just draw a closed curve on a 
piece of paper, I cannot look at the picture and tell what direction you moved the pen when you 
drew the picture. The formula talks about “end” and “begin” angles, and to know which is which 
you need to tell me what direction the curve moves. That’s the reason the curve in the exercise 
has small arrows on it—they indicate the direction of the curve. The second thing I haven’t told 
you has to do with the way angles are counted—they increase when the curve goes counter-

clockwise around P and decrease when the curve goes clockwise. What happens if the angle 

starts at 15° and the curve then moves clockwise? No problem—the angle first goes down to 0°, 

then it becomes negative. For example, it could start at 30° and end at −330°—in that case the 
winding number will be −1 (exercise: check this using the formula!).  What’s happening? As 
we’ll see in the next issue of this Bulletin, the winding number is counting “how many times C 
winds around P”, but it counts in a very specific way: Each time C goes once around P in the 
counter-clockwise direction we add one to the winding number, and each time it goes once 
around clockwise we subtract one. If the curve goes around the point once in the counter-
clockwise direction, then turns and goes around the point twice in the clockwise direction, it will 
have winding number 1 – 2 = −1. 
 

Exercise: Here’s a picture of a quite complicated curve. Can you find the winding 
number? 

                                                    To be continued… 
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Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of  these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 

By Anna B. 
 

Anna seeks a general formula for the number of clementies in a pyramid as on this issue’s cover.  
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Music, Modular 
Arithmetic, and More 
By Katherine Sanden 
 

Are you a musician? 
This article is for you! 
Are you a non-musician, but like 

math? 
This article is for you, too! 
You may have heard people talking 

about the connection between music and 
math.  Maybe you’ve seen some of the 
many online articles and videos about it.  
(There’s even a Wikipedia page!1)  Or 
maybe you’ve been exploring the 
connection on your own.  A friend of mine 
likes to say that music is a form of applied math.  It’s a fun idea to consider – can you find ways 
that it seems true for you?  Or not true? 

In this article we’re going to investigate one aspect of the connection between music and 
math:  the relationship between notes of a musical scale and modular arithmetic.  If you don’t 
know what modular arithmetic is, don’t worry.  You will soon. 

 
First, let’s observe that, just like numbers, musical notes exist “on their own” – whether 

or not someone is playing them.  For instance, the number “3” exists in mathematics.  We could 
write the number “3” on paper, or hold 3 fingers up, or assemble a group of 3 apples – these are 
different ways to represent a concept that exists whether or not we have a concrete model.  
Similarly, a musical note could be whistled, hummed, or played on a piano or another instrument 
– but whether or not someone actually plays it, the concept of that note still exists. 

We’ll use the keys of the piano to visualize musical notes, just as we often use a number 
line to visualize the integers.  It will help to refer to an actual piano or keyboard as you continue 
reading.  If you don’t have access to one, you can use an online keyboard (here’s my favorite: 
www.virtualpiano.net). 

Let’s now examine a portion of the keyboard (see next page).  I’ve labeled the names of 
the notes for reference.  Each black note has two names written on it, since there are two ways to 
refer to it.  For instance, the black note directly to the right of C is called “C sharp” (denoted by 
C  ).  It can also be called “D flat” (denoted by D  ) since it is directly to the left of D.  Both 
names refer to the same note.  If you look closely at a keyboard, you will see that the pattern of 
white and black keys repeat every 12 notes.  Every 12th note is given the same name, even 
though the actual pitches you’ll hear when you play two different Cs on the keyboard will be 
different.  The reason for this is that one of the Cs sounds just like a higher pitched version of the 
other C.  This has to do with the way we perceive sound.  I’ll say more about this at the end. 

One consequence of this repeating note pattern is that if we refer to the notes using 
numbers instead of letters by calling “C” zero and increasing the number as we move to the right 
along the keyboard so that C   is 1, D is 2, etc., we would have a cycle of 12 numbers that repeats 

                                                 
1 en.wikipedia.org/wiki/Music_and_mathematics  
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itself: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, etc.  In the portion shown here, only two 
repetitions are shown, but on a real piano the pattern would continue many more times.2 

 

 
A section of a piano keyboard. 

 
Can you think of another situation where the numbers 0 through 11 show up again and 

again?  I can: the set of remainders when dividing by 12!  Take any portion of the number line – 
I’ll choose the integers from 24 to 43 for illustration right now.  If we divide each of these 
numbers by 12 and write down the remainder, we obtain the same pattern we saw on the 
keyboard: 
 

… 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 … 

… 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 … 

 
There’s a term for working with remainders in mathematics: modular arithmetic.  When 

we say “26 leaves a remainder of 2 when divided by 12,” we could also say, “26 is congruent to 
2 modulo 12,” which we denote as: 

 

26 ≡ 2 (mod 12). 
 

(Yes, the symbol between the “26” and the “2” is like an equal sign, only it has 3 line segments.) 
In the world of modulo-12 arithmetic (i.e. remainders when dividing by 12), we can say 

things like: 
 

11 × 9 ≡ 3 (mod 12), 
 

since 11 × 9 = 99, which leaves a remainder of 3 when divided by 12.  We can also write, 
 

5 + 7 ≡ 0 (mod 12), 
 

since 5 + 7 = 12, which is congruent to 0 modulo 12 (i.e. leaves a remainder of 0 when divided 
by 12). 

 In general, we write “a ≡ b (mod 12)” if a – b is divisible by 12.  So, the statement “99 ≡ 
123 (mod 12)” is also valid because 12 divides evenly into 99 – 123 = -24.  Notice that both 99 
and 123 are congruent to 3 modulo 12. 

 Even more generally, we write “a ≡ b (mod m)” if m divides evenly into a – b.  Thus, for 

instance, 51 ≡ 11 (mod 10) and 73 ≡ 1 (mod 8).  Modular arithmetic shows up in many areas of 
                                                 
2 Mini math problem:  A standard piano has 88 keys.  How many times would this pattern repeat itself on a standard 
piano? 
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mathematics, and can be done with any modulus – not just 12.  We’re going to focus on 12 here 
because we have just seen that the notes of a musical scale follow the same pattern as the 
integers modulo 12.  This cool connection enables us to use the musical keyboard as a way to 
illustrate arithmetic modulo 12. 

For example, suppose we’d like to compute 3 × 7 (mod 12).  Let’s go to the keyboard and 
start at the C which we’ve called “0”.3  Next, move up (i.e. right) 3 notes.  (In musical terms, we 
are moving up 3 notes chromatically.)  You should now be on E  , the black note directly to the 
left of E.  If we repeat this exactly 7 times and look at the number of the note we end up on, we 

will have computed 3 × 7 (mod 12), because 3 × 7 = 3 + 3 + 3 + 3 + 3 + 3 + 3.  When I do this, I 

end up on an A, also known as 9.  Therefore, 3 × 7 ≡ 9 (mod 12). 
 
Take it to Your World 

 

• You can do other operations, too – for instance, try using the keyboard to illustrate 10 + 9 
(mod 12), 4 + 1 (mod 12), or 4 – 11 (mod 12).  Make up some of your own modular 12 
arithmetic illustrations on the keyboard.4  

 

• In the example I just did, I moved up in increments of 3.  I noticed that when I moved up 
in increments of 3, I ended up hitting the same 4 notes again and again: I started on C, 
then I landed on E  , then G  , then A, then C again.  I noticed that if I moved up in 
increments of 5, I eventually ended up hitting every single note of the scale before 
returning to another C.  When I moved up in increments of 6, however, I landed only on 
two notes again and again: C and G  .  Can you figure out why?  Hint: how do each of 
these numbers (3, 5, and 6) relate to 12?   Finally, can you experiment and find out which 
other increments enable you to hit every note of the scale, and which ones don’t? 

 

• Musician’s note:  If I move up in increments of 7, I will land on every note before 
returning to the note I started on.  This is called the “circle of fifths” in music, since 7 
chromatic increments make up a “perfect fifth” in music theory.  Notice that there is also 
a circle of fourths (which corresponds to increments of 5), but no circle of “major thirds” 
(a major third is made up of 4 chromatic increments).  Why?  (This is a rephrasing of the 
question in the previous bullet point.) 

 

• What do these notes and numbers actually have to do with music?!  Why are there 
multiple C notes on the piano?  Aren’t they technically different notes?  I love this 
question.  Because whether or not you’re aware of it, your ears know the answer.  The 
interval between a C and the next C to its right or an A and the next A to its right is called 
an octave.  Two notes an octave apart tend to sound “the same” – there is a special sound 
when you play them together, that you don’t hear between any other pair of notes.  When 
you hear songs on the radio, there are often several voices singing together at an octave 
apart.  If they changed this interval by even a little bit, you would notice – and you 
probably wouldn’t like it!  See if you can recognize the distinctive sound of an octave.  
Shut your eyes and have someone else play a C, and then a different C.  Compare that to 
the sound of playing C and another note.   What do you notice? 

 

                                                 
3 We can pick any C to start at.  Can you explain why, no matter which C we call zero, we will obtain the same 
answer? 
4 Hey, did you get the same answer for 4 + 1 (mod 12) as you did for 4 – 11 (mod 12)?  What’s up with that? 
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by Cammie Smith Barnes / edited by Jennifer Silva 
 
 Last time we talked about the importance of remembering negative roots when taking the 
square root of an equation.  There is another common error associated with square roots, 
something that I call “distributing the square root across a sum.”  By this I mean trying to 
simplify a square root in the following manner: 
 

2 24 4 2x x x+ = + = + . 

 
Unfortunately, square roots – or any kind of roots (cube roots and so forth) – do not distribute 
across sums.  That is to say that if you have two terms being added together, the square root of 
their total does not necessarily equal the sum of the square roots of the individual terms.  
Moreover, the above simplification is wrong because the negative root has been forgotten when 
taking the square root of x2. 
 It is true, however, that roots distribute across products.  So if you have two or more 
factors being multiplied together, the root of their product is indeed the product of their roots.  
For example: 

2 24 4 2 | |x x x= = . 

 
My theory is that the common temptation to distribute roots across sums comes from a 

misunderstanding about the difference between addition and multiplication.  Let me begin with 
some fundamental definitions. 
 The pieces of an addition problem that are separated by plus signs are called terms (or 
summands).  For instance, the quadratic expression x2 + 6x + 9 has three terms: x2, 6x, and 9.  
What you get when you add the terms together is called the sum.  Meanwhile, the pieces of a 
multiplication problem are called factors (formerly known as multiplicands and multipliers, 
but nowadays those words are seldom used).  The factors of 6x are 6 and x.  What you get when 
you multiply the factors together is called the product. 
 Addition and multiplication are similar in some ways.  For both operations, the order of 
the operands (the pieces that are being added or multiplied together) does not matter.  It is true 
that 

x + 3 = 3 + x 
and 

x · 3 = 3 · x = 3x. 
 

This property is called commutativity.  It is also true that you can move parentheses around 
among the terms of an addition problem, or amongst the factors in a multiplication problem.  
This is to say that 

(3 + 4) + 5  = 3 + (4 + 5) 
and 

(3 · 4) · 5 = 3 · (4 · 5). 
 

Indeed, 3 + 4 = 7 and 7 + 5 = 12, just as 4 + 5 = 9 and 3 + 9 = 12.  Analogously, 3 · 4 = 12 and 
12 · 5 = 60, while 4 · 5 = 20 and 3 · 20 = 60 as well.  This property is called associativity. 
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 Multiplication and addition are related by the distributive law – that is, for instance, 
 

3 · (4 + 5) = 3 · 4 + 3 · 5 
 
(3 times 9 equals 27, which is the same as 12 plus 15) – but this is where their similarities begin 
to break down.  Multiplication distributes across addition, but addition does not distribute across 
multiplication.  Fortunately, I have yet to see anyone make the following error, wherein the 
distributive law has been applied with multiplication and addition confused: 
 

3 + (4 · 5) = (3 + 4) · (3 + 5). 
 

We can see that this does not work because 3 + (4 · 5) = 3 + 20 = 23, whereas (3 + 4) · (3 + 5) = 
7 · 8 = 56. 
 The distributive law works when used in the proper manner because, in fact, 
multiplication is actually repeated addition.  This is to say that 5 · 2 is actually shorthand for 
writing five 2’s and adding them together: 5 · 2 = 2 + 2 + 2 + 2 + 2.  Hence, 3 · 2 + 5 · 2 means 
that we add three 2’s together and then add the result to that of adding five 2’s together, which is 
the same as adding eight 2’s to each other: 
 

3 · 2 + 5 · 2 = (2 + 2 + 2) + (2 + 2 + 2 + 2 + 2) = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2  = 8 · 2. 
 
In other words, 3 · 2 + 5 · 2 = (3 + 5) · 2, or 6 + 10 = 16. 
 Now, recall from a previous column that division by a nonzero k is the opposite of 
multiplication by k, just as subtraction by any k is the opposite of addition by k.  So distribution 
still works if subtraction is replaced by addition, or if multiplication is replaced by division.  This 
is to say that, for example, 
 

3 · (5 – 4) = 3 · 5 – 3 · 4 
and 

(9 + 12) ÷ 3 = 9 ÷ 3 + 12 ÷ 3. 
 

(Notice that this second equation can also be written as 
9 12 9 12

3 3 3

+
= + .  Also, it’s a good idea to 

check that these equations are really true by computing each side and comparing the answers!) 
 It may now seem that we have gone far astray from the original topic: when we can and 
cannot distribute square roots.  But this is not the case, as taking a square root is really raising a 
number or variable to the one-half power, and exponentiation (the process of taking a number or 
variable to a power) is actually repeated multiplication, just as multiplication is repeated 
addition.  Moreover, taking an nth root is the opposite of raising something to the nth power, just 
as division by a nonzero k is the opposite of multiplying by k.  Let me give examples of what I 
stated in the previous sentences.  Taking the square root of 4 is the same as raising 4 to the ½ 

power, that is: 
1

24 4 2= = .  Similarly, raising 8 to the 1/3 power means to take its cube root: 
1

338 8 2= = , and so on.  Furthermore, taking 4 to the second power just means to multiply two 

4’s together, or, in other words, 42 = 4 · 4 = 16, while taking 4 to the third power means to 
multiply three 4’s together: 43 = 4 · 4 · 4 = 64, and so forth.  Lastly, just as 42 = 16, going in the 

opposite direction tells us that 16 4= . 
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 Therefore, we can distribute powers and roots across multiplication in the same way that 
multiplication and division can be distributed across addition.  For instance, 
 

(3 · 4)2 = 32 · 42 = 9 · 16 = 144 
and 

4 25 4 25 2 5 10⋅ = ⋅ = ⋅ = . 

 
The ability to distribute roots across products allows us to make all radicands square-free if we 
so desire.  That is, we can write 

8 4 2 4 2 2 2= ⋅ = ⋅ =  

and 

75 25 3 25 3 5 3= ⋅ = ⋅ = . 

 
 But you must resist the temptation to distribute powers and roots across addition or 
subtraction.  It is not the case that 
 

(3 + 4)2 = 32 + 42, 
 
as the left-hand side gives us 72 = 49, whereas the right-hand side equals 9 + 16 = 25.  (This 
example provides a brief preview of what we will treat in the next column: multiplying out 
products of sums.  So check back next time for more on this topic!)  It is also not true that 
 

25+144 = 25 + 144 , 
 

as the left side gives us 169  = 13, while the right side is 5 + 12 = 17. 

 One context in which I often see the above error is when I have asked students to find the 
radius of a circle.  For example, a circle with center (1, 2) that passes through the point (4, 6) has 
radius 

2 2 2 2(4 1) (6 2) 3 4 9 16 25 5r = − + − = + = + = = . 

 
It would not be correct to say that 
 

9 16 9 16 3 4 7r = + = + = + = . 

 
 For practice, try simplifying the following expressions.  For #6, express the given radical 
expression using radicals with square-free radicands.  If an expression cannot be simplified, 
simply leave it alone.  The answers can be found on page 33. 
 

1. 2 9x +   5. (4x)2 

2. 29x   6. 48  

3. 2 28 15+   7. 216 x−  

4. 12 16+   8 (2x)3 
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A Letter from Vishakha Apté, Architect 
 
Last spring, some members at Girls’ Angle designed a dollhouse. Vishakha Apté, an architect 
who owns her own company, Vishakha Apté Architects, saw the blueprints and sent this letter. 

___ 

September 28, 2011 
 

Dear Math Enthusiasts, 

 

I am an architect and I wanted to share with you how we use mathematics in 

design and architecture. I understand that you all worked on putting together a 

dollhouse recently and gained some valuable experience with regard to 

designing stairs. This gave me an idea of what to share with you today: how we 

design stairs. As architects we use math in many ways; stair design calls for 

understanding basic math and geometry, which along with adherence to 

building codes, allows us to make safe and beautiful staircases.  

Here are some key 

terms that you will need to 

know regarding the 

anatomy of a stair: A stair 

consists of steps. Each step 

has a riser (the vertical 

part of the step) and a 

tread (the horizontal part 

of the step). Each set of 

steps, between landings, is 

known as a flight. Most 

building codes specify that 

within each flight, steps 

need to have equal risers 

and equal treads. The sum 

of the risers will equal the 

height of the entire stair, 

while the sum of the 

treads will equal its 

length. The pitch is the 

angle at which a flight of 

steps is built. 

I’ve introduced the 

concept of building codes 

in the previous paragraph, so here’s a small digression about them. First, know 

that building codes differ from state to state and city to city, so one’s design has 
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to follow the codes that apply to your project location. Because building codes 

vary so much, I won’t go into detail about the specifics but know that they exist 

to make sure our spaces are designed safely for the people who use them. 

Second, codes apply to more than stair design; they govern how many 

bathrooms are needed for each space, the number of exits required, the height of 

the building, and so on.  

For the purposes of our stair design exercise, we will set aside specific 

building codes and instead use what is known as a rule of thumb. A rule of 

thumb is a broad version of a rule that is easy to remember and provides an 

approximate result. Since stair design is an iterative process (a process that we 

do over and over again, adjusting each time until we get our final result), we will 

use the ‘approximate’ stair height or tread as a starting point to get to the exact 

result we need.  

Stairs take us from one level of the building to the next. So the first step (no 

pun intended) is to know what the height of this level change is. Let’s say the 

height we have to traverse in a house is 9’-0”. The rule of thumb we will use is this: 

the sum of two risers and one tread should equal 25”, which is approximately the length 

of a human stride. Typically the riser height is somewhere between 7” and 8 ½“, 

which means that one possibility for the equation is that the risers are 7” high 

and that the treads are 11” long. This particular set of numbers also provides an 

average pitch for the stairs. Risers higher than 7” would result in a steeper set of 

stairs.  

Let’s now calculate how many steps, i.e. risers, we will need for our stair that 

goes 9’-0” high. Because our steps are worked out in inches, we convert the foot-

inches measurement to only inches, making 9’-0” equal to 108”. If our risers are 

7” high, we would need 15 3/7 steps (that’s 108” divided by 7”). Since we cannot 

have a fractional number of steps, we usually round up the number of steps and 

then we work backwards to calculate a new riser height. 

So 108” divided by 16 steps (rounded up from 15.42 steps) would result in 

risers that are 6 3/4” high. But this would also mean that our stair run is 176” or 

14’-8” long (16 steps multiplied by 11” tread length). Depending on our house, 

we would have to see whether a 14’-8” stair length would fit and in what 

configuration. Sometimes the house is large and we have space to do one straight 

run. Other times the stair conditions are tight and would force us to design a 

stair that returns, which would mean that we would have a landing in the 

middle. The stair could return back along itself or as an L-shaped or spiral 

staircase; there are many possibilities. 

The lower the riser height, the more comfortable a stair is to climb up. One 

would typically see small riser heights for grand staircases in a museum or opera 

house or theatre. In homes, where space is often limited, riser heights tend to be 

larger than on the opera grand staircases. In our example, if we rounded down 

the number of steps needed from 15 3/7 to 15, then our riser height would be 
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approximately 7 1/4”. At this new riser height, we would once again check the 

stair run to see how it fit in the greater plan layout. With 15 steps, the stair run 

would be 165” or 13’-9” long (15 steps multiplied by 11” tread length). This back 

and forth process of tweaking the number of steps, the riser height, the stair run etc, is the 

iterative process mentioned earlier. We could work through the stair calculations 

once more, this time with 14 steps, which would make the riser height 

approximately 7 3/4” and the stair run 154” or 12’-10” long (14 steps multiplied by 

11” tread length). All of these various stair designs could work, and our choice 

would be based on plan layout, the ease of climbing that the client needed, the 

amount of space we had, etc. 

One way to learn more about stairs is to observe the types of stairs that we 

use everyday in our lives. Measure the riser and tread dimensions for the stair 

you have at home, subway steps, the exit stair at school, steps in your local 

museum. As you study these different stairs, consider why one stair’s riser is 

higher or lower than another, or ponder why the treads are deep or short. Are 

you able to discern why a particular stair was designed the way it was? Is the 

intent of the stair design evident? 

There are many more details to stair design, such as providing stair nosing, 

different kinds of landings, stair rail dimensional rules, minimum angle 

restrictions for wedge-shaped stairs, and headroom above the stair etc. And in 

reality, we never have such clean cut 9’-0” heights to work with. Existing 

structures have varied and unusual story to story heights, making stair design all 

the more involved and complex. But the basic primer outlined here works for all 

stairs, whether they are simple runs or complicated curved stairs. Once you 

know the basics, you will understand that stair design uses an iterative process 

in order to find the best possible riser and tread combination for the project at 

hand. 

I hope you have fun understanding stairs, learning more about stair design 

and designing stairs for your own projects.  
 

 - Vishakha Apté 
 

P.S. Did you know that your hand span is a great tool for measuring stairs, or for 

measuring anything else for that matter? Find out what your hand span length is 

and you’ll never be lost without a ruler when you need it most. My hand span is 

8” long, and I use it almost daily to measure things like steps, how big a piece of 

tile is, or the width of a door. 
___ 

Dear Vishakha, 
Thank you for this letter! 

- Girls’ Angle 

Diagrmas by Vishkha Apté 

Edited by Jennifer Silva 
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 Even though there are rules and regulations, inspired architecture is still possible as this stunning spiral staircase 

designed and constructed by Spencer Luckey shows.  Photo courtesy of Tom Virant of Virant Design Inc. 
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Your 
Ad 

Here 
 

Girls’ Angle is now selling advertising space in the electronic version of the Bulletin. 
 

The print version is ad free. 
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by Barbara Remmers | edited by Jennifer Silva 
 

Owning it:  Fraction Satisfaction 
 

At first when you were a baby you didn’t know where things went when you let go of them.  
They disappeared.  Then one day, perhaps you peered over the edge of your bouncy seat and 
spotted the item you had just dropped.  Fascinating!  Eventually, after enough of this, you 
figured out that things fell down when you dropped them.  Except for helium balloons.  Then it 
was time to move on to figuring out what happens to all the things that fall down.  No doubt you 
tried to gain some knowledge with food, dishes, liquids, and toys.  The grownups in your life 
probably have some funny stories.  
 By now it may seem like you’ve always known about breaking, sticking, and dropping.  
You don’t have to remind yourself that eggs but not rocks break when thrown, that peanut butter 
sticks, and that milk sloshes.  Imagine if you did!  You might constantly tell yourself as many of 
the particular facts as you could cram into your head.  Alternatively, you might decide it’s futile 
to attempt to keep track of it all.  Instead you would just sit quietly and stare dully at whatever 
happened to be in front of your eyes.  In either case, you would lead an incredibly boring life. 
 Something similar can happen with fractions.  The procedures for dealing with them can 
seem like a bunch of directions and things to remember that have no connection either to each 
other or to how we deal with whole numbers. 
 Wouldn’t it be nice if adding fractions were as natural as adding whole numbers?  If the 
procedures seemed sensible, they’d be much easier to remember.  Forgetting something or 
making a mistake isn’t the end of the world, but it is a shame to miss out on the satisfaction that 
results from truly understanding what is going on. 
 In the case of fractions, getting to know them very well goes a long way in helping us to 
know, and remember, what to do with them.  So let’s get some fraction satisfaction! 
 We’re going to do this in three parts.  In this column we will talk about what fractions 
are.  Next time we will add and subtract them.  Finally, we will investigate multiplying and 
dividing them. 

 So, let’s get to know a particular fraction, 
3

7
.  The way we’ll do this is to ask 

3

7
 some 

questions and listen closely to the answers.   Let me warn you: 
3

7
 reminds me of my wacky 

great-aunt Myrna. 
 
Q: What are you? 

3

7
: I’m a number.  My name is 

3

7
. 

 
Q: Why do you look so funny? 

3

7
: I am a number that cannot be described by one whole number; two are needed.  By the way, 

missy, I don’t look funny, I look elegant. 
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Q: Why can’t one number describe you? 

3

7
: One number does, and that number is 

3

7
!  It’s a perfectly fine number.   

 
Q: Why can’t one whole number describe you? 

3

7
: Because my value is between two whole numbers: 0 is too small and 1 is too big. 

 
Q: Do all fractions have values between two whole numbers? 

3

7
:   No.  Whole numbers can also be written as fractions.  My best girlfriend, 3, sometimes goes 

by 
3

1
, sometimes by 

21

7
, and sometimes by other names.  We’ll talk more about this later, but 

I’ll let you in on a little secret ... she doesn’t do this just so we can have matching tops, though it 
often is about having matching bottoms. 
 
Q: Please, please tell me now!  Why would anyone want to use two whole numbers to describe a 
number that can be described with one whole number? 

3

7
: Don’t beg, dearie; it’s unbecoming.  When whole numbers are written as fractions, it is 

because it’s useful to think of them that way.  You may want to compare the whole number with 
a number that can only be written as a fraction, for instance.  Or you might want to combine a 
whole number with one or more fractions. 
 
Q: What do you mean by combine? 

3

7
: Add, subtract, multiply, or divide. 

 
Q: What does your 7 mean? 

3

7
: My bottom number, 7, tells people which equal portions of one – or “a whole” – are used to 

compose me. 
 
Q: Huh? 

3

7
: Remember how I said that 0 was too small to describe me and 1 was too big? Well, that’s 

just another way of saying that, on a number line, I reside between 0 and 1.  If you start at 0, and 
take steps of the same size as the distance between 0 and 1, you would miss visiting me.  That 
would be a crying shame, trust me.  My bottom number tells you the size of the smaller steps you 
would need to take to find me. 
 
Q: But 7 is greater than 1 and you said we needed to take smaller steps, not larger steps! 

3

7
: Hold on a sec, missy, there’s no need to get snippy!  Remember that this is math.  Things do 

make sense.  You just have to keep asking questions until you are satisfied.  This all can be done 
calmly.  Ask and ask.  Persist until you receive an explanation that makes sense to you. 
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Q: How can 7 be used to describe a number less than 1? 

3

7
:  It’s all about location, honey.  When 7 is the bottom number of a fraction, it means dividing 

1 – a whole – into 7 equal pieces. 
 
Q: Sevenths!  Right? 

3

7
: Yes dear, the small steps I have been talking about have lengths of one-seventh, or a seventh, 

for short.  I am made up of one-sevenths.  If you started at 0 on the number line and took steps of 
length one-seventh, then you would land on me. 
 
Q: So any fraction with 7 on the bottom is made up of sevenths? 

3

7
: You got it, girly.  You see, the 7 tells what type – or denomination, you might say – of 

fraction I am.  That’s why some folks use the highfalutin term denominator to talk about the 
bottom number of fractions. 
 
Q: What about your top number? 

3

7
: My top number, 3, tells how many sevenths 

comprise me.  I have 3 sevenths.  I am 
3

7
.  If you want 

to visit me on the number line, take 3 steps of length 
one-seventh.  (Here I am assuming you are starting at 0, 
and heading in the direction of 1.) 
 
Q: Doesn’t the top number of fractions have a fancy 
name, too? 

3

7
: Fancy, schmancy!  Nobody ever forgets “top 

number.”  The hoity-toity term you are searching for is 
numerator. 
 
Q: Well, if the Terminator terminates, I bet it’s called numerator because it numerates how many 
sevenths – in your case – you have.  Right? 

3

7
: Darling, darling, darling ... where to start?  Unfortunately, your straightforward explanation 

is hampered by the fact that numerate doesn’t mean “to count,” it means “to list.”  Numerate 
doesn’t even get used much as a verb.  Generally, enumerate is used as a verb meaning “to list,” 
and numerate is used as an adjective meaning “skilled with numbers.”  As you no doubt gather, 
word meanings cannot always be deduced from reasonable starting points.  What they seemingly 
should mean and what they actually do mean are not guaranteed to be the same.  It’s all so 
frightfully messy, inconsistent, and jumbled.  That’s why I stick with the precision and beauty of 
math.  Oh, and please spare me the mention of that vulgar Terminator fellow. 
 
 

 
 

Anatomy of a Fraction 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  They are far from being 
complete.  In these notes, we include some of the things that you can try or think about at home 
or with friends.  We also include some highlights and some elaborations on meet material.  Less 
than 5% of what happens at the club is revealed here. 
 

Session 9 – Meet 1 – September 8, 2011 
 
Mentors: Samantha Hagerman, Rediet Tesfaye, Bianca Viray 
 
One activity we did today was “walk out” graphs of speed versus time.  That is, we would show 
the girls a graph of speed versus time.  The girls would then have to walk, confined to a line, in 
such a way that the graph represented their actual speed as a function of time.  In effect, the girls 
were performing an integration. 
 
One girl did an admirable job of “walking out” the following graph: 
 

 
 
Another who watched remarked that “that is what happens when you have a sugar high.” 
 

Session 9 – Meet 2 – September 15, 2011 
 
Mentors: Samantha Hagerman, Jennifer Melot, Liz Simon 
 
Some members have begun exploring proofs.  One of the activities we made for the members 
consisted of unscrambling scrambled proofs. We gave the member a stack of rectangular slips of 
paper.  Each slip had a mathematical statement on it.  The problem was to arrange the statements 
into a coherent proof. 
 
By giving the girls a scrambled proof, we avoided questions of what could or could not be 
assumed and were able, instead, to focus on logical coherence. 
 
When the girls mastered these, we increased the difficulty level in two ways. One was to split the 
statement to be proven in two.  The other was to include erroneous and irrelevant statements that 
had to be discarded.  If you’d like to try your hand at one of these unscrambling tasks, we’ve 
included a sample on the next page. 
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Scrambled Proofs 
 
Copy this page and then cut along the dotted lines so that each statement is on its own separate 
rectangular slip of paper.  Arrange the statements so that they form a single coherent proof.  It’s 
easy to create more problems like this.  Just take any math book that contains proofs and have 
someone copy the proof with each sentence of the proof on a separate line.  Print the proof out 
and then cut the paper up so that each sentence is on a different slip of paper.  Shuffle the slips 
well and then try to arrange them back into a coherent proof. 
 

We can then write a = 2n for some integer n. 

Suppose that a is odd. 

Suppose that a is even. 

This can be rewritten as 4(n2 – n – b) = 2. 

Substituting 2n – 1 for a in the equation yields (2n – 1)2 – 4b = 3. 

Therefore, a cannot be odd. 

Subtracting 1 from both sides yields 4n
2 – 4n – 4b = 2. 

Since n2 – b is an integer, 4(n2 – b) is a multiple of 4. 

Since 2 is not a multiple of 4, the equation 4(n2 – n – b) = 2 has no integer solutions. 

Therefore, a cannot be even. 

Substituting 2n for a in the equation yields (2n)2 – 4b = 3 or 4n
2 – 4b = 3. 

Since 3 is not a multiple of 4, the equation 4(n2 – b) = 3 has no integer solutions. 

We can rewrite this as 4(n2 – b) = 3. 

Since a can neither be even nor odd, the proposition is true. 

Proposition. There are no solutions in integers to the equation a2 – 4b = 3. 

Since n2 – n – b is an integer, 4(n2 – n – b) is a multiple of 4. 

We can then write a = 2n – 1 for some integer n. 

Expanding out, this becomes 4n
2 – 4n + 1 – 4b = 3. 
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Session 9 – Meet 3 – September 22, 2011 
 
Mentors: Samantha Hagerman, Ryan Heffrin, Bianca Viray 
 
Special Visitor: Ally Hartzell, Pixtronix 
 
Ally Hartzell talked about Micro Electrical Mechanical Systems (MEMS).  MEMS are very tiny 
machines.  A common thread in her presentation was the use of exponentials.  Many graphs had 
scales that were logarithmic instead of linear.  This led us to explore exponential growth in a 
variety of ways.  You can read about some of them on the Girls’ Angle blog.  Ally also showed 
us some of ways that she uses probability to study the failure rate of MEMS. 
 

Session 9 – Meet 4 – October 6, 2011 
 
Mentors: Jennifer Balakrishnan, Jennifer Melot, Bianca Viray 
 
Some members completed a proper scale graph of the function f(x) = x2 over the range of values 

0 ≤ x ≤ 30 using one-quarter inch as the unit length.  If you haven’t done this before, it’s worth 
doing at least once in your life.  You might be surprised at how long your paper has to be to fully 
contain this graph! 
 

Session 9 – Meet 5 – October 13, 2011 
 
Mentors: Jennifer Balakrishnan, Samantha Hagerman, Rediet Tesfaye 
 
Special Visitor: Diana Hubbard, Boston College 
 
Diana Hubbard discussed tic-tac-toe on a donut.  Last month, we posted a WIM video featuring 
Diana explaining this topic.  She described how to modify a rectangle to make a flat model of the 
surface of a donut.  Then she introduced tic-tac-toe on that surface and had the girls analyze 
features of this game.  In the end, the girls determined that tic-tac-toe on a donut, unlike regular 
tic-tac-toe, is a win for the first player. 
 
After her visit, some girls made models of the Platonic solids using a method I learned at the 
recent Math Prize for Girls event that took place at MIT. The method is inexpensive and 
effective: Roll up paper to make cylinders using tape to keep the shape. String up these cylinders 
to form the edges of the polyhedra.  While making these, Ratties Are Cute began to wonder 
what is the minimum number of “cylinder strings” required in order to make each of the Platonic 
solids.  A “cylinder string” is a sequence of cylinders where each one touches the end of the next. 
 
Another way of describing the problem is as follows: Consider the vertices and edges of the 
polyhedron. If you start at a vertex and walk along the edges to another vertex (which could be 
back to your starting vertex) keeping track of where you’ve gone, you will have traced out some 
path.  Let’s say the path is “clean” if you don’t cross over an edge more than once.  Ratties Are 

Cute wanted to know what is the minimum number of clean paths necessary to cover all the 
edges of the polyhedron.  This is a graph theory question and is related to Eulerian cycles.  An 
Eulerian cycle is a single clean path that comes back to the starting vertex and traverses every 
edge in the graph.  According to Melody Chan, a graduate student at UC Berkeley, “clean paths” 
can also be called “trails” or “walks using each edge at most once.” (For more on graph theory, 
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check out Katherine Sanden’s Math In Your World columns in the previous two issues of this 
Bulletin.) 
 
After thinking carefully about the tetrahedron and the cube, Ratties Are Cute formulated this 
conjecture: 
 

The minimum number of clean paths needed to cover the edges of a Platonic solid 

is equal to half the number of vertices. 
 
Interesting! Being able to make a clear statement represents real progress. There’s more on this 
story in Meet 7. 
 

Session 9 – Meet 6 – October 20, 2011 
 
Mentors: Jennifer Balakrishnan, Liz Simon 
 
We began by following up on Diana’s visit by revisiting life on a torus (the surface of a donut).  
A torus can be modeled by taking a rectangle and saying that points on the border that are 
horizontally across from each other or vertically across from each other are to be considered the 
same point. 
 
We then moved to another 
world.  In the new world, we 
live on a circle but declare 
that diametrically opposed 
points on the boundary are to 
be considered the same point.  
Think about this world.  
What happens when a person 
starts walking to the right and 
just keeps on going? 
 

Session 9 – Meet 7 – October 27, 2011 
 
Mentors: Jennifer Balakrishnan, Jennifer Melot, Rediet Tesfaye 
 
Ratties Are Cute and billy-bob-joe-bob-jim continued to consider Ratties Are Cute’s 
conjecture from Meet 5.  They considered the octahedron and eventually came to the following 
modification of the original conjecture: 
 

The minimum number of clean paths needed to cover the edges of a simple graph 

is equal to half the number of odd degree vertices. 
 
Beautiful!  They also observed that for polyhedra where the degree of every vertex is constant 
(such as for the Platonic solids or the truncated Platonic solids), the number of edges is equal to 
half the product of the number of vertices and the degree.  For a highly relevant article, see 
Facebook and Graph Theory, Katherine Sanden’s Math In Your World column in Volume 4, 
Number 5 of this Bulletin. 

  

 
Although it looks like there are 3 separate blue segments in the rectangle  
(left) and circle (middle), the blue segments actually represent a single, 
continuous path in their respective worlds.  What happens when the stick 
figure person in the modified circle world keeps moving to the right? 
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Calendar 
 
Session 9: (all dates in 2011) 
 

September 8 Start of the ninth session! 
 15  
 22 Ally Hartzell, Pixtronix 
 29 Start of Rosh Hashanah – No meet 
October 6  
 13 Diana Hubbard, Boston College 
 20  
 27  
November 3  
 10  
 17  
 24 Thanksgiving - No meet 
December 1  
 8  

 
Session 10: (all dates in 2012) 
 

January 26 Start of the tenth session! 
February 2  
 9  
 16  
 23 No meet  
March 1  
 8  
 15  
 22  
 29 No meet 
April 5  
 12  
 19 No meet 
 26  
May 3  

 
Special Announcement: If you like solving math contest problems, sign up for Girls’ Angle’s 
Math Contest Prep course.  Check our website www.girlsangle.org for details. 
 
Here are answers to the Errorbusters! problems on page 20. 
 
1. can’t be simplified 5. 16x

2 

2. 3x 6. 4 3  

3. 17 7. can’t be simplified 

4. 2 7  8. 8x
3 
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Girls’ Angle: A Math Club for Girls 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
What is Girls’ Angle?  Girls’ Angle is a math club for girls and a supportive community for all girls and 
women engaged in the study, use and creation of mathematics.  Our primary mission is to foster and 
nurture girls’ interest and ability in mathematics and empower them to be able to tackle any field, no 
matter the level of mathematical sophistication required.  We offer a comprehensive approach to math 
education and use a four component strategy to achieve our mission: Girls’ Angle mentors, the Girls’ 
Angle Support Network, the Girls’ Angle Bulletin and Community Outreach. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society.  They write 
articles for the Bulletin, take part in interviews and visit the club. 
 
What is the Girls’ Angle Bulletin? The Girls’ Angle Bulletin is a bimonthly (6 issues per year) 
publication that features interviews, articles and information of mathematical interest.  The electronic 
version is free.  The printed version (beginning with volume 3, number 1) comes with membership.  We 
are working hard to lower the cost of the Bulletin.  Until we do, however, nonmembers can receive the 
printed version by becoming a Bulletin Sponsor.  Please contact us if interested. 
 
The Bulletin targets girls roughly the age of current members.  Each issue is likely to contain some 
material that feels very challenging or difficult to understand.  If you are a member or Bulletin Sponsor 
and have any questions about the material, feel free to ask us about it! 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-11.  We aim to overcome math anxiety and build solid foundations, so we welcome all 

girls regardless of perceived mathematical ability.  There is no entrance test. 
 
How do I join?  Membership is granted per session.  Members have access to the club and receive a 
printed copy of the Girls’ Angle Bulletin for the duration of the membership.  You can also pay per meet, 
but it is slightly more expensive.  We currently operate in 12 meet sessions, but girls are welcome to join 
at any time.  The program is individually focused so the concept of “catching up with the group” doesn’t 
apply.  If you cannot attend the club, you can purchase a Remote Membership which comes with a year-
long subscription to the Bulletin and a 25% discount for any club meet attended.  Remote members may 
email us math questions (although we won’t do people’s homework!). 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 10 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
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When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org or send us email. 
 

Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
 

Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Pierce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science and worked 
in the mathematics educational publishing industry.  Ken has volunteered for Science Club for Girls and 
worked with girls to build large modular origami projects that were displayed at Boston Children’s 
Museum.  These experiences have motivated him to create Girls’ Angle. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 
mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 

Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, graduate student in mathematics, Princeton 
Julia Elisenda Grigsby, assistant professor of mathematics, Boston College 
Kay Kirkpatrick, assistant professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, Moore Instructor, MIT 
Lauren McGough, MIT ‘12 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, assistant professor, UCSF Medical School 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, Tamarkin assistant professor, Brown University 
Katrin Wehrheim, associate professor of mathematics, MIT 
Lauren Williams, assistant professor of mathematics, UC Berkeley 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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For membership, please fill out the information in this box.  Bulletin Sponsors may skip this box. 
 

Emergency contact name and number: ___________________________________________________ 
 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  They will have to 
sign her out.  Names: _______________________________________________________________________________ 
 
Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
_________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media 
forms. We will not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for 
these purposes?             Yes  No 
 

Eligibility: For now, girls who are roughly in grades 5-11 are welcome.  Although we will work hard to include every girl 
no matter her needs and to communicate with you any issues that may arise, Girls’ Angle has the discretion to dismiss any 
girl whose actions are disruptive to club activities. 
 

Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Applying For (please circle): Membership                       Remote Membership 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address: ___________________________________________________________ Zip Code: _________ 
 
Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Membership-Applicant Signature: _________________________________________________________ 
 

□ Enclosed is a check for (indicate one) (prorate as necessary) 

□  $216 for a one session Membership 

□  $108 for a one year Remote Membership 

□  I am making a tax free charitable donation. 
 

□ I will pay on a per meet basis at $20/meet.  (Note: You still must return this form.) 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 
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Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 
 
 
 
 
 
 

 
A Math Club for Girls 

 


