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From the Director 
 

Math is highly interconnected. Every new math fact you 
learn can affect your understanding of other math facts you 
know.  Sophisticated mathematical concepts can affect the way 
one understands even the most basic concepts. 
 For this reason, at Girls’ Angle, we routinely ask 
mathematicians to explain math.  We have a postdoctoral mentor 
at every meet.  And we try to get mathematicians to write 
articles, like Bjorn Poonen’s series on the meaning of addition.  
In this issue, mathematician David Speyer invites readers to 
ponder mysterious patterns that appear in a very natural problem, 

namely, finding rational approximations to π. 
 Also in this issue, Julia Zimmerman’s back with a story 
that delights while it enlightens, Cammie Smith Barnes keeps us 
from straying into error, we meet Case Western Reserve assistant 
professor Elizabeth Meckes, and Katherine Sanden takes over 
Math In Your World from Katy Bold.  Katy recently wed and is 
moving on to new adventures.  Katy, thank you so much for all 
your wonderful contributions to Girls’ Angle! 
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An Interview with Elizabeth Meckes, Part I 
 
Dr. Elizabeth Meckes is an assistant professor of mathematics at Case Western Reserve 
University.  She is a fellow of the American Institute of Mathematics and received her doctoral 
degree from Stanford under the direction of Persi Diaconis. 
 
Ken: Hi Dr. Meckes, thank you so much for doing this interview for the Girls’ Angle Bulletin.  
My first question for you is: What is your favorite kind of mathematics? 
 
Elizabeth: This is a hard question to answer, so I’ll answer it in a couple of ways. Firstly, if you 
had to classify me by area, you would call me a probabilist (someone who studies probability 
theory), and moreover, put me on the more “analytical” end, which means I use a lot of ideas and 
techniques from the field called “real analysis”. One of the things I like about probability theory 
is that there are a lot of rather counter-intuitive results either about or using probability. I don’t 
just like counter-intuitive results because I’m ornery; they can be a dramatic demonstration of the 
value of mathematics. Intuition can be wrong, and it can also break down and not tell you 
anything about a question you care about.  Math is a way to move past intuition, and you know 
it’s really done something for you when you come up with a result that you wouldn’t have 
otherwise guessed was true. 
 
To answer a different interpretation of the question, my favorite kind of math at any given 
moment is usually whatever I’m working on (broadly construed; it’s not as though it’s interesting 
every minute). I find that it’s hard to be really interested in something until I’ve delved pretty 
deeply into it; real appreciation comes after understanding, which comes after a lot of hard work.  
This is a little unfortunate from one perspective, because it means you can’t tell how interesting 
something will be to you without a lot of initial investment of time and energy, but it also means 
that you can be surprised by where you find interesting math. 
 
Ken: How did you get interested in probability? 
 
Elizabeth: Through my Ph.D. advisor, Persi Diaconis.  I went to graduate school having almost 
no idea what I wanted to do, although I knew I was more inclined toward analytic (as opposed to 
algebraic) areas.  The usual system to find a thesis advisor is to start by doing reading courses 
with several professors, sort of like a trial period.  I did one with Persi, and enjoyed it.  He 
seemed like someone I’d enjoy talking to once a week for a few years, so I asked him to be my 
advisor.  I strongly advocate this as a way to choose an advisor: you can get interested in almost 
anything (and you can change areas later, although it’s not easy), but it’s important to have a 
good relationship with your advisor.  If you dread those weekly meetings, graduate school will 
feel like a very unpleasant eternity.  I could have done a lot of different things with Persi (he has 
very broad interests); I got into the part of probability that I did mainly because I got interested in 
a series of lectures he gave about Stein’s method (more about that below) during my second 
year. 
 
Ken: When did you realize that you wanted to become a mathematician?  Do you remember a 
specific experience that got you excited about mathematics? 
 
Elizabeth: I’d always sort of assumed I’d be an academic scientist of some sort, and when I 
started college I thought I’d probably be a physicist.  But I found when taking classes, especially 
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in my sophomore year when I started taking “real math” courses (that is, proof-based courses for 
math majors like abstract algebra and real analysis, as opposed to calculus, which is taught to a 
large audience of mostly non-math majors) that the way my mind worked seemed perfectly 
suited to being a mathematician.  Math classes were certainly hard for me, but hard in a different 
way from other classes; math made sense to me in a way that physics didn’t.  I felt like I’d found 
my niche, and never really considered doing anything else. 
 
Ken: What do you do, as a mathematician? 
 
Elizabeth: That’s a great question; I think most people really aren’t clear on what 
mathematicians do all day.  I once saw a great description of a mathematician’s week: “Monday, 
tried to prove theorem.  Tuesday, tried to prove theorem.  Wednesday, tried to prove theorem.  
Thursday, tried to prove theorem.  Friday: theorem false.”  So for one thing, I, like most 
mathematicians, am wrong a lot.  But that doesn’t really answer your question: what does it 
mean to spend your days and years trying to prove theorems?  Sometimes it starts with a 
conjecture: something you read, a conversation with another mathematician, or something that 
you’ve been thinking about on your own makes you suspect that a specific statement is true.  So 
you think about how to try to prove it: read other people’s papers looking for ideas, scribble 
thoughts as they come to you, or just sit and think about it. Other times it’s more exploratory: “I 
wonder what happens if you try to apply this argument in this other setting?”  I usually try quite 
a few blind alleys, but can normally tell when I’m actually on to something.  Of course, I don’t 
know for sure if I’ve really proven something until I write it down carefully, as if I’m explaining 
it to something else.  I really believe that you don’t understand anything until you can explain it 
to someone else, and trying to do so is a great exercise to clarify your ideas and figure out which 
things you still don’t understand. 
 
Ken: You mentioned a mathematical tool that you like to use: Stein’s method of exchangeable 
pairs.  Can you explain to us what that is, or what it is essentially based on? 
 
Elizabeth: Okay; I think most people are familiar with the bell-shaped curve, what I would call 
the Gaussian distribution.  There’s a general class of theorems called “central limit theorems”, 
which are about showing that some specific quantity “looks Gaussian”.  The classic example is 
in terms of coin tossing.  If you toss a coin 1,000 times, you expect to get about 500 heads and 
500 tails.  But of course you probably won’t get exactly 500 of each, just close to that.  So you 
could look a little closer and ask: if you perform the experiment millions of times and make a 
histogram of the number of heads from each experiment, what will it look like?  We expect a big 
peak at 500, but can we say more about the shape of the histogram?  The answer is yes: it’s a 
bell-shaped curve, and that fact is the classical central limit theorem.  You can write down a 
formula for the bell-shaped curve, and it has a lot of special properties; all of the approaches to 
proving central limit theorems take advantage of at least one of these special properties.  Stein’s 
method is probably the newest. It was invented in the late sixties by Charles Stein.  That might 
sound like quite awhile ago, but when you think about the fact that people have known about the 
bell-shaped curve for more than two hundred years, saying much of anything really new and 
important about it is pretty amazing. The special property that Stein’s method takes advantage of 
is the fact that the function which describes the bell-shaped curve is the only function there is 
that satisfies a certain differential equation; if some other curve (like a curve fitted to the coin-
tossing histogram described above) “comes close” to satisfying the same differential equation, 
then it’s close to the bell-shaped curve.  This was Stein’s fundamental idea, and a huge number 
of papers have been written extending and exploiting this idea.  The exchangeable pairs part has 
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to do with a way of actually implementing Stein’s insight. It turns out that you can try to detect 
whether a curve governing a histogram like the coin-tossing one will satisfy this special 
differential equation by checking that the collection of outcomes of the experiment change in a 
very specific way when you change the experiment just a little.  For example, you could take 
each of your coin-tossing experiments, but throw away the last toss and do it again, and replot 
the histogram.  It will shift a little, and analyzing the particular way it shifts is a way to detect 
this differential equation at work.  This all probably sounds a little silly, because if you already 
have the histogram, you can tell whether it looks bell-shaped or not, right?  The thing is, often 
you don’t have the histogram (say, because it’s too hard to compute), but the amazing thing is 
that even if you can’t plot the histogram, you can sometimes still figure out some things about 
how it would look if you could plot it, like how it would change if you tweaked the experiment a 
little. 
 
Ken: Can you explain to us one of your own results? 
 
Elizabeth: One of my favorite 
results is a central limit theorem in 
the context of Riemannian geometry.  
Riemannian geometry is about the 
geometry of curved spaces—think of 
the surface of a sphere as opposed to 
the surface of a table.  On such a 
curved space, there are special 
functions (called “eigenfunctions of 
the Laplacian”) which encode a lot 
of information about the geometry of 
the space—they are related to the 
famous question “Can you hear the 
shape of a drum?”  In general, if you 
have a complicated function on a 
complicated space and you’re trying to get a handle on what it’s like, one interesting thing to 
think about is the distribution of the values it takes on; like the distribution of students’ grades on 
an exam, knowing about which values the function takes on and how often might give you 
meaningful information.  What I proved was a result about when the value distribution of one of 
these special functions looks like the bell-shaped curve.  In particular, I showed that if you pick 
one of these functions on a high-dimensional sphere at random, it will probably have a value-
distribution that looks like a bell-shaped curve.  I like the mix of fields here, the interaction 
between geometry and probability. 
 
Another reason I like this result is that it is an example of something I think is really interesting: 
the study of “high-dimensional phenomena”. Here, “high” means tending to infinity, so even a 
million dimensions isn’t considered high.  The idea of high dimensions is a little hard to wrap 
your head around; most of us are used to thinking in three dimensions, and that’s it. But one of 
the great things about math is that once you turn your intuition about the world (in this case, 
about three-dimensional space) into a mathematical framework, you can abstract and generalize 
it without needing to follow any kind of rules that you feel hampered by from the physical world; 
the only rules you need to follow are mathematical ones.  So you can start talking about space of 
arbitrarily many dimensions, and make sense of it. 

To be continued… 

I once saw a great description of a 
mathematician’s week: “Monday, 
tried to prove theorem.  Tuesday, 
tried to prove theorem.  
Wednesday, tried to prove 
theorem.  Thursday, tried to prove 
theorem.  Friday: theorem false.”  
So for one thing, I, like most 
mathematicians, am wrong a lot. 
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Approximating Real Numbers By Fractions 
 
by David E. Speyer 
 

As you may have heard, π is irrational. There is no fraction p/q which is equal to π. 
Nonetheless, there are some popular approximations people often use.  For quick and dirty work, 

π ≈ 3.  A much closer approximation is π ≈ 22/7 = 3.142857142857….  An even better one is 
355/113 = 3.14159292035398230088….  (I’m not writing out the full period of this one; it goes 
112 digits before repeating!) 

In what sense are these the 

best approximations to π? Why, 
for example, is 31/10 not an 
equally good candidate? How 
could we have found these 
numbers methodically—and found 

them for any real number like 13  

or 3 2 , not just for π? These are 
the questions we will try to answer 
in this article and its sequel. 

First of all, when is p/q a good approximation to π? The first answer one might think of 

is: When the difference between π and p/q is as small as possible. But, by that standard, we can 

always do better! The fraction 31/10 is closer to π  than 3 is, 314/100 is closer than 31/10, 
3141/1000 is closer than 31/10; we can always take more digits and get closer. What we want 

from an approximation is not just that p/q be close to π, but that p/q be close to π and p and q be 
small.  We’ll measure the size of p and q by p + q. 

This leads us to our first definition: 
 

Definition For any positive integer N, we will say that p/q is the best approximation to π 

of size N if, among all fractions r/s with r + s ≤ N, the fraction p/q is the closest to π. 
 

It turns out that it will clarify things later if we separate the notion of being a good upper 

approximation to π and a good lower approximation.  
 

Definition For any positive integer N, we will say that p/q is the best lower 

approximation to π of size N if, among all fractions r/s with r + s ≤ N and r/s < π, the fraction p/q 

is the closest to  π. We will say that P/Q is the best upper approximation to π of size N if, among 

all fractions r/s with r + s ≤ N and r/s > π, the fraction P/Q is the closest to π. 
 

For example, let’s take N = 30. There are 496 pairs (p, q) of nonnegative integers such 

that p + q ≤ 30 (can you see how to compute this?) Of course, we only want fractions that are in 
lowest terms, and we don’t want to consider p/0 (which isn’t even defined!). Throwing these out 

leaves 278 fractions p/q with p + q ≤ 30.  Here are the ones near π: 
 

8 19 11 3 22 19 16 13 23 10

3 7 4 1 7 6 5 4 7 3
π< < < < < < < < < <… … 

 

So 3/1 is a good lower approximation to π; the best one with p + q ≤ 30.  And 22/7 is a good 

upper approximation, again, the best with p + q ≤ 30. 
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We can try this for any value of N, and the bounds on π will get tighter and tighter as N 
increases. Here’s how it happens. We’ll start at N = 5: 
 

N Best Lower Approximation Best Upper Approximation 

5 3/1 4/1 
6 3/1 4/1 
7 3/1 4/1 
8 3/1 4/1 
9 3/1 7/2 
10 3/1 7/2 
11 3/1 7/2 
12 3/1 7/2 
13 3/1 10/3 
14 3/1 10/3 
15 3/1 10/3 
16 3/1 10/3 
17 3/1 13/4 
18 3/1 13/4 
19 3/1 13/4 
20 3/1 13/4 

 
As you can see, there is a lot of repetition, because going to a larger N doesn’t always 

help us find a better approximation. We’ll keep the table readable by listing only the rows where 
one of the approximations changes: 

 

N Best Lower Approximation Best Upper Approximation 

5 3/1 4/1 
9 3/1 7/2 
13 3/1 10/3 
17 3/1 13/4 
21 3/1 16/5 
25 3/1 19/6 
29 3/1 22/7 
33 25/8 22/7 
58 47/15 22/7 
91 69/22 22/7 

 
So far, we have followed our noses. We made a definition of what a good upper 

approximation and a good lower approximation are, we figured out how to compute them, and 
we computed a bunch of them. Now, it is a good time to look back at our data and see what we 
can observe. 

For many values of N, the lower approximation p/q and upper approximation P/Q don’t 
change as we increase N. Then, all of a sudden, a new number a/b pops up, which is between p/q 

and P/Q. If a/b is less than π, then a/b replaces the fraction p/q and, if a/b is greater than π, then 
a/b replaces P/Q. 
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We started with the bounds (3/1, 4/1). Then 7/2 landed in the middle of the interval, and 
replaces 4/1. Then our bounds were (3/1, 7/2), until 10/3 came along to be a better bound. Let’s 
rewrite our table to emphasize this picture of new fractions squeezing themselves in between the 
previous bounds: 

 

10

3
 → 

3 7
,

1 2

 
 
 

 
 22

7
 → 

3 19
,

1 6

 
 
 

 

13

4
 → 

3 10
,

1 3

 
 
 

 
 25

8
 → 

3 22
,

1 7

 
 
 

 

13

4
 → 

3 10
,

1 3

 
 
 

 
 47

15
 → 

25 22
,

8 7

 
 
 

 

16

5
 → 

3 13
,

1 4

 
 
 

 
 69

22
 → 

47 22
,

15 7

 
 
 

 

19

6
 → 

3 16
,

1 5

 
 
 

 
 ??

??
 → 

69 22
,

22 7

 
 
 

 

 
  And now, here is my challenge to you. 
 

Challenge What will be next fraction, to insert itself between 69/22 and 22/7? 
 
If you look at the data in this table, you should be able to figure it out without listing all 

the thousands of fractions with two digit numerator and denominator. 
I also want to point out a very nonobvious pattern in this data. You might wonder how 

tight our bounds for π are. If π is bounded between 
p

q
 and 

P

Q
, how small is 

P p

Q q
− ? Let’s try a 

few examples: 
 

4 3

1 1
−  = 

1

1
 

 19 3

6 1
−  = 

1

6
 

25 22

8 7
−  = 

1

56
 

 69 22

22 7
−  = 

1

154
 

 

Surprise! As far as our data goes, 
P p

Q q
−  always equals 

1

qQ
! 

Of course, the fact that the denominator is qQ isn’t a big surprise; that’s just the common 
denominator you have to put these fractions over in order to subtract them. But the numerator is 
a surprise. In that last computation, 

 

22 69 22 22 69 7 484 483 1

7 22 22 7 22 7 22 7

× − × −
− = = =

× × ×

. 

 
why do the 484 and 483 cancel like that? 
 Next time, we’ll resolve the challenge and explain the surprise. Unless you figure them 
out first! 
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Similarity, Part II: Triangles  

by Ken Fan 
edited by Jennifer Silva 
 
Last time, we decided to take a close look at the concept of similarity as applied to triangles.  
Recall that two figures are similar to each other if ratios of corresponding lengths are equal.  
Another way of putting it is to say that two figures are similar if either is a scale model of the 
other. 
 
What might a mathematician who has never thought about similarity and triangles do to begin to 
get an understanding of the topic?  What would you do? 
 
Of course, I can’t predict what you or any mathematician would do, so I’m going to write about 
what a mathematician might do to gain an understanding of similarity and triangles.  A 
mathematician might (in no particular order) do any of the following: 
 

1. Draw many triangles and carefully put them into groups of similar triangles.  
Then, look for patterns in the groups by asking: What do triangles in the same 
group have in common?  How do triangles in separate groups differ? 
 
2. Think more about the notion of similarity in general and relate each thought to 
triangles. 
 
3. Decide that there are other shapes worth looking at with respect to similarity 
that are easier to think about than triangles and study those instead.  Perhaps the 
mathematician is more comfortable pondering circles, rectangles, or angles 
instead of triangles.  After contemplating other shapes, perhaps thinking about 
triangles will be easier. 
 
4. Draw a triangle and then try to create other triangles that are similar to it.  
Carefully observe what the other triangles must have in common with the first 
triangle, as well as in what ways they can differ. 
 
5. Start by assuming something without concern for whether it is true or false and 
try to prove or disprove it.  For example, one might just assert, “All triangles are 
similar to each other!”  Then, one might try to prove that it is true or find a 
counterexample that shows it is false.  If it turns out to be false, one could then try 
to alter the statement and sculpt it into something that is true. 
 
6. Any combination of the above. 
 
7. Something else that isn’t even described above! 

 
Why don’t you give it a try?  Play with the concept of similarity and triangles and see what you 
can discover.  See if you can get to a level of understanding where you can give different criteria 
that establish that two triangles are or are not similar to each other.  Can you describe a set of 
triangles no two of which are similar to each other and that contains a triangle that will be similar 
to any triangle you can think of? When you’re ready, continue on to page 20. 
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Shoot for the Moon, Part I 
Written and illustrated by Julia Zimmerman 
 

She could almost see the man’s face—he was easier to see than the bunny, anyway, 
which she could only make out if she kind of tilted her head. And squinted. And if the bunny had 
one ear longer than the other. And... only three legs. 

“Clara, Earth to Clara, do you read me? Over.” 
Clara looked at Elizabeth, startled out of her reverie. The girls were in Elizabeth’s living 

room, surrounded by an array of notes, pencils, and textbooks; Clara was standing at the 
window, and Elizabeth was on the floor near her with a book on her lap, but she was looking up 
at Clara rather than at the pages, and wearing a mischievous grin. 

“Clara, do you even need to stare out of the window to see the moon? I mean, your head 
is already lost in outer space.” 

Clara snorted and tossed one of the sofa pillows at Elizabeth. “Okay, so I was a little 
distracted—but I think I’ve already gone over most of the stuff for tomorrow’s test. What are 
you reviewing now?” 

Elizabeth shrugged. “Diameter of the earth, names and order of the planets, types of 
meteors, distance to the moon—” 

“Wait,” Clara interjected, “I don’t remember that last one. What is it, again?” 
“About 384,403 kilometers, or 238,857 miles.” 

“I can remember that,” said Clara. “Say... how do you think they measured that in the 
first place?” 

Elizabeth looked at her innocently. “Don’t you remember hearing about this in class?” 
Clara shook her head and waited for Elizabeth to explain. “Well, it was hard—it took years to 
assemble, then they had to get the thing attached to the spaceship, and then they had to figure out 
how to unroll it as they went... it took eight astronauts just to unspool it!” 

Clara stared at her blankly. “... Unspool it? What are you talking about?” 
Elizabeth’s smile widened and she said, as sincerely as possible, “The giant tape 

measure.” 
There was a moment of silence, and then both girls burst into laughter. The image was a 

ridiculous one—and, of course, an unlikely one.  
Clara wondered how the distance from Earth to the moon had actually been measured... 

Had the process been complicated? Did somebody have to invent special equipment? Was there 
an experiment? Elizabeth took up her book and returned to studying, but Clara’s thoughts 
continued to wander—could you fly to the moon and back and time how long it took to figure 
out the distance involved? But then... the equation 

 
distance = speed × time 

 
required that the spaceship fly at constant speed, or that the speed be 
measured accurately at all times. The former was impossible, and the latter 
extremely challenging and impractical... 

Elizabeth looked over at Clara and sighed. She picked up the sofa 
pillow and put it back on the couch, and then started walking towards the 
den, where the computer was. “All right, I’m curious, too—let’s see if the 
Internet can tell us how they did it.” 
  “Clara, I found something!” Elizabeth was staring excitedly at the 
computer screen, gesturing Clara over. “Here’s a brief description of an 
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experiment run here in the US to measure the distance from the Earth to the moon: it says here 
that... an observatory sent out pulses of light from a laser beam, and this light reflected off of an 
array of mirrors known as corner reflectors... and when this light hit a target at the observatory 
back on Earth, the scientists timed how long it had taken for the light to get from the laser to the 
moon and then back to Earth. They used the equation distance = speed × time to calculate it. 

Since the light went to the moon and back, and they only wanted half that distance, 
they divided the end result by two. The equation relies on the relationship between 
constant speed, time, and distance. 

“The time it takes for light to get from Earth to the moon is about 2.5 seconds, 
and since light has a constant speed, c (about 186,282 miles per second1), they could 
easily compute the distance by plugging in the known quantities—time and speed—
and solving for the unknown quantity—distance.” 

“Well, that doesn’t sound too complicated...” said Clara. 
Elizabeth nodded. “I’m really curious about that stuff about ‘corner reflectors,’ 

though! I’ve never heard of those before, have you?” 
Clara nudged Elizabeth with her elbow. “I guess I’m not the only one who’s 

been distracted from studying, am I, Liz?” 
Elizabeth sat down next to Clara, scooting her over so they could both fit in 

front of the computer. “Fine, fine. But now that we know about some of the 
experiment we can’t just stop reading about it! I mean, it makes sense to finish what 
we’ve started, right?” 

“Oh, definitely. Absolutely. No other option.” 
“I know you’re making fun of me.” 
“Would I do that? Me??” 
Elizabeth shot Clara a look to let her know she was not fooled. “Corner. Reflectors. Look 

it up.” 
“Yes, ma’am! Corner reflectors, here we come...” 

  
“Okay, Elizabeth—here’s some information about the mirror arrays placed on the moon, 

the corner reflectors... A corner reflector consists of three (or sometimes two) mirrors, attached 
like the corner of a cube, so that each is perpendicular to the others. Oh, and there’s a picture…”  

Elizabeth looked at the diagram and, reading the article next to it, said, “So, it looks like 
corner reflectors were used because they have the special property that light beams exiting, or 
bouncing off, the corner reflector travel in a path parallel to the path on which they came into, or 
first approached, the corner reflector.” 

Clara nodded in agreement. “Yes, and this property results from the geometric 
arrangement of the mirrors in the corner reflectors. It says here the underlying principle has been 
known since the time of ancient Greece... 

“When a light beam reflects off of a surface, the angle that the beam of light makes with 
the surface before it hits is the same as the angle that the beam will make with the surface after it 
hits, as light travels away from the surface. This website says that same idea this way: ‘The angle 
of incidence is equal to the angle of reflection.’” 

“Hmmm... I’m going to draw a diagram,” said Elizabeth. 

                                                 
1 The speed at which light travels changes when the light beam passes from one medium to another; it is inversely 
proportional to the index of refraction of the medium. The speed vmedium at which light travels through a given 
medium is equal to the fastest speed light can travel, c, divided by the index of refraction of the medium, nmedium , 
that is, vmedium = c/nmedium. The index of refraction in a vacuum is 1. Space is very similar to a vacuum, so vspace is very 
close to c. Air has an index of refraction of about 1.0003, so vair is slightly less than vspace. The speed of light can only 
change when traveling from one medium to another. 
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Meanwhile, Clara continued to follow links. She found one that gave a little of the history 
and read out loud to Elizabeth: “The ancient Greeks knew a lot about optics (the behavior of 
streams of light) because optics involves a lot of geometry—something at which the ancient 
Greeks excelled. Aristotle first stated the 
law of reflection: that the path a stream 
of light takes will be the same regardless 
of which “end” you take as the 
beginning. It then follows that the angle 
of incidence is equal to the angle of 
reflection, since if you reverse the 
direction of the light but keep the same 
path, the angle of incidence and angle of 
reflection switch places by definition. 
Does that match with what you drew in 
your diagram, Elizabeth?” 

“Yep—so far, so good.” 
“Hmmm. So, why wouldn’t they use a regular mirror for the experiment? Why did they 

choose corner mirrors?” 
Elizabeth studied her diagram. “Well, the special thing about corner mirrors seems to be 

related to the angles 
of incidence and 
reflection. The light 
hits one side of the 
array and bounces 
around until it leaves 
the array along a path 
parallel to the one by 
which it came in... 
What happens to the 
angles of incidence 
and reflection in the 
case of a regular 
mirror?” Elizabeth 
pictured several 
beams of light hitting 
the two types of 
mirror. 

 “Want to see if your diagram reflects what happens if we make our own corner mirror?” 
asked Clara. 

“Sure, Clara, hang on—I think there’s a laser pointer in my brother’s room...” Elizabeth 
got up to get the laser, but Clara grabbed her arm. 

“Wait! Did you get it?? I said ‘reflects’—if the diagram ‘reflects’ what will happen!” 
Elizabeth rolled her eyes. “Your razor-sharp wit is as cutting as ever, Clara.” 
Clara giggled. “Okay, go get the laser. I’m going to find some mirrors. Where’s the screw 

driver? I’m going to take the little medicine cabinet doors down from the bathroom.” 
“It’s in the left kitchen drawer—wait, what are you going to do?? Wait a minute, Clara!” 

Elizabeth ran after her friend. “I don’t know if that’s a good idea!” 
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The Experiment 

 
All of their materials assembled, Elizabeth and Clara were ready to try out the corner 

reflector array, using the reflector Clara had taped together from the doors of the medicine 
cabinet in Elizabeth’s bathroom. Luckily, Elizabeth’s house had a pretty long hallway... 

They turned out all the lights in the hall and they put the corner reflector on a chair at the 
far end. Elizabeth held a paper plate labeled ‘OBSERVATORY TARGET’, and Clara held the 
laser pointer. 

Clara shone it at the array—the red beam of light appeared as a dot on the wall, and 
Elizabeth moved her arm until the dot was on the plate.  Whenever Clara moved the laser 
pointer, as long as she kept it trained on the corner reflector, Elizabeth found that all she had to 
do to keep the beam on the target was hold the target approximately behind the laser pointer.  If 
Clara moved right, Elizabeth had to move the target right, and if Clara moved left, Elizabeth had 
to move the target left. 

Next, Elizabeth and Clara hauled out a wall-mirror that usually hung on the back of 
Elizabeth’s bedroom door. They moved the corner reflector and placed this mirror sideways on 
the chair so that its back rested flush against the back of the chair. 

When they shone the laser at this new set-up, they encountered something unexpected: 
they had thought, based on what they’d read, that it would be obviously “harder” or more 
complicated to get the light to hit the target when they used a regular mirror than it had been 
when they’d used a corner reflector. However, they found that it was just as easy to catch the 
light beam with the target.  If Clara did move the laser pointer a lot, Elizabeth found that all she 
had to do was move the target in the opposite direction from the laser pointer: if Clara moved the 
laser pointer to the left, Elizabeth had to move the target to the right. 

They tried the corner reflector again—but found that keeping the beam on the target was 
no easier than it had been with the regular mirror. They wondered if they were doing something 
wrong, but the laser seemed to be working, the regular mirror seemed to be reasonably flat, and 
their corner reflector was at nice 90 degree angles. They couldn’t think of anything else to check, 
so they decided to believe their rather surprising results.  

“Even though the experiment turned out a little funny, it is a pretty good corner reflector, 
isn’t it?” Clara asked proudly. 

“I can’t believe you took apart the cabinet...” groaned Elizabeth. “I sure hope you know 
how to put those doors back on!” 

“Relax, Liz,” grinned Clara. “You just have to screw them back on. No big deal.” 
“No big deal...” repeated Elizabeth, skeptically. “Why am I worried whenever I hear you 

use that phrase?” 
Clara smiled at her. “I have no idea.” 

         The girls had put back most of their materials, and Clara was about to begin removing tape 
from her corner reflector. She handed the laser pointer to Elizabeth to replace in her brother’s 
room. Elizabeth accepted it absentmindedly; she seemed to be contemplating something. 

“You know what I have no idea about?” Elizabeth was staring at her reflection in the 
corner mirror. 

Clara waited expectantly. 
“...Why did they use a corner reflector? It was just as easy to use the regular mirror as it 

was to use the corner mirror.” Elizabeth’s upside-down face looked back at her, puzzled. 
Clara picked up Elizabeth’s diagram and studied it briefly. “I don’t know,” she said, “but 

I’m curious, too.” She set the diagram down and reached again for her corner reflector, planning 
to disassemble it. 

“Wait!” Elizabeth stopped her. “I have a feeling we may need that again...” 
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Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 

turns, believe many incorrect facts, and encounter many mysteries. Out of  these twists and turns comes 

the reward of truth and understanding. However, if you look at math books, you might get the impression 

that mathematicians rarely err. In this column, Anna gives us a peek into her mathematical process of 

discovery, bravely allowing us to watch even as she stumbles. 

By Anna B. 

During the holidays, Anna found herself in downtown Boston admiring the John Hancock tower, 
the tallest building in New England.  Near the corner of Boylston and Dartmouth, she noted that 
her line of sight to the top of the tower made a 59° angle to horizontal.  When she walked 200 
feet closer toward the building, she found that the angle changed to about 71°.  Later, she 
wondered if she could figure out how high the tower stands from this information alone. 
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by Ken Fan 

 

 

 
Fractions 
 
Fraction notation is just another way to express the concept of division. 
 

 
 

A fraction. 
 
The fraction above means “a divided by b.”  Here are other ways of expressing the same thing: 
 

a

b
 = a ÷ b = a/b = a : b 

 
With fractions, there are implied parentheses around both the numerator and denominator: 
 

21 3

2 6

+

×

 = (21 + 3) ÷ (2 × 6) = 24 ÷ 12 = 2. 

 
But, 
 

21 3

2 6

+

×

 ≠ 21 + 3 ÷ 2 × 6 = 21 + 9 = 30. 

 
Because division by zero is undefined, no meaning is attached to a fraction with a zero in the 
denominator. 
 
Sometimes, the word “fraction” specifically refers to a fraction where the numerator and 
denominator are both integers.  Such fractions are also known as rational numbers, and here’s a 
quick problem to show how useful rational numbers can be: Three apple pies have to be divided 
evenly among seven people.  How much apple pie does each person get?  Answer using a 
rational number in the form of a fraction, using a percentage, and using a decimal number. 
Which answer do you find easiest to work with?

Through time, some ways to notate mathematical ideas have become standard.  Learning the 
notational conventions is important in order to be able to communicate.  The best way to learn 
new notation is the same way we learned the alphabet: repetition.  Practice makes perfect! 
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Just for Kicks 
By Katherine Sanden 
 

I recently bought a colorful pair of 
sneakers– apparently sneakers like these are 
called “kicks.”  I get excited every time I 
wear them in public.  What is it that makes 
these shoes so much fun for me?  It’s partly 
the bright colors.  But even more than that, 
it’s the feeling of being unique.   I like to 
think I’m the only person around who wears 
these shoes.   
 I would do a double-take if I were 
walking down the street and I saw someone 
wearing the exact same kicks.  “What are 
the odds?!” I would exclaim. 
 This got me thinking… what are the 
odds? 

Let’s consider a simple scenario.  Imagine that three friends go to a store that has four 
choices of shoes (red shoes, blue shoes, green shoes, and black shoes).  What is the probability 
that two (or more) of them pick the same color shoes? 

To answer this question, we’ll draw a picture known as a probability tree.  A probability 
tree is a picture of all possible outcomes, connected by lines, which we call “branches”.  This 
idea is best illustrated by an example.   
 
Example of a probability tree 

 
Say we have a fair coin and we flip it twice.  We will use a probability tree to 

compute the probability that the coin lands on “heads” both times.   
The first time we flip the coin, the two possible outcomes are “heads” 

and “tails”.  So we draw those two outcomes as two “branches” growing out 
of the “First coin flip” (see the figure1 at left). 

Now we flip again.  The two possibilities of 
“heads” or “tails” branch out of each of our 
first outcome possibilities (at right). 

How do we interpret this tree?  You 
can think of it like a board game.   You start 
at the “First coin flip” and flip a coin.  If you 
get “heads” you move up along the branch to “heads”.  

If you get “tails” you move along the branch to “tails”.   Then you 
flip the coin again, and move accordingly.  For instance, the outcome of getting “tails” 
followed by “heads” would be represented by the red path drawn in our probability tree. 

Notice that there are four “leaves” of the tree; in other words, there are four possible 
final outcomes:  (1) “heads” both times, (2) “heads” followed by “tails”, (3) “tails” 
followed by “heads”, and (4) “tails” both times.  Since we’re dealing with a fair coin, there 
is an equal likelihood of ending up at any of the four final outcomes. 

                                                 
1 Quarter-dollar coin images courtesy of the United States Mint 
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Notice that these 
assumptions may not 
be true in real life!   
As we go through the 
math, see if you can 
figure out where each 
assumption is used. 

When each outcome is equally likely, we can compute the probability of a particular 
outcome by counting the number of such outcomes and dividing by the number of all possible 
outcomes.  From our tree, we can see that there is only one way to get two heads and four total 
possible outcomes.  Thus we can read off of the tree that the probability of getting “heads” both 

times is 
1

4
. 

Using this tree, we can also read off other probabilities.  For example, what is the 
probability that at least one of the coins is “tails”?  From the tree, we can see that there are 3 final 

outcomes in which at least one “tail” is flipped.  So we can see that the probability is 
3

4
. 

 Now let’s take this idea of a probability tree, and apply it to the shoe situation.  We have 
three friends, let’s call them A, B, and C, going to a store that offers four choices of shoes (red 
shoes, blue shoes, green shoes, and black shoes).  What is the probability that two (or more) of 
them pick the same color shoes? 

Let’s make some simplifying assumptions: 
 

1. They are equally likely to purchase any shoe color (this 
is similar to our assumption that the coin was a fair coin). 

 
2. No one can see what others are buying (i.e. no one’s 

choice is influenced by anyone else’s choice). 
 
3. There is an infinite supply of each type of shoe, meaning 

we’ll never run into the case where someone has bought 
the only pair left. 

 
Now, let A pick a pair of shoes first.  She can pick the red shoes, blue shoes, green shoes, or 
black shoes, giving us four different possibilities.  Thus begins our tree (see the following page). 
The tree shows the various possibilities after each friend has picked a shoe.  There are 64 leaves 
on the right side of the diagram representing each of the 64 possible ways 3 friends can pick 
shoes from a choice of 4 colors.  For instance, the red dot at the top represents the outcome in 
which A, B, and C all choose red shoes.  The black dot at the bottom represents the outcome in 
which A, B, and C all choose black shoes.  
 

I put a star next to each outcome in which two or more friends chose the same colored 
shoes.  Of the 64 total possible outcomes, there are 40 starred ones.  Because all the different 
outcomes are equally likely, the probability that two or more friends choose the same colored 

shoes is 
40

64
 or 

5

8
.  That means it’s more likely than not that if the friends pick according to our 

assumptions, at least two of them will end up with the same colored shoes!  If they don’t want 
that to happen, they better coordinate their shopping efforts. 

Notice that when I drew the tree, I had A pick first, followed by B, then C.   In this 
situation, does it matter who picks first?  Imagine you drew a tree where B picks first, followed 
by A, then C.  Would you get the same result? 

Can you use this tree to determine the probability that all three friends pick the same 
shoes?  How about the probability that all three friends pick different shoes?  What is the 
probability that exactly two of the friends pick the same colored shoes? 
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Take it to your world 

 

Suppose we have three different 
shoe colors instead of four.  Draw a tree to 
represent all the possible outcomes that can 
occur when 3 friends choose from 3 
different colors.  What is the probability that 
two or more of them will end up picking the 
same colored shoes?  What is the probability 
that they all pick different colored shoes?  
What is the probability that they all end up 
picking the same colored shoes? 

What if we wanted to do this 
problem for a store with 100 shoes?  The 
tree would be huge!  There would be 100 
branches in the first generation (the layer 
where A picks her shoes).  There would be a 
total of 10,000 branches in the second 
generation (where B picks her shoes).  How 
many branches would there be in the third 
generation (where C picks her shoes)? It 
wouldn’t really be practical to actually draw 
out the whole tree.  In order to solve the 
problem with so many shoes, you have to 
start noticing patterns in these trees and find 
a less direct way of counting outcomes.  Can 
you figure out what the probability is that 
three friends all pick different shoes in a 
store that offers 100 different kinds of 
shoes? 

Can you find a formula which gives 
the probability that 3 friends all choose 
different shoes in a store that offers N 
different shoe types (under the same 
assumptions that we made in our worked out 
example)? 
 

 
 
 
 

A special message from Katy Bold: 
 

It has been a wonderful opportunity to write for the 
Girls Angle Bulletin. I am excited to let you know that Kat 
Sanden is taking over the Math In Your World column. Kat 
was a student in my math class five years ago at Princeton, 
and she always comes up with fun ways to think about math 
(she once wrote a comic about the Pythagorean theorem – it 
made me laugh out loud). I look forward to her columns and 
also to watching Girls’ Angle continue to grow. 
 

                                                                              - Katy 
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Similarity, Part II: Triangles 
 
Continued from page 9. 
 
What have you convinced yourself about triangles and similarity? 
 
How does what you found compare to the following facts? 
 
1. Two triangles are similar if and only if they have the same three angles. 
 
2. Two triangles are similar if and only if the sides of one can be matched up with the sides of the 
other in such a way that each side of one is matched with a different side of the other and the 
three ratios formed by dividing the length of a side in the first triangle by the length of the 
matching side in the other triangle are all equal. 
 
Did you also notice the general fact that similar angles have equal measure? 
 
I won’t prove these facts here, but if you have proven them to yourself, that’s great! The reason I 
won’t prove them now is that I have not laid the foundation to be able to actually prove anything 
about similarity and triangles yet.  In order to do this, I’d first have to provide a definition for 
triangle, which I haven’t done. 
 
If you’re curious to see one way the first two facts listed above can be proven, take a look at 
Euclid’s Elements.  Specifically, read propositions 4 and 5 in Book VI.  Before you read them, 
just remember that an actual proof of these facts will necessarily involve writing that is more 
detailed and precise.  Also, keep in mind that there are other ways of defining the notions of 
triangle and similarity, so there can be many different proofs of these facts.  In fact, a modern 
mathematician’s proof of these facts will likely look quite different from the one Euclid 
published.  After all, Euclid’s proof was written over two thousand years ago! 
 
Let’s see if we can describe a set of triangles, none of whose members are similar to each other, 
but which contains a representative of every “similarity class” of triangles.  In other words, for 
any triangle you can dream up, this set will contain one, and exactly one, triangle that is similar 
to it. 
 
I’ll try to use the first fact listed above about angles.  Consider a triangle.  Let’s call the measures 
of the three angles of the triangle in degrees A, B, and C.  Any triangle which has angles that 
measure A, B, and C degrees, according to the first fact listed above, will be similar to this 
triangle.  So if we can list all angle triples (A, B, C) which can be the angles of a triangle exactly 
once, that would accomplish our goal. 
 
We have to be careful not to list a triple twice.  For example, (30, 60, 90) (which corresponds to 
a triangle with angles that measure 30°, 60°, and 90°) would represent the same triple as (90, 30, 
60).  To prevent this kind of double listing for the task at hand, we will insist on writing the angle 
measures in order from smallest to largest. 
 
Recall that the sum of the angles of a triangle is always equal to 180°, so A + B + C = 180.  This 
means that once two angles are known, the other is determined as well.  So we really only have 
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the flexibility to specify two angle measures in a triangle.  I’ll concentrate on specifying the 
smaller two of the three angles. 
 
The smallest angle of a triangle cannot exceed 60°; if it did, then the sum of the three angles 
would have to be greater than 3(60°) = 180°, which cannot happen in a triangle.  It is possible for 
the smallest angle to be exactly 60°, as this actually happens in an equilateral triangle.  Also, the 
smallest angle of a triangle must be greater than 0°. 
 

So, if (A, B, C) is a triple of angle measures with A ≤ B ≤ C, we must have 
 

0 < A ≤ 60. 
 
If we fix A, what are the possibilities for B? 
 

Well, we must observe our constraint that A ≤ B.  But we must also choose B so that C (which 
equals 180 – A – B) is greater than or equal to B.  So B must satisfy, 
 

A ≤ B ≤ 180 – A – B. 
 
Can you show that this is the 

same as A ≤ B ≤ 90 – 
2

A
? 

 
We can summarize all of this 
information in the picture at 
right.  Because C is determined 
once A and B are specified, the 
picture only shows two axes, the 
A axis and the B axis.  Each point 
in the shaded region (or on the 
boundary labeled “Isosceles”) 
corresponds to a similarity class 
of triangles.  By the way, why is 
the left edge of the diagram not 
part of the classification space? 
 
If you pick a point in the 
classification space, can you 
picture in your mind’s eye a 
triangle in the represented 
similarity class?  If you move the 
point around, can you imagine 
the representative triangle 
deforming accordingly? 
 
Next time, we’ll focus just on the 
line that represents right 
triangles! 
 

 
An abstract picture of similarity classes of triangles.  Every 
triangle has angle measures corresponding to some point in 
the reddish triangle.  Notice that the isosceles triangles sit 
along the boundary and the line representing right triangles 
splits the region in two: the obtuse and acute triangles. 
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by Cammie Smith Barnes 
 

Teaching mathematics at a very small liberal arts college for women is both a challenge 
and a joy.  Over the course of a semester, I get to know my students well as I spend a lot of time 
working with many of them individually.  These students work through exercises with me one-
on-one, and I have the opportunity to see how each of them thinks through the solution to a 
problem.  This gives me insight into why certain concepts initially perplex many students, and 
helps me guide them to a clear understanding of the ideas behind the math. 
 One particularly common misconception that I have seen made by students in courses 
ranging from precalculus to abstract algebra is something I will call “confusing exponentiation 
with multiplication.”  I’ve seen this error in two forms.  Occasionally a student will actually 
switch an exponent to a factor, as in the incorrect equation: 
 

23 = 2 · 3. 
 
The above equation cannot hold true, since 23 is 8, whereas 2 · 3 is 6. 
 The more prevalent and persistent form of the error, however, is slightly more abstract.  
Exponents—which I will discuss shortly, as an introduction for those who haven’t yet seen them, 
and as a review for those who have—have many rules that make intuitive sense, once one has a 
chance to grasp them concretely and then to generalize from there. When a student has not yet 
had the opportunity to truly understand the concepts behind the rules, however, she may confuse 
taking a number that already has an exponent to yet another exponent with taking the product of 

a number to one exponent times that same number to another 
exponent.  In other words, I often see the following mistake: 
 

(xn)m =  xn
x

m, 
 
also frequently encountered in the equivalent form 
 

(xn)m = xn + m, 
 
for some numbers or variables x, n, and m. 

To see why these equations are false in general, let us turn to my promised introduction 
to exponents.  First, what does exponentiation mean?   
 Suppose that Julia receives a birthday present, wrapped neatly in a cubic box, a few days 
before she is allowed to open the gift.  In trying to investigate what the box could hold, she 
measures the length of one side of the cube.  Suppose that this length happens to be 10 inches.  
Then, since the length of a face of the cube equals its width, the width will also be 10 inches; 
thus the area of the face is 10 · 10 = 100 square inches. 
 We say that 10 · 10 is “ten squared,” and we use a mathematical shorthand called an 
exponent to record that we’re multiplying two factors of 10 with each other.  That is, we define 
 

102 = 10 · 10. 
 
The 10 is called the base and is the number being multiplied with itself.  The small 2 in the upper 
right corner of the left-hand side of the equation is called the exponent. 
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Now, what if Julia also wants to find the volume of the box, to see whether it might be 
big enough to hold the gift for which she hopes?  She can calculate the volume by multiplying 
the length times the width times the height of the box, which in the case of a cube are all equal to 
each other.  So for Julia’s present, the volume is 10 · 10 · 10 = 1000 cubic inches.  So Julia’s 
present could hold many of her favorite chocolate truffles (since each is a little bigger than a 
cubic inch in size)! 
 In exponent form, we would write: 
 

103 = 10 · 10 · 10 = 1000, 
 
because we are multiplying three factors of 10 with each other.  The “103” is stated as “ten 
cubed.” 

We can generalize this idea to other exponents.  For instance, we can write 
 

104 =  10 · 10 · 10 · 10 or 105 = 10 · 10 · 10 · 10 · 10, 
 
which we can say out loud as “ten to the fourth power” and “ten to the fifth power,” respectively. 
 We’ll also define 101 = 10 and 100 = 1.  Moreover, we can use any base, not just 10.  For 
instance, consider 23, as referred to above.  We now know that 23 = 2 · 2 · 2, which is indeed 8 
rather than 6.  You can multiply by grouping together factors, like this: (2 · 2) · 2 = 4 · 2 = 8. We 
can also see that 32 = 3 · 3 = 9 and that 
 

34 = 3 · 3 · 3 · 3 = (3 · 3)(3 · 3) = 9 · 9 = 81. 
 
More abstractly, 
 

x
n = x · x · · · x, 

 
where there are n factors of x on the right side. 
 Now let us turn to a couple of beautiful rules that exponents obey.  If we take the time to 
learn these rules, it makes working with exponents a lot easier. 
 
 1. Product Rule: Multiplication with the same base becomes addition in the exponents.   
 

For example, this means that 
 

42 · 43 = 42 + 3 = 45. 
 

Let’s see why this is true. We can write 42 as 4 · 4 and 43 as 4 · 4 · 4.  Therefore, 
 

42 · 43 = (4 · 4)(4 · 4 · 4) = 4 · 4 · 4 · 4 · 4 = 45, 
 
because we are multiplying two factors of 4 with another three factors of 4, making a 
total of five factors of 4 in all. 
  
As another example, note that 
 

54 · 56 = (5 · 5 · 5 · 5)(5 · 5 · 5 · 5 · 5 · 5) = 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 · 5 = 510. 
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The abstract form of this rule is often written as: 
 

x
n
x

m = xn + m, 
 
where x, n, and m are some numbers or variables. 

 
 2. Power Rule: Repeated exponentiation becomes multiplication in the exponents. 
 

For instance, suppose we want to calculate (42)3, or in other words that we want to first 
square 4, then cube the result.  We can again rewrite 42 as 4 · 4, so that 
 

(42)3 = (4 · 4)3. 
 
But then, cubing (4 · 4) just means multiplying three factors (4 · 4) with each other.  
That is, 
 

(42)3 = (4 · 4)3 = (4 · 4) (4 · 4) (4 · 4) = 4 · 4 · 4 · 4 · 4 · 4 = 46. 
 
Here we see that there are six factors of 4 in total.  Note that 2 · 3 = 6.  This is not a 
coincidence!  In general, the rule is: 
 

(xn)m = xm · n, 
  
where x, n, and m are each numbers or variables. 

 
So now, using these two rules, we see in particular that (42)3 = 42 · 3 = 46, whereas 42 · 43 = 

42 + 3 = 45.   Thus the equation 
 

(42)3 = 42 + 3 
 
is simply not true!  Be careful not to mix up these two rules of exponentiation.  Hence, in 
general, 
 

(xn)m = xn + m 
 
is not true, either! 

Now try your hand at simplifying expressions with exponents using the following 
exercises. Match each expression on the left with its equivalent expression on the right.  The 
answers can be found on page 29. 

Left  Right 

(1) 25  (a) 27 
(2) 33  (b) x

8 

(3) 43  (c) 32 
(4) 36 · 35  (d) x

15 

(5) (36)5  (e) 64 
(6) x

5
x

3  (f) 330 
(7) (x5)3  (g) 311 

Edited by Jennifer Silva 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  They are far from being 
complete.  In these notes, we include some of the things that you can try or think about at home 
or with friends.  We also include some highlights and some elaborations on meet material.  Less 
than 5% of what happens at the club is revealed here. 
 

Session 7 – Meet 9 – November 4, 2010 
 
Mentors: Keren Gu, Samantha Hagerman, Ryan Heffrin, 
                Jennifer Melot, Rediet Tesfaye, Bianca Viray 
 
Special Visitor: Valerie Gordeski, Raytheon 
 
Valerie talked about the mathematics behind sound.  She used a tuning fork and a bowl of water 
so that the sound waves could be visualized in the water.  She then showed them how the 
frequency and amplitude of the sound wave affects the note that is produced.  Then, the girls got 
to sing into a computer and see the sound waves that they produced with their own voices. 
 
Bianca worked with Sophia on the number of divisors of a number.  See Member’s Thoughts on 
page 28. 
 
Some members, who were working with fractions, wondered why they were important to learn.  
See page 16. 
 
Other members solved combinatorics problems whose solutions made heavy use of products of 
consecutive integers. 
 

Session 7 – Meet 10 – November 18, 2010 
 
Mentors: Jennifer Balakrishnan, Samantha Hagerman, Liz Simon, Rediet Tesfaye, Bianca Viray 
 
Special Visitors: Anita Suhanin and Noam Weinstein 
 
A number of girls worked to earn brownie points by solving problems related to Tigran 
Ishkhanov and Grace Lyo’s article, Brownie Points, in the last issue of this Bulletin.  Here are 
two of the games that had to be analyzed: 
 
Game 1. There are 4 boxes.  One of the boxes contains 100 brownie points and the others contain 
nothing.  You can open as many boxes as you wish, one at a time, but you must pay P brownie 
points to open a box.  How much should P be?  (The amount P is fixed for the whole game.) 
 
Game 2.  I roll a 6-sided die.  You can take the number rolled or opt to roll a second die.  But if 
you roll a second die, you must accept whatever number you get on the second roll.  The number 
of brownie points you get is 10 times the number you end up with. 
 
(To understand what is supposed to be determined, please see Tigran and Grace’s article.) 
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Here’s a solution to the first game.  There are four possibilities.  The box with the 100 brownie 
points is either in the first, second, third, or fourth box.  Each of these possibilities is equally 
likely.  Let’s consider what would happen in each of these four cases. 
 

…first box, then the player would pay P to open it, and discover the 100 
points and stop, earning 100 – P brownie points. 

…second box, then the player would pay P to open the first box and find it 
empty.  The player would have to decide whether to open a second box. The 
cost P to open a box is designed so that the game is fair with 4 boxes.  
However, now, with the first box opened, the player faces only 3 remaining 
boxes, one of which contains the 100 brownie points.  This would be just like 
the player facing 4 remaining boxes but knowing that the 100 brownie points 
was in one of the first 3 boxes, which is a better situation for the player than 
facing 4 remaining boxes and not having any idea where the brownie points 
could be.  Therefore, it favors the player to keep on opening boxes.  So the 
player will pay another P to open the second box, find the 100 brownie 
points and walk away with 100 – 2P brownie points. 

…third box, then the player, by similar reasoning as above, would continue 
opening boxes until the third box is opened and walk away with 100 – 3P 
brownie points. 

If the 100 points 
are in the… 

…fourth box, then again, the player will end up opening all 4 boxes and walk 
away with 100 – 4P brownie points. 

 
If the player plays the game N times, where N is very large, then, on average, the player will 
make 
 

((100 ) (100 2 ) (100 3 ) (100 4 ))
4

N
P P P P− + − + − + −  

 
brownie points.  This simplifies to (100 – 2.5P)N brownie points, or, 100 – 2.5P brownie points 
on average per game.  If P is a fair price, the player will neither gain nor lose brownie points by 
playing this game over and over, so the fair price satisfies 100 – 2.5P = 0.  Solving for P, we find 
that P = 40. 
 
After the break, special guests Anita Suhanin and Noam Weinstein performed a math song that 
Noam composed.  Both are singer/songwriters.  Noam is based in New York City and Anita is 
based in Boston.  Listen to more of their music online by searching for their names. 
 
Girls’ Angle thanks Petsi Pies for giving us a deep discount on their yummy brownies!  In the 
past, Petsi Pies has given out free or discounted pies on National Pi Day to those who are able to 

memorize enough of the decimal digits of π.  Hopefully they’ll do this again on March 14! 
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Session 7 – Meet 11 – December 2, 2010 
 
Mentors: Jennifer Balakrishnan, Keren Gu, Samantha Hagerman, 
               Ryan Heffrin, Rediet Tesfaye, Bianca Viray 
 
Special Visitor: Lenore Cowen, Tufts University 
 
Lenore is a professor of computer science.  She talked about a problem in graph theory that is 
related to a problem in yeast genetics.  Graph theory is a branch of mathematics that studies dots 
that are connected by paths, much like a finished “Connect-The-Dots” drawing.  The dots are 
called nodes and the paths are called edges.  In Lenore’s problem, she colored the nodes of the 
graph black or white.  She called an edge that connected nodes of the same color a 
monochromatic edge and an edge that connected nodes of opposite color a dichromatic edge. 
 
The problem she posed was: Given a graph, can one color the nodes so that there are always at 
least as many dichromatic edges as monochromatic edges? 
 
After the break, some girls continued work on combinatorial problems.  If you had trouble with 
those problems, this issue’s Math In Your World column on page 17 discusses a simple tool that 
can be helpful in organizing and solving such problems. 
 

Session 7 – Meet 12 – December 9, 2010 
 
Mentors: Keren Gu, Ariana Mann, Liz Simon, Rediet Tesfaye 
 
We held our traditional end-of-session Treasure Hunt! In this hunt, every girl made an important 
contribution.  Liz and Keren both played roles as characters in the hunt.  Keren kept a secret 

number which Molly, using only yes/no questions, managed to figure out.  It turned out to be 2π.  
Meanwhile, Charlotte defeated Liz four times in head-to-head games of Math Tag to earn a clue 
plus 3 additional “strikes” for the girls. 
 
Here’s one of the problems from the Treasure Hunt.  It was solved by Rowena. 
 

Ellen’s phone rang.  It was Ryan.  She picked up, “Hey Ryan!” 
“Ellen, let’s meet up!” 
“Where?” 
“How about the Pizza Parlor? It’s straight ahead of me, 300 meters.” 
“Hmmm, the Pizza Parlor?  I’d have to walk forward 240 meters, turn ninety 

degrees right, and then walk another 500 meters.  Why don’t we meet at the bakery?  
It’s a little closer for me…just 640 meters straight ahead.” 

“The bakery?  I’d have to walk forward 320 meters, turn ninety degrees to the 
left, and then walk another 640 meters to get there!  That’s even farther than you’d 
have to walk to get to the Pizza Parlor!” 

“Hmmm…actually, it’ll be faster if I just walk to where you are now…so just 
hold tight…be there soon…bye!” 

 
How many meters separate Ellen and Ryan? 

 
Working together, the girls managed to unlock the present with just six minutes to spare!  
Congratulations to all and we hope to see all of you when Girls’ Angle resumes on January 27.
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Member’s Thoughts 
 

On the Number of Divisors of a Number 
 
How many divisors does a number have? 
 
This session, Sophia thought a lot about this 
question. 
 
To investigate, the first thing she did was 
make a nice table of data.  Working out lots 
of examples and looking for patterns is a 
common problem solving technique that 
many mathematicians employ frequently. 
 
With such nice data, one can start looking 
for patterns and start making conjectures. 
 
When are there exactly 2 divisors? When 
are there exactly 3 divisors? When is the 
number of divisors odd?  Is there a pattern 
between the number of divisors of n and of 
n + 1?  How about between n and 2n? 
 
Eventually, Sophia figured out a formula 
that expresses the number of divisors in 
terms of the exponents that appear in the 
number’s prime factorization. 
 
Her knowledge came in really handy at the 
end-of-session Treasure Hunt which asked:  
How many odd numbers less than 1000 are 

there with exactly 12 divisors? 
 
Play with this concept.  Test your own understanding of it by asking yourself questions and 
seeing if you can answer them.  For example, which number less than 1000 has the most number 
of divisors?  For any d, are there numbers with exactly d divisors?  For a given d, what is the 
smallest number with d divisors? Is there a relationship between the number of divisors of a 
product nm and the number of divisors of n and m? 
 
Finally, here’s a good tip to keep in mind when working out examples like this.  Notice that 
Sophia started with the number 8.  She probably started with 8 because she considered the 
numbers 1 through 7 to be too easy.  However, it’s good practice to always start at the beginning, 
even if you think the first cases are too easy to consider.  Don’t neglect the trivial cases.  
Working systematically from the beginning and proceeding step by step is a good habit to get 
into.  You might be amazed what insights you can get even by working the simplest cases!  
Furthermore, if you have incomplete data, some amazing patterns just might escape your notice. 

 
 
The table Sophia made showing the divisors of 
the numbers from 8 to 28. 
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Calendar 
 
Session 7: (all dates in 2010) 
 

September 9 Start of the seventh session! 
 16  
 23  
 30 Tanya Khovanova, Research Affiliate, MIT 
October 7  
 14  
 21 Jane Kostick, woodworker 
 28  
November 4 Valerie Gordeski, Raytheon 
 11 Veteran’s Day – No meet 
 18 Anita Suhanin and Noam Weinstein 
 25 Thanksgiving - No meet 
December 2 Lenore Cowen, Tufts University 
 9  
   

 
Session 8: (all dates in 2011) 
 

January 27 Start of sixth session! 
February 3  
 10  
 17   
 24 No meet 
March 3  
 10  
 17  
 24 No meet 

 31 Susan Barry 
April 7  
 14  
 21 No meet 
 28  
May 5  

 
Girls’ Angle thanks Microsoft and MITX for naming Girls’ Angle as a beneficiary of the 2010 

Women’s Leadership Forum which was held at the Microsoft New England Research and 

Development Center in Cambridge, Massachusetts. 
 
Girls’ Angle thanks Draper Laboratories for their generous financial support of our stellar 

mentors…the heart and soul of Girls’ Angle. 

 
Here are answers to the Errorbusters! problems on page 24. 
 

1-c, 2-a, 3-e, 4-g, 5-f, 6-b, 7-d 
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Girls’ Angle: A Math Club for Girls 

 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 
What is Girls’ Angle?  Girls’ Angle is a math club for girls and a supportive community for all girls and 
women engaged in the study, use and creation of mathematics.  Our primary mission is to foster and 
nurture girls’ interest and ability in mathematics and empower them to be able to tackle any field, no 
matter the level of mathematical sophistication required.  We offer a comprehensive approach to math 
education and use a four component strategy to achieve our mission: Girls’ Angle mentors, the Girls’ 
Angle Support Network, the Girls’ Angle Bulletin and Community Outreach. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society.  They write 
articles for the Bulletin, take part in interviews and visit the club. 
 
What is the Girls’ Angle Bulletin? The Girls’ Angle Bulletin is a bimonthly (6 issues per year) 
publication that features interviews, articles and information of mathematical interest.  The electronic 
version is free.  The printed version (beginning with volume 3, number 1) comes with membership.  We 
are working hard to lower the cost of the Bulletin.  Until we do, however, nonmembers can receive the 
printed version by becoming a Bulletin Sponsor.  Please contact us if interested. 
 
The Bulletin targets girls roughly the age of current members.  Each issue is likely to contain some 
material that feels very challenging or difficult to understand.  If you are a member or Bulletin Sponsor 
and have any questions about the material, feel free to ask us about it! 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-11.  We aim to overcome math anxiety and build solid foundations, so we welcome all 

girls regardless of perceived mathematical ability.  There is no entrance test. 
 
How do I join?  Membership is granted per session and includes access to the club and extends the 
member’s subscription to the Girls’ Angle Bulletin to one year from the start of the current or upcoming 
session.  You can also pay per session.  If you pay per session and come for three meets, you will get a 
subscription to the Bulletin.  We currently operate in 12 meet sessions, but girls are welcome to join at 
any time.  The program is individually focused so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 10 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
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When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org or send us email. 
 
Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
 

Are donations to Girls’ Angle tax deductible?  Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we 
rely on public support.  Join us in the effort to improve math education! Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 
Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Pierce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science and worked 
in the mathematics educational publishing industry.  Ken has volunteered for Science Club for Girls and 
worked with girls to build large modular origami projects that were displayed at Boston Children’s 
Museum.  These experiences have motivated him to create Girls’ Angle. 
 
Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 
mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 

Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, graduate student in mathematics, Princeton 
Julia Elisenda Grigsby, assistant professor of mathematics, Boston College 
Kay Kirkpatrick, Courant Instructor/PIRE fellow, NYU 
Grace Lyo, Moore Instructor, MIT 
Lauren McGough, MIT ‘12 
Mia Minnes, Moore Instructor, MIT 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, Senior Research Scientist, Harvard Medical School. 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Katrin Wehrheim, associate professor of mathematics, MIT 
Lauren Williams, assistant professor of mathematics, UC Berkeley 

 
At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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For membership, please fill out the information in this box.  Bulletin Sponsors may skip this box. 
 

Emergency contact name and number: ___________________________________________________ 
 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  They will have to 
sign her out.  Names: _______________________________________________________________________________ 
 
Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
_________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media 
forms. We will not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for 
these purposes?             Yes  No 
 

Eligibility: For now, girls who are roughly in grades 5-11 are welcome.  Although we will work hard to include every girl 
no matter her needs and to communicate with you any issues that may arise, Girls’ Angle has the discretion to dismiss any 
girl whose actions are disruptive to club activities. 
 

Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Applying For (please circle): Membership                       Bulletin Sponsorship 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address: ___________________________________________________________ Zip Code: _________ 
 
Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Membership-Applicant Signature: _________________________________________________________ 
 

□ Enclosed is a check for (indicate one) (prorate as necessary) 

□  $216 for a one session membership 

□  Bulletin Sponsorship: $60-99 Subscribing. $100-999 Bronze. $1000-2999 Silver. $3K+ Gold.* 

□  I am making a tax free charitable donation. 
 

□ I will pay on a per meet basis at $20/meet.  (Note: You still must return this form.) 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 
 
*Silver and Gold sponsors may specify a recipient for their sponsored copies of the Bulletin. 
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Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 
 
 
 
 
 
 

 
A Math Club for Girls 

 


