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From the Director 
 
I’m thrilled to announce that Girls’ Angle has its first corporate 
benefactor:  Big George Ventures, an eco-friendly real estate 
development company based in Carson Valley, Nevada.  
 
I’m also excited to announce a new Girls’ Angle advisor: Mia 
Minnes, a CLE Moore Instructor at MIT.  Mia received her 
Ph.D. in mathematics from Cornell. 
 
Their contributions to Girls’ Angle are critical to helping us 
provide the highest quality math education for girls that is 
humanly possible. 
 
For the girls: Remember, even though we’re on break, you are 
all welcome to keep in touch through email to share and discuss 
any math thoughts you have.  We hope to see all of you in the 
fourth session which begins January 29. 
 
Happy Holidays! 
Ken Fan 
Founder and Director 
 
p.s.  A correction: Anna Boatwright, the author of Anna’s Math 
Journal, is a Mt. Holyoke alumnus who also earned a post-
baccalaureate certificate in mathematics from Smith College. 
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Ingrid Daubechies, Part 3 
 
This is part 3 of a multi-part interview with Princeton mathematics professor Ingrid Daubechies. 
 
Ken:  Do you have a confidence that if you keep working, you will find new results? 
 
Prof. Daubechies: No. 
 
Ken: No? 
 
Prof. Daubechies: (laughing) No. 
 
You never know! 
 
Well, we don’t really know where ideas come from.  It’s a very strange thing.  I think they come 
from trying to remain wide open to many things.  You have to really know your stuff   You have 
to really dig into understanding strands of the different things you’re looking at.  You should not 
live in a very narrow crack between boards.  And it’s good to go to seminars and it’s good to talk 
to other people because you have no idea where ideas just fall from. 
 
When my daughter was diagnosed with ADD [Attention Deficit Disorder], and they told me on 
what basis they diagnosed this, I said, well, I have all those things too.  So they asked me some 
questions and they decided I have ADD too.  So I have a mild form of ADD…I didn’t 
know…and when I learned this, I told my daughter, “well, we can stop worrying” because what 
it means is that I have tons of things that flip through my head.  First of all, it means you see a 
whole lot of humor in many situations, which is fun.  I think any good cartoonist must have ADD 
of some sort.  But, on the other hand, I think it also makes me more creative, to see connections 
where there might not be any.  And most of these connections don’t really exist, but sometimes, 
it shows something…some patterns.   But you don’t know where they come from, so when you 
start working on something new, since you don’t control it, how will you know that it’s going to 
happen again? 
 
After some time you start saying, well, it’s happened a couple of times before, so many times 
before, maybe it will happen again and you say, well, they gave me a job, so they believe it will 
happen again.  But I still, for a long, long time, I felt like a complete fake.  I felt if people only 
knew how inside I was insecure they would never ever…I mean there was a complete gap 
between the person they thought they had in front of them and the person who I knew inside. 
 
Ken: How did you cope with the insecurity then?  How did you manage to keep working and 
trying? 
 
Prof. Daubechies:  Well, first, you want to keep up appearances [laughter].  You don’t want to 
lose that job!  But then, I think that it must be a very rare person who does not feel insecure like 
that on the inside.  After all, you have a very asymmetric way of looking at the world.  I mean, 
you are the only person that you see from the inside.  Everybody else you see from the outside.  
And so from everybody else you don’t see the insecurities unless they have some kind of 
neurosis and really expose them very badly.  I think Orwell said in an essay on Salvador 
Dali…he said that Dali always struck him as completely insincere in his interviews because he 

Ken: …mathematicians make a lot of mistakes. 
 

Prof. Daubechies: Oh yeah! 
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says no person feels on the inside the way Dali pretends he feels.  On the inside, you always feel 
like a whole assembly of failures with the occasional good thing in between.  
But, first of all, realizing that everybody feels that way helps.  And then 
second, by wanting to do research…that is to say, finding things that 
nobody else has found before, you’re bound to be on a bad track at times.   
So when you find something, it’s great!  You feel, absolutely… you feel 
very, very elated.  So I tell my students, when you find something new you 
should enjoy [it] for half an hour and then you check the details because it 
could be a mistake, but at least you’ve had that half hour of pure joy! 
 

Ken: For half an hour???  Not even an hour? 
 
Prof. Daubechies:  Well, ok…but you should always check for mistakes because there could be 
mistakes.  And if there are no mistakes, you feel even better.  But it lasts very little.  Even if you 
have no mistakes, it lasts a couple of days.  After that, you have understood it even better and 
you begin to feel very stupid for having looked so long before you found it!  And you kind of 
make it part of the tissue of mathematics that you know and at some point it becomes completely 
absorbed just like we absorbed decimal notation in the mathematics we teach our children.  And 
at that point, it’s no longer that big joy.  It might still be fun to explain it to others who don’t 
know it, but that pure thing of “Wow!!!”…that’s over.  So you choose a profession where you’re 
frustrated a great deal of the time, you don’t know when you’ll find something, and when you 
find something, you feel, “woah!!!” and then that high is over a couple of days later.  So it’s a 
frustrating thing…it can be frustrating…but it’s also a lot of fun.  And I like teaching also…I like 
talking about mathematics to people and teaching students.  So it’s not just these wows and dips 
in between. 
 
Ken:  I often feel, I don’t know if you agree, that a large part of doing mathematics is 
psychological, but it doesn’t seem that there are any courses in grad school that try to help 
students deal with these issues. 
 
Prof. Daubechies: Yeah, well… I tell our incoming students always that they have to really work 
on building a social group…a social network around themselves…that they will learn half their 
mathematics from their peers anyway…not from their professors.   Just like mathematics, doing 
mathematics is a very human pursuit and it’s very good to do it with others.  I like collaborating 
with people.  I also like having my time to figure it out because sometimes you have to figure out 
things in the privacy of your own office before explaining it to someone else.  So in 
collaborations, we typically explain things to each other then we work alone then we get together 
again and so on.  I try to foster a lot of getting together of the students.  I like to give them 
reading courses where I explain for each chapter of the book what it is about and then they have 
to work through the details and they have to assign problems and discuss problems and so on.  
And then, after they have digested that chapter, explaining it to each other, worked through the 
problems, done everything, we go to the next chapter.  They find that it teaches them a lot.  But 
it’s also the doing it together that teaches them.  So that is very important.  So, I try to make sure 
we have nobody falling through the cracks who is too isolated. 
 
If you’re down and you see other people who are not…that helps you.  Also, you talk about more 
things; talking about more things, being exposed to more things, leads to more ways out of a 
problem. 
 

Salvador Dali was a 
Spanish painter who 
lived in the 20th 
century.  He also 
wrote books, such as 
50 Secrets of Magic 
Craftsmanship. 
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Ken: We have a girl at Girls’ Angle who I personally think is quite gifted.  But she has kind of a 
disease where whenever she solves a problem she immediately thinks, it must have been trivial 
because she feels that if she can solve it, it must be something very simple.  So, she tends to 
think of herself as very unintelligent.  She’s even said, “I’m so stupid”. 
 
Prof. Daubechies: Yeah, but, uh, well…I don’t know her, so I don’t know whether it is…it could 
be the result of something at work that is something in the way girls are brought up…girls are 
not brought up to feel they are stupid, but girls are brought up in a way to try to find common 
ground among each other, to find ways of sharing.  And it might be that by saying, “I am smart” 
she feels that she is counteracting…that she is not doing the acceptable thing.  Or she might even 
feel that by being smart she is making herself too different from the others…I don’t know.  I 
really don’t know.  I know that played a role for me at some point.  At the last mentoring 
program we had for women, we had a discussion about professional interactions between women 
and men in the math department or, rather, not professional, but how collegial interactions can be 
different.  And one of the senior women said that junior women should be aware of the fact, she 
said, you know when you meet other women…one way in which women bond is that one of 
them will say something in a funny way but something about a personal weakness…something 
disparaging about herself.  And the way other women will counter will be by doing the same 
thing about herself.  So you’ve shared a weakness and that creates a bond so you’re both not 
perfect.  Well, this is something that you shouldn’t do with most men in the department.  If you 
do this with a man, most likely, he could start feeling superior or he could start explaining to you 
how to solve your problem.  [laughter] But this is part of a way of interacting…it’s not a 
ploy…it’s a tactic people use, not consciously, but as a way of making a bridge. 
 
So, I don’t know if it would help, instead of feeling, “I’m so stupid” to think well, “I can do this, 
but so and so is better at that,”  so as to feel she is not singling herself out by being able to do the 
problem.  I don’t know.  That’s one thing I can think of, but there are others. 
 
But there’s also the fact that always what you can do yourself doesn’t seem as miraculous as 
what other people can do because you’ve seen all the mistakes that you did on the way towards it 
while the others just come out with the answer.  How old is she? 
 
Ken: She’s twelve. 
 
Prof. Daubechies: I hope she doesn’t discourage herself from doing mathematics. 
 
Ken: Also, she has an issue with making mistakes.  
She hates to make mistakes, to the point where I think 
it is an obstacle.  This is a problem we’re having at 
the club: trying to convince the girls that 
mathematicians make a lot of mistakes. 
 
Prof. Daubechies: Oh yeah! 
 
Ken: Actually, maybe you could address this? 
 
To be continued… 

“…talking about more 
things, being exposed 

to more things, leads to 
more ways out of a 

problem.” 
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Prueba del 9: The Reduction Procedure 
 
By Hana Kitasei 
 

In the last issue we mentioned a math trick littleMeme brought to Girls’ Angle.  (See 
Prueba del 9: The Trick.)   The trick involved a “reduction” procedure. Do you remember it? See 
the box for a little refresher. 

 
 
 
 
 
 
 
 
 

By the way, have you thought about why, when you perform the reduction procedure, you will 
always eventually arrive at a single digit number? 

 
We promised an explanation of how the math trick works, and in the next couple of 

issues we’ll gradually gather the tools we need to understand it.  
 
In this issue, we’ll focus on the reduction procedure.  
 
Choose any positive integer, a. Apply the reduction procedure to obtain the single digit A. 

Divide a by 9 and A by 9.  A key fact about the reduction procedure that we’ll need to explain 
the trick is this: No matter what a you chose, both divisions will leave the same remainder!  
 
 
Example: Start with a = 17. Perform the reduction procedure, 1 + 7 = 8. This is a single digit so 

A = 8. Dividing a by 9, we see that 17/9 is 1 remainder 8. Dividing A by 9, we see that 8/9 is 
0 remainder 8. So both a and A leave a remainder of 8 if you divide them by the number 9. 

 
Now try it yourself a few times! 
 
 
Why does this work? If you try it yourself a few times, you might get an idea. For my 
explanation, read on. 
 

The reduction procedure is rather complex.  It involves summing the digits of numbers 
possibly several times.  In fact, we have no idea how many times one would have to sum digits 
of numbers until one would finally arrive at a single digit number.  So, how can we prove the 
equality of the remainders upon division by 9 of the starting number and the end result of the 
reduction procedure? 
 

If you compute the remainders upon division by 9 at each step in the reduction procedure, 
you may begin to suspect that the remainder upon division by 9 is preserved at each step of the 

The Reduction Procedure 
 
Start with any positive integer, a. If a has multiple digits, add its digits 
together to get a new integer, b. If b has multiple digits, add its digits up to get 
c. Repeat the process of adding digits until you come to a number that is a 
single digit.  The result of the reduction procedure is this single digit. 
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Definition of Remainder 
 
In more precise mathematical terms, if 
you divide a number a by a number d, 
the remainder is the smallest 
nonnegative integer r such that d divides 
evenly into a - r.  Another way of 
putting it is that if x is the largest 
nonnegative integer (x corresponds to 
the number of filled chocolate boxes) 
such that xd is less than a, then the 
remainder r = a - xd, or, equivalently, we 
can write a/d = x + r/d. 
 

procedure, not just in the final single digit result. That is, given any number a, the sum of its 
digits, let’s call it b, seems to have the same remainder as a, if you divide both by 9. If each step 
of the reduction preserves the remainder, then the single digit result of the reduction procedure 
will also have the same remainder as a. 

 
So, instead of trying to relate something between the starting number and the end result, 

we just try to relate something between a number and the sum of its digits.  Because the starting 
number and the end result are linked by a chain of digit sums, if we are successful, we will have 
established our desired result! 
 
 
Example: If a = 17, we only need to perform the reduction one time to get a single digit result. 
Let’s make sure my claim works for a number when we have to perform the reduction multiple 
times to get a single digit result. 
 
Let a = 157. Perform the reduction: 1 + 5 +7 = 13 which is not a single digit, so we sum again, 1 
+ 3 = 4. Divide 157, 13, and 4 by 9, and check yourself that they each have remainders of 4. 
 
Why do 157 and 1 + 5 + 7 have the same remainder if you divide by 9?  
 
 

Before we go any further, let us define precisely what we mean by “remainder.” After all, 
without a clear idea of what a remainder is, how would we be able to prove anything about it?  
 
 Since this issue’s trick requires division by 9, let’s use 
division by 9 as an example. Dividing a number is like sorting 
chocolates into chocolate boxes. Suppose you have a number of 
chocolates and boxes that can fit 9 chocolates each. You keep filling 
up boxes and when they are filled you set them aside. Sometimes the 
number of chocolates is divisible by 9, in which case you will end 
up with a pile of boxes that are all filled. This is like having no 
remainder. When a number is not divisible by 9, you will have a box 
that isn’t full—and you can’t sell a box that’s not full! The 
chocolates in this box are the scraps, and their number corresponds 
to the remainder. 
 
 Now that we agree what a remainder is, let’s turn our attention to showing that a positive 
number and the sum of its digits will both leave the same remainder upon division by 9. 
 
 We want to show that two positive numbers, say a and b, leave the same remainder upon 
division by 9.  Notice that this is the same as showing that 9 divides evenly into a - b.  To see 
this, imagine arranging a chocolates into boxes that can hold 9 chocolates each.  You’ll have a 
bunch of filled boxes plus, possibly, a single unfilled box containing the remaining chocolates.  
If you now subtract b of those chocolates by taking them away and the result is divisible by 9, 
that is, there are a bunch of filled boxes of chocolates, then it must be that b chocolates can also 
be fit into some number of filled boxes plus one box with the same number of leftovers that you 
got with a chocolates, and vice versa.  (See illustration on the next page.) 
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If you have two numbers that leave the same remainder when you divide by 9, like 68 and 50, then 
their difference is divisible by 9.  That’s because the unfilled boxes will cancel each other leaving 
only filled boxes left, some of which will remain, others of which will cancel when you subtract.  
Conversely, if the difference of two numbers is divisible by 9, then the two numbers must leave the 
same remainder when you divide by 9 because if they didn’t, you wouldn’t be able to cancel 
chocolate boxes in such a way that you would be left with boxes that are all completely filled. 

 
 In our case, the two numbers we want to show leave the same remainder upon division by 
9 are a number and the sum of its digits.  Let’s revisit our example of a = 157.  Let’s show that 9 
divides 157 minus the sum of its digits: 
 
157 - (1 + 5 + 7) = 1 × 100 + 5 ×10 + 7 × 1 - (1 + 5 + 7)   (write 157 in expanded form) 

 = 1 × 100 + 5 ×10 + 7 × 1 - 1 - 5 - 7 (use the distributive law) 
 = 1 × 100 - 1 + 5 ×10 - 5 + 7 × 1 - 7 (rearrange terms) 
 = 1 × (100 - 1) + 5 × (10 - 1) + 7 × (1 - 1)  (the distributive law again!) 
 = 1 × (99) + 5 × (9) + 7 × (0) (simplify inside parentheses) 
 = 9 × (1 × (11) + 5 × (1) + 7 × (0)) (distribute out the factor of 9) 

 
This shows that the difference is a multiple of 9, and we’re done! 
 

The same proof will work for any positive integer: after you 
subtract the sum of its digits, rewrite the number in expanded form, 
group terms that correspond to corresponding digits together, use the 
distributive law, and see that the result is a sum of terms that are each 
a multiple of 9. 
 
 Now we can see that if we take a number a and use the 
reduction procedure to obtain from it a single digit number A, then 
both a and A will leave the same remainder upon division by 9. 
 
 By the way, the single digit number A must be one of the numbers 1, 2, 3, 4, 5, 6, 7, 8, or 
9, and each of these digits leaves a different remainder upon division by 9.  That means that if a 
and b leave the same remainder when you divide them by 9, then if you apply the reduction 
procedure to both a and b to obtain A and B, respectively, then A = B.  That’s because a, b, A, 
and B must all leave the same remainder upon division by 9, but both A and B are single digit 
numbers and so if A and B leave the same remainders upon division by 9, they must be equal. 
 

Notice that: 
10 - 1 = 9, 

100 - 1 = 99, 
1000 - 1 = 999, 

and so on. 
 
In general, 10n - 1 = 999…9 
(the number whose digits 
consist of exactly n nines). 
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Z 

 
 

cat in the hat  
 

Honda 

Partially Ordered Sets 
 
When it comes to preferences, we may like one thing more than another, but we may also have 
no preference at all between two things.  So if we order things according to our preferences, the 
order may not be “complete” in the sense that there may be two things that are not comparable. 
 
That’s a different situation from the natural order on (real) numbers.  If I have two 
numbers a and b, then exactly one of the following three situations must hold: 

a < b   or a > b   or a = b. 
The natural order on numbers is called a total order. 
 
In both partially ordered and totally ordered sets, the following are always true: 
   1. We always have that a �  a. 
   2. If a �  b and b �  a, then a = b. 
   3. If a �  b and b �  c, then a �  c. 
(By the way, notice that “a > b” is the same thing as saying that “a �  b and a �  b”.  
Also, “a �  b” is the same thing as saying that “b �  a”.)  The only difference from a 
totally ordered set is that in a partially ordered set we do not require that every pair 
of elements be comparable whereas in a totally ordered set, we demand it! 
 
At the first meet, we did an activity that involved subsets of the set of girls at Girls’ 
Angle.  The collection of subsets of girls at Girls’ Angle is an example of a partially 
ordered set if we say that one set is less than or equal to another when the first set is 
included (as a subset) in the other.  Can you see why this is an example of a 
partially ordered set but not an example of a totally ordered set?  Can you draw a 
diagram representing the partial order of subsets of a set with 4 elements? 
 
To explore partially ordered sets further, we had a mini-chocolate tasting at Girls’ Angle.  
We used playing card symbols to identify different chocolates.  The girls tasted the 
chocolates and put the chocolates into a partial order according to their preference. 
 

Above right is an illustration of Z’s partial order on chocolates.  The way 
this diagram works is that each circle represents a different chocolate.  If 
chocolate a is greater than chocolate b, and there is no chocolate that is in 
between the two (i.e. there is no chocolate c such that a > c > b), then 
chocolate a is drawn above chocolate b and a line is drawn to connect them.  
From this diagram, you can see that Z liked 2�  best of all.  For Z, 
chocolates 3� , 10�  and 10�  were incomparable.  But, all three were better 
than 2� . 
 
At left is cat in the hat’s partial order.  Chocolates grouped into ovals were 
deemed to be indistinguishable from each other.  That is, with respect to 
their taste, they were considered equals.  We used hearts for milk 
chocolates.  Evidently, cat in the hat likes milk chocolates the least. 
 
At right we see that Honda’s partial order on chocolates is, in fact, a total 
order.  Honda, unlike cat in the hat, seems to prefer milk chocolates. 
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Mathematics is a journey of discovery.  As mathematicians take this journey, they follow many wrong 
turns, believe many incorrect facts, and encounter many mysteries. Out of  these twists and turns comes 
the reward of truth and understanding. However, if you look at math books, you might get the impression 
that mathematicians rarely err. In this column, Anna Boatwright gives us a peek into her mathematical 
process of discovery, bravely allowing us to watch even as she stumbles. 

By Anna Boatwright 

Here, Anna finds the surface area and volume of a cube with a hole. 
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Addition and Multiplication Sculptures 
 
By Ken Fan 
 
I recently commissioned Jane Kostick to make two wooden sculptures to represent addition and 
multiplication.  These sculptures were brought to the club at the sixth meet of the session and to 
the Girls’ Angle social event.  Here, I’ll explain exactly what these sculptures are and in the next 
article, Jane will explain how she built them.  Addition appears on this issue’s cover.  For more 
of Multiplication, see It Figures! 
 
We’ve all made addition and multiplication tables.  In fact, if you’ve got a spare moment, how 
about making some right now?  Fifteen by fifteen.  We’ll do the addition one below.  You do the 
multiplication table! 
 

Addition 

   n 
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

 
 
Let’s focus in on the red section in the table.  Those numbers are the various sums of pairs of  
numbers between 1 and 15, inclusive.  Imagine placing a column of wood over each red entry.  If 
you make the height of the column of wood correspond to the entry itself, you will obtain some 
three dimensional wood sculpture.  That is exactly what the Addition sculpture is!  
Multiplication is similar, only one uses a multiplication table. 
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Using 15 by 15 tables and a unit length of 3/8”, Addition will have a square base 5 5/8” on a side 
and a height of 11 1/4”.  Multiplication will have the same square base, but will soar over 7 feet! 
 
Certain patterns in addition and multiplication are visually more apparent in the sculptures than 
in the tables.  The reason is that the tables are filled with symbolic forms of numbers that are 
rather sophisticated.  If you look at the symbol “5” and the symbol “6”, unless you have learned 
the meanings assigned to these symbols by society, there would be no reason for you to regard 
one as being “one more” than the other.  In order to get this sense of “one more”, you would 
have to have trained your mind to recognize those symbols and associate with them their 
quantitative meanings.  In sculptural form, however, the heights represent the numbers and you 
can see “one more” in a visual way. 
 
Whenever possible, as you learn more and more mathematical concepts, try to create multiple 
representations of the concepts.  For example, these sculptures are visual representations of 
addition and multiplication.  Doing so will help you avoid manipulating symbols mechanically 
and help you to remember the meaning of things. 
 
At the Girls’ Angle social event, many advanced mathematicians were present.  We presented 
the two sculptures, but did not explain what they represented.  We asked the guests to figure out 
their mathematical significance.  Amusingly, I can honestly write that there are Ph.D.s in 
mathematics who do not recognize multiplication when they see it!  The most common error was 
to be thrown off by the sheer height of Multiplication.  Visually, it grows so fast that many 
immediately began thinking that they were observing some kind of exponential growth. 
 
Multiplication does grow fast!  In fact, it grows so fast, if the wooden columns over each entry 
were placed end to end, how long would the result be, assuming that each unit is represented by 
3/8”?  This would be a pretty important question to answer before making the sculpture because 
it would give an idea of how much wood one would need and that could affect the cost of the 
sculpture.  To figure this out, we have to compute the value of 
 

 
 

and then multiply by 3/8”.  Can you see that the above sum of products is equal to the square of 
the sum of the first 15 positive integers, that is, (1 + 2 + 3 + … + 13 + 14 + 15)2?  Can you 
compute that 1 + 2 + 3 + … + 13 + 14 + 15 = 120 and 1202 = 14,400?  So if one unit is 3/8”, the 
length of wood needed would be 5,400 inches which is 450 feet of wood!  That’s a long piece of 
wood!  How much wood would be needed for Addition?  If you figure it out, feel free to email us 
what you got. 
 
Fortunately, Jane figured out how to make the sculptures without using so much wood!  Instead 
of making them solid, she…  
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The Making of Addition and Multiplication 
 
By Jane Kostick 
 
…was able to save a lot of wood by making the sculptures hollow. 
 
Building Addition involved a lot of repetition of making identical parts.  I began with large 
boards of lumber that I sawed into many sticks roughly 1/2” thick by 1/2” wide. Passing each 
stick over a jointer, I got two of the faces nice and flat, with a perfect 90 degree angle between 
them.  Then with a thickness planer I milled the opposite faces of the wood in order to make 
sticks with a cross section of 3/8” by 3/8”.  These sticks then got diced up into the various 
lengths necessary to build the outside perimeter of the sculpture.  I used a small router to round 
over the edges of the sticks prior to assembling the sculpture.  For the 169 sticks that make up the 
inside of the sculpture, I was able to save a lot of wood by making each stick not much longer 
that its visible portion.  The following pictures show the two sculptures in progress. 
 

                                 
 

           
 
 
 
 
 
 
 
 
 
 
 
 
                   Jane Kostick in her studio. 
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Index Card Cube 
 
Materials: 6 rectangles.  Index cards and business cards work well. 
 

 
1. Take two index cards and form a “Red 
Cross” shape.  Fold the ends of one index 
card over the other. 

 
2. Step 1 finished. 

 
3. Flip and repeat, then separate. 

 
4. You should have two staple-like objects.  
Repeat steps 1-3 two more times with the 
remaining 4 index cards. 

 
5. Assemble the cards into a cube. 

 
6. Here’s another view of the cube. 
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Cycloids on 
Broadway 
 
By Katy Bold 
 
The Lion King is a Disney story of a young 
lion cub, Simba, who is wrongly exiled from 
his African homeland by a jealous uncle. 
Simba grows up in the jungle with new 
friends Timon (a meerkat) and Pumbaa (a 
warthog) before returning home and 
reclaiming his rightful place as king. 
 
Originally a cartoon, it was a challenge to 
bring to life the animals of the African 
plains in a live theater on Broadway. Simba 
and his family are portrayed by actors wearing makeup and large head pieces. Simba’s friends 
Timon and Pumbaa are life-size puppets. Giraffes walk across the stage – brave actors wear two 
pairs of stilts, a shorter pair for the legs and a longer pair for the arms. Several dancers move 
across the stage, each carrying a large gazelle prop in each hand, making the gazelles appear to 
leap through the air. 
 
At one point during the show, a man pushes a small cart across the stage, with lots of small 
gazelles attached. The small gazelles are held up by sticks connected to the rims of the cart’s 
wheels. As the wheels turn, the gazelles climb higher into the sky and then as the wheel turns 
further, they come back down. 
 
The path of the gazelles has a special name: a cycloid. One way to think about a cycloid is to 
imagine a bicycle wheel with a dot of red paint on the face of the tire closest to you. As the 
bicycle wheel turns, the red dot is moving, and the curve created by the red dot is a cycloid. 
 
Maybe a mathematician was among the set and costume designers who designed and built the 
cart that made the gazelles leap!  
 
 

 
 

 
The cycloid is a very interesting curve that is famous for being the answer to the brachistochrone 
and tautochrone problems. The brachistochrone problem requires finding the shortest-time path 
of a bead falling between two points when the only force acting on the bead is gravity (and 
assuming no friction). This problem will be the subject of a future Math in Your World column.  
 



© Copyright 2008 Girls’ Angle.  All Rights Reserved.                                                                17 

 
 
The tautochrone problem requires finding the curve with this special property: starting from rest 
anywhere along the curve, a bead will reach the bottom of the curve in the same amount of time. 
Like the brachistochrone problem, the bead moves under the force of gravity, and friction is 
ignored. 
 
Properties of the Cycloid 
 
The cycloid has many interesting properties, and here we 
will touch on a few of them. 
 
If a cycloid is traced out by a circle of radius 2 feet, what 
are the maximum and minimum heights of the cycloid? 
 
If the stick holding the gazelle is 4 feet long, how high is 
the gazelle at the peak of its leap? 
 
Does the cycloid ever cross over itself? 
 
Recall that the slope of a straight line is the ratio of the 
change in the y-values to the corresponding change in the 
x-values (“rise over run”). This idea can be generalized to 
curves by taking the slope at a point p on the curve to be 
the slope of the tangent line to the curve at p.  The figure 
below shows the tangent to a curve at a point p. 
 
 
 
 
 
 
Where does the cycloid have slope equal to zero?  Hint: 
Think about a line with slope zero – what does it look 
like? 
 
The slope of a vertical line is undefined. On a curve, if 
the slopes are undefined on both sides at a particular 
point, the point is called a cusp. At which points on the 
cycloid is there a cusp? 
 
Why is the cycloid periodic? 
If we think of the cycloid curve as a function f(x), where x represents distance along the 
horizontal, what is the period of the curve (assume a circle of radius r)? 
 
Take it to your world 
 
Use a piece of chalk to mark an “x” on a bicycle wheel. Ask a friend to ride the bicycle slowly so 
that you can watch the shape of a cycloid. 

“Mactionary” 
 
The largest value a function yields is its 
maximum. The smallest value a function 
yields is its minimum. 
 
The slope of a line is the ratio of the  
change in y-values to the corresponding 
change in x-values. Informally, the slope is 
the “rise over run.”  (See the Slope 
Problem Sets from the Summer Fun 
section of volume 1, number 4 of this 
Bulletin.) 
 

 
A point on a graph at which the curve has 
undefined slope to the right and left of the 
point is called a cusp. 
 
A tangent to a curve at a point p on the 
curve is the line that best approximates the 
curve in the neighborhood of p. 
 
A function is periodic if it repeats itself. 
Formally, this is written f(x + T) = f(x), 
where T is the period. 
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Notes from the Club 
 
These notes cover some of what happened at Girls’ Angle meets.  They are not meant to be 
complete and, to nonmembers, they may not even be coherent! 
 

Session 3 – Meet 7 – October 30, 2008 
 
Mentors: Lauren McGough, Jennifer Melot 
 
The first half of the first meet of the second half of the third session began with Algebra Target 
Practice.  In this game, girls are presented with a function and a target number.  The girls split 
into three teams.  Each team had to figure out what number to feed the function so that the output 
of the function would be as close as possible to the target.  The absolute value of the difference 
between the value of the output and the target was added to a cumulative score for each team.  
The winning team was the team with the lowest cumulative score.  Here are the results: 
 

One Team Another Team The Third Team 
The Function Target 

x f(x) Score x f(x) Score x f(x) Score 

f(x) = 4x + 2 54 13 54 0 13 54 0 13 54 0 
f(x) = 3(x + 2) 0 -2 0 0 -2 0 0 -2 0 0 
f(x) = -2x 3 -1.5 3 0 -1.5 3 0 -1.5 3 0 
f(x) = x2 25 5 25 0 5 25 0 5 25 0 

f(x) = x2 10 
1

3
3

 
1

11
9

 
1

1
9

 
1

3
3

 
1

11
9

 
1

1
9

 3.33 11.0889 1.0889 

f(x) = x2 – 1 8 3 8 
1

1
9

 3 8 
1

1
9

 3 8 1.0889 

f(x) = x2 + x 12 3 12 
1

1
9

 3 12 
1

1
9

 3 12 1.0889 

f(x) = x2 + x -1 -0.8 -0.16 1.951 -0.5 -0.25 1.861 0.5 0.75 2.8389 

f(x) = (x – 5)(x + 6) 0 -6 0 1.951 -6 0 1.861 -5 -10 12.8389 

f(x) = x2 + x + 1 7 2 7 1.951 2 7 1.861 2 7 12.8389 

 
The eighth function, f(x) = x2 + x, is an example of a quadratic function.  The target was -1, and, 
as it turns out, there is no real number x for which f(x) = -1.  So, in this case, teams just had to try 
to come as close to the target as possible. 
 
Notice that x2 + x can be rewritten as (x + 0.5)2 - 0.25.  (Check this!  If you are having trouble, 
please read the article on the distributive law in the last issue.)  When written in this form, we 
can see that the function is equal to a constant (-0.25) plus the square of a number: (x + 0.5)2.  
When you multiply a real number by itself, the result is always greater than or equal to zero.  
This means that the function will always be greater than or equal to -0.25.  So the closest one can 
get to the target of -1 is -0.25 and this value is attained when the squared number is zero, that is, 
when x + 0.5 = 0, in other words, when x = -0.5. 
 
A bonus question was given with f(x) = x3 + x2 and a target of 1,000,000.  Trying to solve the 
equation f(x) = 1,000,000 is not so easy, but how can one get close to the target?  The function 
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consists of two terms, x3 and x2.  The first of these terms is x times bigger than the second.  As x 
gets bigger and bigger, the first term gets much, much bigger than the second term.  When x is 
100, the first term is 100 times bigger than the second term.  Another way of putting it is that 
when x is bigger than 100, the second term is less than 1 percent of the first term.  This means 
that to get a good approximation of f(x), when x is big, we can just ignore the second term.  If we 
do that, we are then looking for the cube root of 1,000,000, which is 100.  So we know that 
f(100) will be within a percentage point of 1,000,000.  Any other integer will be farther away.  
Here’s a table of values showing various values of the function near 100: 
 

x 98 99 100 101 102 

x3 + x2 950,796 980,100 1,010,000 1,040,502 1,071,612 

Difference from 
1,000,000 

49,204 19,900 10,000 40,502 71,612 

 
To hit the target exactly, the value of x required sits somewhere between 99 and 100. 
 
For the second half of the meet, we had a mini-chocolate tasting event to introduce the concept 
of the partially ordered set.  See page 9.  Grace and Hadassah also rated teas.  Both produced 
tea orders that turned out to be total orders. 
 

Session 3 – Meet 8 – November 6, 2008 
 
Mentors: Lauren McGough, Jennifer Melot, Doris Dobi 
 
Special Visitor: Catherine Havasi, Computation and Linguistics, Brandeis 
 
The first half of meet 8 involved more target practice, albeit with more exotic functions.  For 
example, let f(n) be the number of divisors of n where n is a positive integer.  For example, f(6) = 
4 because 6 has four divisors: 1, 2, 3 and 6.  Here are some questions for you about this function: 
 
 1. What is another name for the numbers n for which f(n) = 2? 
 2. What numbers n have f(n) odd? 
 3. If I pick a positive integer m, can you always find n so that f(n) = m? 
 
Ilana figured out that the smallest positive integer n for which f(n) = 6 is n = 12.  Indeed, the 
divisors of 12 are 1, 2, 3, 4, 6 and 12. 
 
 4. What is the smallest positive integer n for which f(n) = 2? 4? 8? 16? 32? 
 
Catherine talked about language and communication.  She pointed out that we use our common 
sense to fill in a lot of blanks and this enables us to interact more effectively.  This kind of 
common sense knowledge can also help to improve our interaction with computers.  For 
example, to help us type faster, a computer might try to offer word completions.  If you start 
typing a word and it begins with the letter “d”, a computer equipped with some database of 
common sense knowledge would be programmed to regard it more likely that the intended word 
is going to be “dog” rather than the word “defenestrate”.  
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littleMeme’s design 

Catherine also discussed correlated knowledge.  Sometimes the kinds of things that belong to 
one category of objects is highly related or identical to the things that belong to another category 
of objects.  Programming a computer with this kind of knowledge also helps the computer to 
reduce possibilities.  For example, there is a strong correlation between the “things that we want” 
and the “things that make us happy”.  And, as a point of fact, understanding of mathematics is 
indeed both something that we want and something that makes us happy! 
 

Session 3 – Meet 9 – November 13, 2008 
 
Mentors: Lauren McGough, Jennifer Melot, Doris Dobi, Clara Chan, Nike Sun 
 
Meet 9 was spent entirely in small groups attacking a variety of different math problems, 
including this one that Doris brought in: 
 

A family came upon a bridge.  The family consisted of mom, dad, a grandfather and a daughter.  
The bridge was only strong enough to support at most two people at a time.  It was very dark, so 
whoever was crossing had to use a flashlight.  The family only had one flashlight.  Crossing alone, 
the mom could make it in 1 minute, the dad in 2 minutes, the grandfather in 10 minutes, and the 
daughter in 5 minutes. 
 
What is the minimum time required for all the members of the family to make it across the bridge? 

 
Some girls worked with Clara on the monkey/banana transport problem (see the Notes from the 
Club from the last issue of this Bulletin).  The complexity of the monkey/banana transport 
problem is high enough that whenever one succeeds in transporting some number of bananas, 
without proof, one is always left wondering if that was really the maximal number of bananas 
that could be transported.  With Clara, some girls tried to produce a proof that an optimal 
strategy was found. 
 
Some girls worked on some of the problems from an advanced algebra target practice. 
 
And, a number of girls played the Cliffhanger card game.  The girls by and large did the best 
they could with the hands they were dealt, but that day, Tree managed to stay furthest from the 
cliff. 
 

Session 3 – Meet 10 – November 20, 2008 
 
Mentors: Jennifer Melot, Lauren McGough, Doris Dobi 
               Anda Degeratu, Grace Lyo 
 
On a number of occasions, members would make drawings of 
geometric patterns and designs.  So, we began meet 10 with a brief 
talk on regular polygons and tessellations.  For example, earlier, 
littleMeme brought in a circular piece of art she made.  Geometrically 
it involves three diameters of a circle. There are many implied regular 
hexagons within her design. 
 
By the way, how many pieces is this design made out of?  Notice that 
each sector (between colored diameters) has 1 + 2 + 3 + 4 + 5 + 6 + 7 
pieces.  These sums of consecutive integers have been appearing a lot! 
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littleMeme’s design with some of the 
implied regular hexagons drawn in. 

What can you say about the 
average of the measures of 
the exterior angles of a 
general polygon? 
 

Regular polygons have a lot of symmetry and much can be said 
about them.  We spent most of the meet in small groups exploring 
different aspects of polygons, regular polygons, regular polyhedra 
and polyhedra. 
 
For example, if you have a regular polygon with n sides, all the 
external angles are equal.  As we discussed at the meet, the measure 
of these external angles are all equal to 360/n degrees. 
 
We also saw that the sum of the interior angles of a regular polygon 
with n sides is 180(n - 2) degrees.  Because all the interior angles are 
equal in a regular polygon, you can divide this number by n to determine the measure of each 
interior angle. 
 

You can also find the interior angle by observing that it, 
together with an external angle, make up a single straight 
angle.  Because a straight angle measures 180 degrees, you 
can find the measure of the internal angle by subtracting the 
measure of the external angle from 180 degrees. 
 
If the polygon is not regular, then the various internal and 
external angles might differ from each other.  (Though they 
can still all be equal…can you think of an example?) If you 
have a non-regular polygon with n sides, you could even 
have n interior angles all different from each other.  

However, all is not lost!  It turns out that the average of these measures will be the same for all 
n-sided polygons, regular or not!  Or, what’s the same, the sum of the interior angles of any 
polygon with n sides only depends on n and will equal 180(n - 2) degrees.  Try to prove this fact! 
 
Some girls worked on figuring out ways to construct regular polygons.  For 
example, cat in the hat used folding techniques to construct a square inscribed 
in a circle.  Others studied properties of polygons.  Others made tessellations.  
(For more on tessellations, see A Puzzling Problem for Penrose by Allison 
Henrich and Sarah Wright in the fifth issue of this Bulletin.) 
 
One question that came up was whether or not a tessellation could be made with a heart shape.  
That is, could one invent a heart shape and, using only copies of that shape, tile the entire plane? 
Aba-ka-dabra came up with a heart shape that comes very close to tessellating the plane.  If you 
can come up with a tiling heart shape, send it in and we’ll put it in the Bulletin! 
 
Some girls looked at the 3-dimensional analog of regular polygons: regular polyhedra.  These 3-
dimensional objects have a lot of regularity.  First, all of their faces are the same regular polygon.  
Second, the arrangement of faces around any vertex is the same.  Anonymous, Jo and Grace 
explored equidistant configurations and related them to triangles and tetrahedra.  We’ll talk more 
about these highly symmetric objects in the future, but you might enjoy making models of the 
two with the fewest number of faces: the regular tetrahedron (with 4 faces) and the cube (with 6 
faces).  If you have a square piece of paper, you can fold it into a regular tetrahedron using 
techniques of origami.  See volume 1, number 6 of this Bulletin.  Can you figure out a way to 
make an origami cube? See page 15 for a way to make a cube with six index cards. 
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Community Outreach 
 
Community Outreach is a component of Girls’ Angle where we accept 
commissions from people or organizations in the community to solve math 
problems.   In exchange for solving the problem, the commissioning agent agrees 
to credit the girls of Girls’ Angle for the solution. 
 
Our first Community Outreach problem comes from Jane Kostick who asked the 
girls to solve a problem concerning a special table that could be set up in two 
different configurations.  In one configuration, the table is 24” by 36” and sits on 
a rectangular stand with the same dimensions.  However, the table top is actually 
two layers both 24” by 36” connected by hinges along one of the long sides.  The 
top can be unfolded to produce a new, larger table top that is 48” by 36”.  If you 
just unfold this top part out, the table will become unstable because half of the 
table top will hang out unsupported.  To fix this, Jane asked the girls to figure out 
where a single pivot could be placed so that the 48” by 36” folded out table top 
could be rotated around this point to a position centered on and square with the 
original 24” by 36” table base. 

Session 3 – Meet 11 – December 4, 2008 
 
Mentors: Jennifer Melot, Lauren McGough, Nike Sun, Doris Dobi 
 
Special Visitor: Amanda Cather, Waltham Community Organic Farms 
 
Amanda explained the myriad ways she uses basic mathematics in organic farming.  So much of 
farming can be quantified.  There’s the size of the farm, the number of rows for vegetables in the 
farm, the number of rows to allot to each vegetable, the cost of the seeds, the number of 
vegetables that must be produced, the amount of fertilizer to use, how much to pay workers and 
how much to charge customers, and more!  Sorting all this out to make a farm work efficiently 
involves a lot of computation.  Each computation may be a simple addition, subtraction, 
multiplication or division, but taken together, there are a whole lot of computations making the 
running of a farm quite a complex task indeed!  Amanda gave us an idea of how this complex 
task is organized. 
 
For the remainder of the meet, the 
girls worked on a number of 
different problems, including our 
first Community Outreach 
commission from Jane Kostick 
(see box at right). 
 
Trisscar, The Cat, Mouse, and 
littleMeme tackled the 
Community Outreach problem.  
By making a careful scale model 
of the table top, they were able to 
find multiple locations where the 
pivot could be placed.  Trisscar 
took the further step of making a 
scale model to the scale of 1 
centimeter = 1 inch and verified that the pivot point would work for a table of that size.  The 

picture shows one possibility, as they determined.  Shown 
is the folded out configuration of the table top prior to 
being rotated into place.  The base sits directly under the 
left half. 
 
This is a practical solution, in the sense that it will indeed 
work: if a table is so constructed with the pivot point 
located as indicated, one would be able to rotate the 
larger table around the pivot and center it over the 
original base. 
 
However, because the solution was found using a scale 
model, there remains a theoretical question.  If the table is 

rotated about this pivot point, will it, in fact, exactly position itself centered and square over the 
original base?  Or, could this pivot be just a little bit off producing a small error that is negligible 
for a table of the desired size?  Can we, for instance, say that if the units were not inches but 
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Some Problems from the Locked Treasure Puzzle 
 
An author wrote three interesting math books.  She is going to a book signing at a 
local bookstore.  If she sells three copies of the first book, five copies of the 
second book and seven copies of the third book, she will make $141.  If instead, 
she sells five copies of the first book, seven of the second and three of the third, 
she will make $161.  But if she manages to sell seven copies of the first book, 
three of the second and five of the third, she will make $163.  One of the numbers 
in one of the combinations is the cost, in dollars, of buying one copy of each of 
the three books. 
 
A medieval princess adored squares of perfect squares.  She called such numbers 
beloved numbers.  She loved the number 16, for instance, because it is the first 
nontrivial beloved number.  Whenever she came upon a new number, the first 
thing she would do is determine how many beloved factors the number had.  
When she turned 15, she was given a gift of 15! = 15 × 14 × 13 × . . . × 3 × 2 × 1 
gold coins.  One of the numbers in one of the combinations is the number of 
beloved factors in 15!. 
 
The function f takes a number and returns a number.  If you plug in 8, it returns 0.  
That is, f(8) = 0.  If m and n are any numbers, it so happens that 

f(m + n) = f(m) + f(n) + 0.1. 
One of the numbers in one of the combinations is f(2008). 
 
The figure shows a circle circumscribed 
about a triangle.  The triangle is an 
equilateral triangle with sides of length 6 
inches.  The area of the circle, in square 
inches, can be expressed as a multiple of � .  
The number of multiples of �  is a number in 
one of the combinations. 
 

miles, this pivot point would do the job for the 
gigantic 48 mile by 36 mile table top?  Or would 
the center of the large table top miss the center of 
the base by a few inches? 
 
Can you demonstrate that the pivot point is in 
exactly the right spot? 
 
Speaking of the right spot, many times this 
session, the girls had to search for all points that 
satisfied some given condition.  Such a set of 
points is called a locus.  For example, cat in the 
hat and Trisscar found the locus of points with a 
90 degree viewing angle of a painting. 
 

Session 3 – Meet 12 – December 11, 2008 
 
Mentors: Jennifer Melot, Lauren McGough, Doris Dobi, Mia Minnes, Grace Lyo, Beth Schaffer 
 
For the last meet, we packaged a bunch of gifts for the girls in a box, wrapped it, and wound it 
round and round with ribbon.  A closer inspection revealed two combination locks holding the 
ribbons together.  To unlock the locks, the girls had to solve a number of math problems.  They 
split into several groups and tackled the problems in parallel.  By break time, half the answers 
were found, but the remaining problems seemed rather daunting.  Would the girls be able to 
unlock the treasure in time, or would the treasure remain hidden for another year? 

 
With 10 minutes left, all 6 numbers for the two 
combination locks were found.  But which 
numbers belonged to which lock? 
 
In a rapid brainstorming session, using the last 
remaining clue, the numbers were sorted out 
leaving each lock with just six possible 
combinations.  With just 4 minutes remaining, 
suddenly, the second lock went click! 
 
Because it was so important for the girls to 
work in concert to solve this in the nick of time, 
we’ll refrain from singling out any girl here, 
though there definitely were many, many clever 
ideas that we could discuss. 
 
By the way, I recently gave the fourth problem 
in the box to a number of adults (outside the 
field of mathematics).  None of them were able 
to solve it. 
 
To the girls, Great job and congratulations! 
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Calendar 
 
Session 3: (all dates in 2008) 
 

September 11 Start of third session! 
 18  
 25 Sarit Smolikov, Harvard Medical School 
October 2 Leia Stirling, Boston Children’s Hospital 
 9 Yom Kippur - No meet 
 16 Jane Kostick, Carpenter 
 23  
 30  
November 6 Catherine Havasi, Computer Science, Brandeis1 

 13  
 20  
 27 Thanksgiving - No meet 
December 4 Amanda Cather, Waltham Community Organic Farms 
 11  

 
1Catherine’s visit has been rescheduled to come one week earlier. 
 
Session 4: (all dates in 2009) 
 

January 29 Start of third session! 
February 5 Sara Seager, Earth and Planetary Science, MIT 
 12  
 19 Winter break - No meet 
 26 Tanja Bosak, Earth and Planetery Sciences, MIT 
March 5 Leia Stirling, Boston Children’s Hospital 
 12  
 19 Taylor Walker, DiMella Shaffer Architecture 
 26 Spring recess - No meet 

April 2  
 9  
 16 Eleanor Duckworth, Harvard Graduate School of Education 
 23 Spring break - No meet 
 30 Gigliola Staffilani, Mathematics, MIT 
May 7  
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 Girls’ Angle: A Math Club for Girls 
 
Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 
 
What is Girls’ Angle?  Girls’ Angle is a math club for girls and a supportive community for all girls and 
women engaged in the study, use and creation of mathematics.  Our primary mission is to foster and 
nurture girls’ interest and ability in mathematics and empower them to be able to tackle any field, no 
matter the level of mathematical sophistication required.  We offer a comprehensive approach to math 
education and use a four component strategy to achieve our mission: Girls’ Angle mentors, the Girls’ 
Angle Support Network, the Girls’ Angle Bulletin and Community Outreach. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society.  They write 
articles for the Bulletin, take part in interviews and visit the club. 
 
What is the Girls’ Angle Bulletin? The Girls’ Angle Bulletin is a bimonthly (6 issues per year) 
electronic publication that features interviews, articles and information of mathematical interest as well as 
a comic strip that involves mathematics. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-10.  We aim to overcome math anxiety and build solid foundations, so we welcome all 
girls regardless of perceived mathematical ability.  There is no entrance test. 
 
In what ways can a girl participate?  There are 3 ways: membership, subscription and premium 
subscription.  Membership is granted per session and includes access to the club and extends the 
member’s premium subscription to the Girls’ Angle Bulletin to one year from the start of the current or 
upcoming session.  You can also pay per session.  If you pay per session, you will get a subscription to 
the Bulletin, but the premium subscription will start when total payments reach the premium subscription 
rate.  Subscriptions are one-year subscriptions to the Girls’ Angle Bulletin.  Premium subscriptions are 
subscriptions to the Girls’ Angle Bulletin that allow the subscriber to ask and receive answers to math 
questions through email.   We currently operate in 12 meet sessions, but girls are welcome to join at any 
time.  The program is individually focused so the concept of “catching up with the group” doesn’t apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 10 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org or send us email. 
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Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
 
Are donations to Girls’ Angle tax deductible?  Yes.  Currently, Science Club for Girls, a 501(c)(3) 
corporation, is holding our treasury.  Please make donations out to Girls’ Angle c/o Science Club for 
Girls  and send checks to Ken Fan, P.O. Box 410038, Cambridge, MA 02141-0038. 
 
Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was an assistant professor of mathematics at Harvard, a member at the 
Institute for Advanced Study and a National Science Foundation postdoctoral fellow.  In addition, he has 
designed and taught math enrichment classes at Boston’s Museum of Science and worked in the 
mathematics educational publishing industry.  Ken has volunteered for Science Club for Girls and worked 
with girls to build large modular origami projects that were displayed at Boston Children’s Museum.  
These experiences and the enthusiasm of the girls of Science Club for Girls have motivated him to create 
Girls’ Angle. 
 
Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 
mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 

Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, graduate student in mathematics, Princeton 
Julia Elisenda Grigsby, NSF postdoctoral fellow, Columbia University 
Grace Lyo, Moore Instructor, MIT 
Lauren McGough, MIT ‘12 
Mia Minnes, Moore Instructor, MIT 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, Senior Research Scientist, Harvard Medical School. 
Kathy Paur, Ph.D., Harvard 
Katrin Wehrheim, associate professor of mathematics, MIT 
Lauren Williams, Benjamin Pierce assistant professor of mathematics, Harvard 

 
At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 
their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Applying For: �  Membership (Access to club, premium subscription) 

�  Subscription to Girls’ Angle Bulletin 
�  Premium Subscription (interact with mentors through email) 

 
Parents/Guardians: _____________________________________________________________________ 
 
Address: __________________________________________________________ Zip Code: __________ 
 
Home Phone: _________________ Cell Phone: _________________ Email: ______________________  
 
Emergency contact name and number: ___________________________________________________ 
 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  
They will have to sign her out.  Names: ____________________________________________________ 
 
Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to 
know about? __________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program 
in all media forms. We will not print or use your daughter’s name in any way. Do we have permission to 
use your daughter’s image for these purposes?             Yes  No 
 
Eligibility:  For now, girls who are roughly in grades 5-10 are welcome.  Although we will work hard to 
include every girl no matter her needs and to communicate with you any issues that may arise, Girls’ 
Angle has the discretion to dismiss any girl whose actions are disruptive to club activities. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
 
Membership-Applicant Signature: _________________________________________________________ 
 

�  Enclosed is a check for (indicate one) (prorate as necessary) 
�   $216 for a 12 session membership                       �   $100 for a one year premium subscription 
�   $20 for a one year subscription                            �   I am making a tax free charitable donation. 

 
�  I will pay on a per session basis at $20/session.  (Note: You still must return this form.) 

 
Please make check payable to: Girls’ Angle c/o Science Club for Girls.  Mail to: Ken Fan, P.O. Box 
410038, Cambridge, MA 02141-0038.  Please notify us of your application by sending email to 
girlsangle@gmail.com.  Paying on a per session basis comes with a one year subscription to the Bulletin, 
but not the math question email service.  Also, please sign and return the Liability Waiver. 
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Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 
 
 
 
 
 
 

 
A Math Club for Girls 

 


