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From the Director Girls’ Angle Bulletin 
 The official magazine of 

Girls’ Angle: A Math Club for girls Shortly after our last meet, we had a big Girls’ Angle planning 
meeting.  I’d like to share one fact that really stood out to me.  
One year prior to that meeting, there were exactly six people 
involved with Girls’ Angle.  When the meeting occurred, there 
were 48!  And, now, there are well over fifty helping Girls’ 
Angle achieve its mission.  Girls’ Angle is a product of all this 
help and all these helpers are Girls’ Angle. 

 
girlsangle@gmail.com 
 
This magazine is published about six times a 
year by Girls’ Angle to communicate with its 
members and to share ideas and information 
about mathematics. 
 
Girls’ Angle welcomes submissions that 
pertain to mathematics.  Subscriptions to the 
Girls’ Angle Bulletin cost $20 per year and 
support club activities. 
 
Editor: C. Kenneth Fan 
 
 
Girls’ Angle: 
A Math Club for Girls 
 
The mission of Girls’ Angle is to foster and 
nurture girls’ interest in mathematics and to 
empower girls to be able to tackle any field 
no matter the level of mathematical 
sophistication required. 
 
FOUNDER AND DIRECTOR 
C. Kenneth Fan 
 
BOARD OF ADVISORS 
Connie Chow 
Yaim Cooper 
Julia Elisenda Grigsby 
Grace Lyo 
Lauren McGough 
Beth O’Sullivan 
Elissa Ozanne 
Katherine Paur 
Katrin Wehrheim 
Lauren Williams 
 
 
On the cover: The club voted to use 
this brownie dissection scheme 
designed by Ilana.  See page 26. 

 
Girls’ Angle welcomes Katrin Wehrheim to the advisory board.  
Dr. Wehrheim is an assistant professor of mathematics at MIT.  
She has mentored at Girls’ Angle and it was thanks to her that 
Girls’ Angle was able to present at the MIT Women in 
Mathematics conference. 
 
One consequence of the presentation at MIT is the article on 
Penrose tilings by Allison Henrich and Sarah Wright.  In it, there 
are templates for two special tiles that you can make copies of 
and use to explore the world of asymmetric tiling. 
 
Finally, a reminder to our members and subscribers: we 
encourage you to send us solutions to the Summer Fun problems, 
email us your mathematical thoughts and feel free to ask us math 
questions! We’d love to hear from you! 
 
Ken Fan 
Founder and Director 
 
 

 

 
 

Girls’ Angle thanks the following for their generous 
contribution: 

Individuals 
 
Charles Burlingham Jr. 
Julee Kim 
Beth O’Sullivan 
Elissa Ozanne 
Patsy Wang-Iverson 
Anonymous 

 
Institutions 

 
The Mathematical Sciences Research Institute 
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What is a Proof? 
 
by Timothy Chow 
 
In the last issue of the Bulletin, we studied the number of paths to the various intersections in the 
one-way street map below, and we went through a careful proof that these numbers were the 
Fibonacci numbers. 
 

 
 
Some of you may have wondered why we went to so much trouble to find a proof.  After all, just 
by calculating the first few numbers, we could see that we were getting the Fibonacci numbers.  
To be on the safe side, maybe we should have calculated a few more numbers, since we’ve seen 
other examples where it’s a mistake to jump to conclusions based on just the first three or four 
numbers in a sequence.  But say we worked out the first thousand numbers (maybe with the help 
of a computer) and they were always Fibonacci numbers.  Wouldn’t that be convincing proof 
that we would always get Fibonacci numbers? 
 
This is a very important question.  Every professional mathematician will tell you that proof is 
extremely important in mathematics.  Some will even say that proofs are the most important part 
of mathematics, and that mathematical proof is what distinguishes mathematics from every other 
subject.  That’s a pretty big claim! So it’s worth spending some extra time thinking about what a 
proof is and why mathematicians make such a big fuss about it. 
 
As Ken explained last time, a proof is a very clearly spelled-out argument.  This is certainly true, 
but don’t scientists and lawyers and philosophers sometimes give very clearly spelled-out and 
convincing arguments? What makes mathematical proofs so special? 
 
One of the key features of a mathematical proof is that, once you have carefully checked that the 
argument is logically correct and that there are no loopholes or mistakes in it, you can be sure 
that no future evidence can ever overthrow the conclusion.  For example, let’s think about those 
Fibonacci numbers again.  Suppose we had calculated the first thousand numbers and found that 
they were Fibonacci numbers, but we did not have a proof that we would always get Fibonacci 
numbers.  Suppose then that some very famous and intelligent person were to come by the next 
day and say, “I used a much bigger computer than yours and I found that indeed, the first thirteen 
million numbers are Fibonacci numbers, but then after that, the pattern breaks down and we 
don’t get Fibonacci numbers any more.”  What would we make of that? 
 
Well, if we were honest about it, we would have to admit that maybe this person is right.  We 
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would need to look at the computer program and examine this new evidence to see if it forces us 
to change our minds.  After all, that is how the natural sciences work.  For centuries, Newton’s 
laws of physics were believed to hold universally.  There was a huge amount of evidence for 
those laws and very convincing arguments to support them.  But then in the twentieth century, 
physicists found that Newton’s laws break down in certain extreme circumstances, and relativity 
theory and quantum theory had to be invented.  Scientists studying the natural world know that 
we must always keep an open mind, and that new evidence in the future may force us to revise 
our scientific theories.  Therefore, scientific “proof” may be convincing and clear, but it is never 
definitive; it is always tentative. 

 
But the situation is different 
with mathematical proof.  If 
we are armed not only with 
some calculations, but also a 
proof that the numbers of 
paths are indeed Fibonacci 
numbers, then if someone 
produces a computer 
program showing that the 
pattern breaks down after 
thirteen million, then we can 
say for sure that the 
computer program (or the 
computer itself!) has a bug 
in it, without even looking at 
the computer program! It 
does not matter how 
respected or how intelligent 
the programmer is.  With a 
mathematical proof in hand, 
we can guarantee that 
something went wrong with 
the calculation. 
 

Maybe you can see now why mathematicians get so excited about proofs.  A proof lasts forever; 
it will never be undermined in the future, no matter how smart people or computers become.  On 
the other hand, without a proof, you can never be completely sure that what you think is true is 
really true, even if there seems to be a lot of convincing evidence for it.  That is why 
mathematicians work so hard to find proofs of mathematical claims, even if the claims seem 
“obvious”. 
 
One last word of caution:  A proof only has this magical quality of being everlasting and 
definitive if there are no mistakes in the argument! Everyone, even the world’s most brilliant 
mathematician, makes mistakes sometimes.  So, when you are trying to construct a proof, be 
very careful to make sure that every step is logically correct and has no loopholes in it.  At first 
you may have trouble recognizing when an argument has a loophole in it and when it does not, 
but that is one thing the mentors are there to help you with.  Finding proofs is a tricky business 
and takes a lot of experience, but it is an art worth mastering. There is nothing like the thrill of 
finding a proof on your own and getting a taste of eternity! 

Fibonacci Numbers 
 
To illustrate the ideas presented in this article further, let’s consider an aspect of the 
table of greatest common factors of pairs of Fibonacci numbers on page 8.  Notice that 
just above and below the diagonal there is always a 1.  What this means is that 
consecutive Fibonacci numbers are relatively prime, at least, for those Fibonacci 
numbers that are in that table.  Is this true in general? What would you say if someone 
said to you, “I have computed the ten billion trillionth and ten billion trillion and first 
Fibonacci numbers and they are both divisible by 5!”? 
 
Well, I would say, “Liar!”  For I have proven that consecutive Fibonacci numbers must 
be relatively prime.  So I know that any such claim must be false.  Maybe “liar” is too 
strong…maybe the person really did try to compute those two Fibonacci numbers but 
erred.  Whether or not the person lied or just made a mistake, I can tell you that those 
two Fibonacci numbers are definitely relatively prime, and, I don’t even know what 
those two Fibonacci numbers are! Here’s my proof: 
 
Proof. Let Fn be the nth Fibonacci number and let d be the greatest common factor of Fn 
and Fn + 1 .  I will show that d = 1.  For n > 1, we know that Fn + 1 = Fn + Fn - 1, by 
definition  We can rearrange like this: Fn - 1 = Fn + 1 - Fn.  This equation tells us that if a 
number divides Fn and Fn + 1, then it must also divide Fn - 1.  From the previous 
observation, we know that d divides Fn -1.  Applying the previous observation again 
using the equation Fn - 2 = Fn - Fn - 1, we see that d divides Fn - 2.  Repeatedly applying the 
same observation, we see that d divides Fn - 3, Fn - 4, Fn - 5, …, all the way down to F1.  
But F1 = 1 and if d divides 1, it must be equal to 1. □ 

-Editor 
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How Many Prime Numbers Are There? 
 
by Lauren McGough 
 
One of the topics we have talked about often at Girls’ Angle is the idea of divisibility: if one 
integer can be evenly divided by another integer, we say the first number is divisible by the 
second number.  Well, you probably already know that some numbers are special – they have 
exactly two factors, as they are only divisible by 1 and themselves. Positive integers with this 
property are called prime numbers.  For example, the number 2 is prime – it is only divisible by 
1 and itself, 2; the numbers 3, 5 and 23 are other examples of prime numbers. 
 
Prime numbers are tricky things in math because if you start counting from 1 and keep counting 
into infinity, it is difficult to know just when another prime number will pop up, especially as 
you get into large numbers.  For example, the number 91 may seem prime at first sight, but it is 
actually the product of 7 and 13, giving it four divisors, 1, 7, 13 and 91.  It is often hard to prove 
that very large numbers are prime, as doing so requires doing many divisions to see if such 
numbers have any factors other than 1 and themselves. 
 
With all of this difficulty in predicting which numbers are prime without doing many divisions, 
you might start to wonder, given a prime p, is it always possible to find a prime number larger 
than p? Maybe there is just some point after which all of the numbers are composite; that is, 
maybe after some point, all of the numbers have more factors than just 1 and themselves.  How 
can we tell how many primes there are? How do we know, after finding one prime, that there is 
or isn’t some larger prime number out there in existence? After all, we can’t just go through all 
of the integers and test them to see if they are prime – there are infinitely many integers, so that 
would take infinitely many divisions, and we may not have infinite time! 
 
Luckily for us, there is at least one way to know exactly how many primes there are.  If you read 
the previous article, you might even be able to guess what that way of knowing is.  That’s right: 
we have the power of proof.  So let’s see if we can use that power to figure out, once and for all, 
how many primes there are. 
 
Let’s assume that there are finitely many prime numbers.  If we operate under this assumption, 
perhaps we will succeed in finding the largest prime, or, perhaps we will discover a logical 
contradiction.  If we arrive at a contradiction, then we’ll know that this assumption cannot be 
correct and will have discovered a proof by contradiction that shows there are, in fact, infinitely 
many primes.  (See the first issue of this Bulletin for more on proofs by contradiction.)  So, if 
there are finitely many prime numbers, say, n of them, we could in principle list them all: , 

, , …, .  This list will have some largest element, the largest prime number, since every 
finite list of integers has to have a largest element.  Ok, well, that’s fine.  We had considered that 
maybe there was a largest prime number. But wait, is this fine? 

1p

2p 3p np

 
Now that we have this list of prime numbers, we can form a new number N by setting 

 + 1; that is, N is one more than the product of these prime numbers.  
This number is larger than any of the primes in our list, since all of our primes are greater than 1, 
and since the product of several numbers that are greater than 1 will be greater than any of the 

1 2 3 nN p p p p= × × × ×L
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individual numbers.  Since N is greater than any of the primes in our complete list of primes, it 
must be a composite number and have factors other than 1 or itself.  What are its factors? 
 
Is it divisible by ? No, it can’t be: since N - 1 is divisible by , the remainder when N is 
divided by  is 1, but if N were divisible by , the remainder would be 0, so N cannot be 
divisible by . How about by ? By the same argument, since N - 1 is divisible by , the 
remainder when N is divided by  is 1, but the remainder must be 0 if N is to be divisible 
by , so N cannot be divisible by .  Can N be divisible by any prime p in our list? By the 
same argument, you could go through each prime in our list, no matter how many primes there 
were, and realize that since N - 1 will always be divisible by p, N divided by p will always leave 
a remainder of 1, and thus N cannot be divisible by any prime on our list! 

1p 1p

1p 1p

1p 2p 2p

2p

2p 2p

 
Ok, you say, but I didn’t say N had to be divisible by a prime – I just said it had to be composite, 
which means that is has to have factors other than 1 and itself.  But in fact, any composite 
number must have a prime factor.  For if you start with a composite number, it must have some 
factor, say c, other than 1 or itself.  If c is not prime, it too would be composite, and we could 
find a factor of c, say d, that was not 1 or c.  If d is not prime, we could find a factor of it, say e, 
that was not 1 or d, and so on, finding ever smaller factors.  Eventually, we’d have to arrive at a 
prime factor because you cannot keep getting smaller and smaller like that (always smaller and 
always bigger than 1).  By the way, I used the fact that if a divides b and b divides c, then a 
divides c in this argument – do you see how? So N, being composite, must be divisible by some 
prime.  But we know that N is not divisible by any of the primes on our list. But our list is 
supposed to be a list of all the prime numbers.  Impossible! This is a contradiction! 
 
What went wrong? Our construction of N was perfectly acceptable; our reasoning that N was not 
divisible by any of the primes on our list came directly out of the construction of N. Since our 
argument was logical but our conclusion made no sense, we must go back and realize it must 
have been our initial assumption that was incorrect. If you remember, our initial assumption was 
just that the number of primes is finite. What does all of this tell us? That in fact, this assumption 
was wrong: there must be an infinite number of primes. 
 
This conclusion is extremely valuable to our knowledge about the integers.  First of all, we know 
that there are infinitely many prime numbers without knowing what they all are! Even without a 
list of all the primes, we have just proven decisively that there are infinitely many primes. 
Second of all, we can know that if anyone claims to have found the largest prime number, that 
person is wrong.  We now know that given any prime number, there exist prime numbers that are 
larger than that prime number. Actually, given any prime number, there exist infinitely many 
larger prime numbers!  The race to determine the largest known prime number will never end. 
 
This power of knowing something infinite without doing infinite amounts of work is one of the 
many powers given to us by the power of proof.  Proofs give us the ability to know answers for 
sure.  The question of how many primes there are is just one of the many questions mathematics 
can answer.  So, now we know there are infinitely many.  Of course, we could then ask, how 
many primes are there less than 100, or 10,000, or 1,000,000, or, more generally, how many 
primes are there less than x for any x?  Well, I don’t know, maybe you can tell me? And while 
you’re at it, can you prove it? 
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en.wikipedia.org/wiki/Image:Raffael_058.jpg  

Mystery Woman! 
 
Raphael painted Philosophy about 500 years ago.  Over 25 feet by 16 feet, he took 2 years to 
paint it on a wall in the Vatican.  Also known as the School of Athens, it depicts various scholars.  
The two central figures are famous philosophers: Plato and Aristotle. 
 
All the figures depicted in the painting are men. 
 
Except for one. 
 
Do you see her? 
 
Who does she represent? 
 
What did this thinker do? 
 
If you figure it out, email us about it at girlsangle@gmail.com. 
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Table of Greatest Common Factors 
of Pairs of Fibonacci Numbers 

 
 

Table of Greatest Common Factors of Pairs of Fibonacci Numbers 
   Fm 
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 

3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 

5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 

8 1 1 2 1 1 8 1 1 2 1 1 8 1 1 2 

13 1 1 1 1 1 1 13 1 1 1 1 1 1 13 1 

21 1 1 1 3 1 1 1 21 1 1 1 3 1 1 1 

34 1 1 2 1 1 2 1 1 34 1 1 2 1 1 2 

55 1 1 1 1 5 1 1 1 1 55 1 1 1 1 5 

89 1 1 1 1 1 1 1 1 1 1 89 1 1 1 1 

144 1 1 2 3 1 8 1 3 2 1 1 144 1 1 2 

233 1 1 1 1 1 1 1 1 1 1 1 1 233 1 1 

377 1 1 1 1 1 1 13 1 1 1 1 1 1 377 1 

610 1 1 2 1 5 2 1 1 2 5 1 2 1 1 610
 
Here is a table of greatest common factors of pairs of Fibonacci numbers for the first 15 
Fibonacci numbers.  What patterns do you see? 
 
Here are a few patterns: 
 
 The first row and column contain only the number one. 
 
 The diagonal (places where n = m) contains a copy of the Fibonacci sequence. 
 
 The table is symmetric about the diagonal. 
 
Here's an unresolved question related to Lauren’s article and the Fibonacci sequence: Are there 
infinitely many prime Fibonacci numbers?  It is known that there are infinitely many primes (see 
page 5), but are there infinitely many primes in the Fibonacci sequence?  That…nobody knows! 
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A Puzzling Problem for Penrose 
 
by Allison Henrich and Sarah Wright 
 

 
An example of a tiling. 

Have you ever played with geometric shapes, trying to 
get them to fit together or make a pretty picture? If so, 
then you have something in common with Sir Roger 
Penrose.  Penrose was fascinated by mathematical 
objects called tilings.  Also known as tessellations, 
tilings are arrangements of geometric objects that fill 
the plane with no gaps or overlaps: 
 
The geometric shapes that make up a tiling are called 
tiles.  When these tiles are joined so that whenever two 
tiles share an edge, the edges match up exactly, the 
tiling is called an edge-to-edge tiling.  In and edge-to-
edge tiling, the points where three or more tiles come 
together are called vertex configurations.  If you 
wanted to build a tiling, you could start with a vertex 
configuration and add more tiles to expand your 
picture.  Like this: 

 
Tilings of the plane often have very nice properties, called symmetries.  There are three types of 
symmetries we can look for: translational symmetry, reflectional symmetry and rotational 
symmetry. 
 

If a tiling of the plane that extends out forever has 
translational symmetry, this means that you can slide the 
picture in some direction so that the tiles exactly line up 
with one another.  Can you find translational symmetry in 
the tiling at left?  Imagine that it extends infinitely in all 
directions. 
 
Now what does reflectional symmetry mean? Any 
guesses? A tiling has reflectional symmetry, also known as 
mirror symmetry, if you can fold it along a straight line 
and have the tiles match up with one another.  Think of a 
butterfly. If the line of symmetry is the body of the 
butterfly, you can fold the wings on top of each other so 
their shapes and patterns match up. 
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How many lines of symmetry can you find in these pictures? 
 

 
. en.wikipedia.org/wiki/Image:Monarch_In_May.jpg 

 

 
 
The third type of symmetry is sometimes the most 
difficult to spot.  A tiling has rotational symmetry if 
you can rotate the whole plane around a point so that 
the picture looks the same.  An object that we’ve all 
seen that has rotational symmetry is the wheel of a 
bike.  A wheel with 6 spokes can be rotated by 60 
degrees and still look the same as before.  In this 
case, we’d say that the wheel has 6-fold rotational 
symmetry. In general, a tiling has n-fold rotational 

symmetry if rotating the picture 360
n

 degrees gives 

the same picture.  Try to find 3-fold rotational 
symmetry in the tiling shown to the right. Are there 
any other rotational symmetries? 
 
 
What types of symmetries can you find in these tilings? 
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Many of the tilings we’ve seen so far have a lot of nice properties.  Penrose was looking for a 
tiling that had some definite nice properties, but was missing others. One of the tilings given his 
name is a tiling with 5-fold rotational symmetry, but no translational symmetry. 
 
The particular Penrose Tiling we’ll look at is made up of two types of tiles: kites and darts. 

  
A kite. A dart. 

 
Use construction paper to cut out several of each of the tiles above. Since it is important that the 
angles of the shapes be exact, use the shapes above as a template. 
 
You may notice that the kite and dart fit together nicely to form a diamond, but this configuration 
is not allowed. There are two rules that you must follow when fitting the tiles together: 
 

1. Make sure that the dots near the edges of the tiles match up with dots in adjacent tiles. 
 
2. There are two lengths of edges, short and long.  You are not allowed to put a long edge of 

one tile beside a short edge of another tile. 
 

 
Use the tiles you made to see how many different vertex configurations you can find. How many 
can you find? Do think that is all of them? How could you show you haven’t missed any? Is it 
possible that there are infinitely many? Of the configurations you found, what symmetries can 
you identify? 
 
Penrose tilings have many interesting properties. For instance, any configuration of Penrose tiles 
will appear infinitely many times in any Penrose tiling of the plane. Also, there are an infinite 
number of different tilings that can be made with kites and darts, following the rules above. For 
more information on Penrose tilings check out the Wikipedia website. 
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Square Root Information Sheet 
 
Square roots have popped at the club on a number of occasions.  This page summarizes 
properties of square roots.  Make sure you understand each property.  If you are having trouble 
with any of them, feel free to write us about it! 
 
Let x be a number, like 0, 1, 1.5 or even π. 
 
It is possible to define square roots for negative numbers, but we’ll save that for another day.  
Today, let’s assume that x is not negative, that is, x ≥ 0. 
 
(If you know about complex numbers, you’ll see that we have also implicitly assumed that x is a 
real number.) 
 
Definition.  A square root of x is any number whose square is equal to x. 
 
Example: -5 and 5 are both square roots of 25. 
 
1. Every number x has exactly two square roots with the exception of zero, which has only one 
square root. 
 
2. If y is a square root of x, then -y is also a square root of x. 
 
This means that if x > 0, one of its square roots will be positive and the other will be negative.  
The positive square root of x is denoted x .  This is also called the principal square root of x. 
 

 
 

Many, many people forget that there are generally two square roots and not just the positive 
one.  They forget that x  stands for the positive square root only and begin to think of x  
as the square root of x.  This is a very common conceptual error!  Don’t fall into this trap!!! 

3. For x ≥ 0, we have 
2

x x= .  
 
4. For any x (including negative values), we have 2x x= .  (Recall that |x| is the absolute value 
of x.  Why do we have to use the absolute value here?) 
 
5. (Multiplication) xy x= y . 
 

Square roots do not behave simply with respect to addition! 
 

6. For x > 0, we have 1 1 x
x xx
= = . 

 
7. If 0 ≤ x < y, then 0 ≤ x  < y . 
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Square Roots - True or False? 

Assume that x  = 3
2

 and 4
3

y = . 

1. -5 is a square root of 25 T     F 

2. The principal square root of 2.5 is 0.5. T     F 

3. 3 < 10 < 4 T     F 

4. 3123 = 
3

123  T     F 

5. If a = b, then a2 = b2. T     F 

6. If a2 = b2, then a = b. T     F 

7. The value of 9y is 16. T     F 

8. xy  = 2 T     F 

9. 
x
y

 = 8
9

 T     F 

10. If a > 0, then a  < a. T     F 

11. The only solution to a  = a is a = 0. T     F 

12. x y+ =17
6

 T     F 

13. ( 2  + 1)( 2  - 1) = 1 T     F 

14. 1 7
77

=  T     F 

15. 1800 30 2=  T     F 

16. 
1 2 1

2 1
≠ +

−
 T     F 

Answers will appear in the next issue.

© Copyright 2008 Girls’ Angle.  All Rights Reserved.                                                                13 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

More Tessellations 
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A Comment on Lines 
 
by Ken Fan 
 
In Lauren McGough’s first problem from her Slope Problem Set I (see page 19), we’re asked to 
draw some lines and compute the slope using various pairs of points to see that the slope doesn’t 
depend on the choice of points used. 
 
However, no matter how many pairs of points you check this for, it does not suffice to prove that 
the slope will be the same.  Also, there are issues concerning the problem of error in 
measurements made in the real world which can be very distracting but are not actually relevant. 
 
Ultimately, in mathematics, we have to ask, how can we prove that the slope will be the same no 
matter what pair of points are used to compute it? 
 
Proofs require great precision in thought and writing.  Each step must carefully be checked to be 
logically sound, and all the steps that are taken must be about things that are clearly defined. 
 
In order to prove that the slope is the same regardless of which two points on a line are used to 
compute it, one must clearly define just exactly what a line is. 
 
Without a definition of line, there can be no mathematical proofs involving line. 
 
However, defining a line is quite a tricky business!  In fact, there are many definitions of line 
used by mathematicians and each attempts to model our intuitive notion of a line as that 
“straight” geometric object or that path of “shortest length”.  Depending on the choice of 
definition, the proof that the slope does not depend on which two points on the line that are used 
to calculate it can be very straightforward or rather difficult. 
 
Perhaps we’ll address some of these definitions in the future. 
 
But for now, keep in mind that Lauren’s solution really only suggests that the slope is 
independent of the choice of points used to compute it.  (She, by the way, repeated her solution 
for a few lines, not just the one printed in this issue.)  The exercise can also be used to help one 
develop intuition about lines that could be used to guide the construction of a precise definition. 
 
How would you give a precise definition of line?  Send in your ideas to girlsangle@gmail.com! 
 
By the way, let’s not forget about the geometric notion of a point!  What is a good definition for 
a point?  Believe it or not, for such a seemingly simple concept as the point, it was not until 
relatively recently in history that a definition of point was given that is mathematically 
acceptable.  In the twentieth century, the mathematical point has become a subtle and 
sophisticated object.  Is it surprising that it took so long for humans to develop a mathematical 
definition of point?  Perhaps when you realize how strong people’s intuitive notion of a point is, 
it is not so very surprising.  People tend to overlook things that they take for granted, and it often 
takes a genius to stop and think about something that everybody else has been taking for granted 
as far back as people can remember.  So, the next time you think something is obvious, catch 
yourself and give it a closer thought!
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In the last issue, we invited members and subscribers of the Bulletin to submit solutions to a 
number of Summer Fun problem sets.  In this issue, we are going to provide solutions to the first 
problem from each problem set. 
 
You can still send any questions and solutions to girlsangle@gmail.com.  We’ll give you 
feedback and put your solutions in the Bulletin! 
 
In the August issue, we will give complete solutions.  You could wait until the August issue to 
see the answers, but you will learn a lot more if you try to solve these problems before seeing 
solutions.  If you haven’t tried to solve the first problems in each problem set yet, but would like 
to, please do! 
 
Each of the following pages will reprint the first problems from each problem set followed by a 
solution. 
 
However, there is a catch to this!  Some of the solutions have been planted with deliberate 
errors!  See if you can find all the errors.  Count how many errors there are and send this number 
to us at girlsangle@gmail.com.  We’ll reveal this secret number in the next issue! 
 
So, read carefully! 
 
 
 
 

© Copyright 2008 Girls’ Angle.  All Rights Reserved.                                                                16 

mailto:girlsangle@gmail.com
mailto:girlsangle@gmail.com


Parity: Are you Even or Odd?  
by Ken Fan 
 
In this problem set, when I say “number”, I mean an integer, that is, a counting number, the 
negative of a counting number, or zero. 
 
1.  We’ve encountered parity many times at the club.  Just knowing whether a number is even or 
odd can often be powerful information!  Recall that a number is even if and only if it is divisible 
by 2.  Otherwise, it is odd. 
 

a. Write down the first 10 (positive) even numbers and the first 10 (positive) odd numbers. 
b. Is zero even or odd? 
c. Which prime numbers are even?  Which prime numbers are odd? 

 
Solution 
 
(Ken Fan) 
 
1a. The first 10 positive even numbers are 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.  The first 10 
positive odd numbers are 1, 3, 5, 7, 9, 11, 13, 17 and 19. 
 
1b. Zero is even. 
 
1c. The only even prime number is 2.  (We’re taking the prime numbers to all be positive.) To 
see why, notice that if n is even, then n is a multiple of 2.  That means we can write n = 2m 
where m is an integer.  But if m > 1, this would exhibit n as a composite number.  The only way 
n could be prime is if m = 1, that is, if n = 2.  We can see that 2 is prime because its only factors 
are 1 and 2.  If the only even prime number is 2, then all the other prime numbers are odd. 
 
 
 
Number of errors: ___________
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Pascal's Triangle and Binomial Coefficients 
by Elisenda Grigsby 
 
Suppose that x and y are variables.  We can manipulate the symbols without having to know 
what numbers they represent.  For example, we can write “x + y”, and it means “add x and y”.  If 
x represents 2, and y represents 3, then “x + y” represents “5”.  The point is that the expression “x 
+ y” itself doesn’t depend on what numbers x and y actually represent, and we can think about 
what we can say about these expressions in general, without worrying about some particular 
choice of numbers for x and y. 
 
As an example, let’s consider the following question: Let x and y be numbers.  What can we say 
about the expression (x + y)n, when n = 0, 1, 2, 3, ...? 
 
So, (x + y)0 = 1; (the result of multiplying a number by itself 0 times is usually defined to be 1) 
      (x + y)1 = x + y; 
      (x + y)2 = (x + y)(x + y); 
      (x + y)3 = (x + y)(x + y)(x + y); 
      etc.... 
 
1.  Show that (x + y)2 = x2 + 2xy + y2 and (x + y)3 = x3 + 3x2y + 3xy2 + y3.  What is (x + y)4?  
(Hint: Use the distributive property of numbers: (x + y)(z) = xz + yz, for all numbers x, y, and z.  
Also, remember that multiplying two numbers doesn’t depend on the order in which we multiply 
them.  So, if x and y are two numbers, then xy = yx.) 
 
Solution 
 
1. (Eli Grigsby) Just multiply! 

(x + y)2 = (x + y)(x + y) 
= x(x + y) + y(x + y) 
= x2 + xy + yx + y2 
= x2 + 2xy + y2 

 
(x + y)3 = (x + y)2(x + y) 

 = (x2 + 2xy + y2)(x + y) 
 = (x2 + 2xy + y2)x + (x2 + 2xy + y2)y 
 = x3 + 2x2y + y2x + x2y + 2xy2 + y3 
 = x3 + 3x2y + 3xy2 + y3 

 
(x + y)4 = (x + y)3(x + y) 

 = (x3 + 3x2y + 3xy2 + y3)(x + y) 
 = x4 + 3x3y + 3x2y2 + xy3 + x3y + 3x2y2 + 3xy3 + y4 
 = x4 + 4x3y + 8x2y2 + 4xy3 + y4 

 
 
Number of errors: ___________ 
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Slope Problem Set I 
by Lauren McGough 
 
For this problem set, we’re going to be dealing a lot with lines.  If you think about a straight line 
on a coordinate plane where the horizontal and the vertical directions are defined, it has a certain 
steepness associated with it.  Maybe it is completely parallel to the horizontal, in this direction: –
––. Or maybe it is parallel to the vertical, in this direction: | .  Or maybe it makes some angle 
with the horizontal, like this: / , or this: \.  Each of these lines has a different “steepness” 
associated with it.  There is a number we use to measure this property of steepness: it’s called 
slope.  The slope of a line is just the ratio of the amount the line goes up for every unit it goes 
over.  We can measure slope just by taking two points on a line, and calculating the change in the 
vertical direction divided by the change in the horizontal direction.  First, let’s make sense of this 
definition! 
 
1.  The first question here is: draw some lines, and calculate their slopes using a few sets of 
different points. Is the slope always the same no matter what points you use? Why or why not? 
(We hope it is, because otherwise, the definition of the “slope of a line” doesn’t make sense– the 
line could have a different slope at every point!) 
 
Solution 
 
1. (Lauren McGough) Let’s try the line graphed at right.  Some 
pairs of points on this line are: 
 
(3, 4) and (8, 9) 
(0, 1) and (-3, -2) 
(-2, -1) and (-1, 0) 
 
Calculating the slope of the line using each of these pairs by 
calculating the ratio of the vertical change to the horizontal 
change, we find: 

(first pair) 9 4 5 1
8 3 5
−

= =
−

  

(second pair) 2 1 3 1
3 0 3
− − −

= =
− −

 

(third pair) 0 ( 1) 1 1
1 ( 2) 1
− −

= =
− − −

 

 
We got the same ratio, 1, each time! 
 
 
Number of errors: ___________

This problem is actually quite 
deep.  See page 15. -Editor 
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Slope Problem Set II 
by Lauren McGough 
 
Let’s continue using the same set up of Slope Problem Set I. 
 
1.  Sometimes, people like to express all of the points on a line using an equation that relates a 
and b for all points (a, b) on the line.  Consider a line of slope 5 that goes through the 
intersection of the two axes on the plane– that is, through the “origin”.  Can you think of a 
relationship that all of the points (a, b) satisfy– that is, can you write an equation using a, b and 
the slope of the line such that if a and b satisfy the equation, then (a, b) is a point on the line and 
vice versa? 
 
Solution 
 
1. (Ken Fan) The problem asks for an equation that describes the coordinates of a point on a line 
that passes through the origin and has a slope of 5. 
 
The origin has coordinates (0, 0).  If (a, b) is any other point on the line, then we can use these 
two points to compute the slope, and this slope must be equal to 5: 
 

0 5
0

b
a
−

=
−

 

 
This simplifies to: 
 

5b
a
=  

 
Notice that a cannot equal zero in this equation because you cannot divide by zero.  If we 
multiply both sides by a we get the equation a = 5b.  In this last equation, if a = 0, then b = 0, 
and this would correspond to the point (0, 0) which we know is on the line.  So we conclude that 
the equation b = 5a describes the relationship between the coordinates of points on the line with 
slope 5 that passes through the origin. 
 
 
 
 
 
Number of errors: ___________
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Origami Math 
by Ken Fan 
 
Origami artists start with square pieces of paper and fold them into works of art.  There is quite a 
bit of mathematics related to origami.  Christine’s article (see the prior issue of this Bulletin) 
gave an example and this problem set introduces some others. 
 
1. Take an origami square. 

a. If you fold the square in half along a crease parallel to a side, what is the resulting shape? 
b. If you fold the square in half along a diagonal, what is the resulting shape? 
c. If you fold an origami square in half repeatedly a total of n times, how many layers of 

paper will there be? 
 
Solution 
 
(Ken Fan) 
 
1a. A rectangle with proportions 2:1 (or 1:2). 
 
1b. An isosceles right triangle. 
 
1c. There will be 2n - 1 layers. 
 
 
 
 
Number of errors: ___________ 
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You can see this painting by Spanish painter Luis Meléndez at 
the Museum of Fine Arts in Boston. 

Getting a Balanced Diet 
by Lauren Williams 
 
An “average” human being consumes about 1940 
calories per day.  All food is comprised of 
carbohydrates, fat, and/or protein.  One gram of 
protein or carbohydrates provides 4 calories, 
and one gram of fat provides 9 calories.  Suppose 
a person decides to get the 1940 calories by eating 
50 grams of protein, 300 grams of carbohydrates 
and 60 grams of fat.  Let’s see how this person 
could do that with different kinds of foods! 
 

Photo courtesy of http://commons.wikimedia.org/wiki/Main Page

1.  A pat of butter contains 4 grams of fat (and no 
significant protein or carbohydrates).  A large 
pear contains 30 grams of carbohydrates (and no 
significant amount of protein or fat).  A can of tuna canned in water contains 40 grams of protein 
(and no significant quantity of fat or carbohydrates).  In order to consume 50 grams of protein, 
300 grams of carbohydrates, and 60 grams of fat, while eating only butter, pears, and canned 
tuna, how much of each quantity of food should the person eat? 
 
Solution 
 
1. (Lauren Williams) The recommended daily amount of protein in a 1940 calorie diet is 50 
grams.  If we only plan to eat butters, pears and canned tuna, how can we get 50 grams of protein 
in a day?  We’re told that butter and pears don’t contain protein, but tuna contains 40 grams of 
protein per can.  How many cans of tuna should we consume to get 50 grams of protein?  One 
can is too little and two cans are too much.  We can make an educated guess and arrive at 1.5 
cans of tuna.  Alternatively, we could let T represent the number of cans of tuna that we should 
eat; in that case we will consume 40T grams of protein, which must be equal to 50.  Solving 40T  
= 50 we get T = 1.5. 
 
Similarly, let’s see how we can get 300 grams of carbohydrates.  The only food among butter, 
pears, and tuna which contains carbohydrates is pears.  Each pear contains 30 grams of 
carbohydrates.  We can again “guess” that the right number of pears to eat is 10.  Alternatively, 
we can let P represent the number of pears we should eat; in that case we will consume 30P 
grams of carbohydrates from the pears.  Solving 30P = 300 we get P = 10.   
 
Finally, let’s see how we can get 60 grams of fat.  The only food among butter, pears and tuna 
which contains fat is butter, which contains 4 grams of fat.  So we can “guess” that the right 
number of pats of butter is 15.  Alternatively, we can let B represent the number of pats of butter 
we should eat; in that case we will consume 4B grams of fat.  Solving 4B = 60 we get B = 15. 
 
Therefore we should eat one and one-half cans of tuna, ten pears and fifteen pats of butter.  Does 
this menu sound appealing to you? 
 
 
Number of errors: ___________ 
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Discovering Square Roots 
Via the Pythagorean Theorem 
by Anda Degeratu 
 

In this problem set we are going to look at square roots using 
triangles, which we construct using only the following three 
tools: a ruler which is marked 1, 2, 3 and 4, a right angle, and 
a compass. 
  
For example, if we construct a triangle with a right angle 
with short sides of length 1, the Pythagorean theorem tells us 
the length of the long side: it is 2 . 
  
Now, using the segment of length 2 as a leg we can 
construct another right triangle with the other leg of length 1.  
In this new triangle, the long side has length 3 . 
  
The triangle inequality in this new triangle gives 

 
Triangle inequality: 
 
For an arbitrary triangle with sides of 
length a, b and c, we have 
 

a + b > c 
b + c > a 
c + a > b 

 
 
…but if the triangle has a right angle 
between the sides of length a and b, 
more can be said: 
 

a < c and b < c 
 
and we also have the powerful 
Pythagorean theorem: 
 

a2 + b2 = c2 

 
 
Square roots: 
 
Recall that the principal square root 
of a positive number a is the positive 
number x that satisfies x2 = a.  We 
denote it by a . 
 
Example: the principal square root of 
1.69 is 1.3 because 1.32 = 1.69. 

3  < 1 + . 2
 
Moreover, since this is a right triangle, we also get 2  < 3  
(which you already knew since 2 < 3 implies 2  < 3 ). 
  
1.  Find two ways to construct a segment of length 5 .  (For 
both ways, you should use only the three tools given to you.  
Note that the compass can be used to construct segments of a 
certain length, once you have constructed them somewhere 
else on your sheet of paper.)  
 
Solution 
 
(Ken Fan) 
 
 
1. Method 1: Make a right triangle with legs of length 1 and 
2.  The hypotenuse will have length 5 . 
 

Method 2: Make a right triangle with legs of length 2  and 3 .  (Use the method in the 
statement of the problem to make these lengths.)  The hypotenuse will have length 5 . 
 
 
Number of errors: ___________ 
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Notes from the Club 
 
These notes cover some of what happened at Girls’ Angle meets.  They are not meant to be 
complete. 
 

Session 2 – Meet 11 – May 1, 2008 
 
Mentors: Beth Schaffer, Cammie Smith Barnes, Ken Fan, Lauren McGough 
 
Special Visitors: Sarah Ackley and Adele Schwab, MIT ‘08 
 
We began this meet with some questions that involve periodicity.  Periodicity has shown up in 
subtle ways throughout the entire second session. 
 

1. What is the largest power of 2 that divides 10! = 
10 × 9 × 8 × . . . × 3 × 2 × 1?  More generally, 
what is the largest power of 2 that divides n!, 
which is the product of the numbers from 1 to n? 
 
2. Carol has less than $250.  She buys several 
boxes of chocolate.  Each box costs $3.  If she tries 
to split the boxes among 7 people, she ends up 
with 5 boxes left over.  If she tries to split the 
boxes among 12 people, she ends up with 3 boxes 
left over.  How many boxes of chocolate did she 
buy? 
 
We also slipped in an area question in anticipation 
of the area activity for the last meet: 
 
What is area of triangle with two sides of lengths s 
and t units which are separated by an angle of a 
degrees in terms of the area A of a triangle with 
two sides of length 1 unit separated by the same 
angle of a degrees? 

 
Each member also received a Masu box folded by origami artist Christine Edison (see the 
previous issue of this Bulletin).  Tree, The Cat and Sylvia reverse engineered these boxes with 
Cammie, while the other girls worked on the problems. 
 
Sarah Ackley and Adele Schwab gave a presentation on the mathematics of light.  Using laser 
pointers, the girls explored refraction, diffraction gratings, polarized lenses, and reflections on 
CDs and peacock feathers.  Light can be modeled using periodic functions and diffraction 
patterns show how complex periodic interactions can be. 
 
A laser pointer emits light with a fixed period.  It was Isaac Newton who showed that white light 
consists of light of all different periods by shining it through a prism and using the fact that the 
amount that light bends when passing through a prism depends on its period (or color). 
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Session 2 – Meet 12 – May 8, 2008 
 
Mentors: Alison Miller, Cammie Smith Barnes, Ken Fan, Lauren McGough, Inna Zakharevich. 
 
We celebrated the last meet with a brownie…but not just any brownie.  This brownie was cut 
into the shape of a large trapezoid.  Before any brownie was served, members had to figure out 
how to cut up the trapezoid into equal pieces. 
 
In order to maximize motivation, we made sure that the brownie tasted great.  In fact, we didn’t 
just make sure that the brownie tasted great.  We actually were fortunate to have one of the 
finest, most scrumptious brownies in bean town, courtesy of Rosie’s Bakery.  They baked a 
special brownie using their award winning recipe for Girls’ Angle.  With this mouth-watering 
brownie, the people of Rosie’s Bakery stimulated the study of geometry! 
 
Here is a scale drawing of the brownie we used: 
 

 
 
The challenge was to cut this trapezoidal brownie from Rosie’s Bakery into 15 equal area pieces. 
 
Many began by computing what the area of each individual piece 
should be.  Using various techniques, the girls determined that the 
area of the trapezoid was 120 square inches.  Dividing this by 15 
would give 8 square inches of brownie for each person.  Yum! 

 
Can you show that the area of this 

trapezoid is 1
2

h(b1 + b2)?  Think 

 
However, knowing the area was not enough.  An actual, physical 
cutting scheme had to be proposed.  August, Honda, Ilana, 
PowerPuff, sports car and Tree all used two major cuts that split the 
brownie into two right triangles and a rectangle as a starting point.  
But, beyond this first major trisection, their cutting schemes diverged.  
Sylvia approached the problem from an entirely different angle and 
The Cat helped verify that proposed cutting schemes were valid. about it! 
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Directly below is  Honda’s drawing of the trapezoid divided into the two right triangles and a 
rectangle.  Notice that she has also indicated the areas of the three resulting pieces. 

 
The right triangle on the left is 24 
square inches and the right triangle 
on the right is 48 square inches.  
The rectangular portion is also 48 
square inches.  Note the calculation 
in the lower right that determines 
the total area of the brownie: 120 
square inches.  Because all these 
areas are multiples of 8, we know 
that each section contains an 
integral number of pieces— an 
important consideration if one is to 
use this major trisection to produce 
connected pieces.  Otherwise, 
fractional parts would have to be 
formed into single pieces. 
 

 

  
Ilana’s cutting scheme Tree’s cutting scheme 

 
 
In Ilana’s cutting scheme, one of the pieces is an unusually shaped heptagon 
(at left).  How did she know that the area of this heptagon was 8 square 
inches?  The beauty of knowing that the 15 pieces must each have an area of 
8 square inches is that because the area of the 14 other pieces in Ilana’s 
cutting scheme were known to be 8 square inches, the area of this heptagonal 
piece simply had to be 8 square inches, no further computation necessary. 
 
Similar reasoning can be used to see 
that the two jagged pieces in Tree’s 
cutting scheme shown at right are 
also 8 square inches apiece.  Note 
that each of these pieces really 
consists of four separate parts. 
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Sports car used a different technique 
to handle the right triangular sections.  
As can be seen from her diagram at 
right, she divided the base of the left  
triangle into 3 equal parts, and the base 
of the right one into 6 equal parts.  She 
connected each division point up to the 
apex.  Note however that the units on 
the values of the areas of different 
pieces should be square inches, not 
inches! Inches alone are a unit of 
measure for length, not area.  Try to 
get into the habit of always using 
proper units. 
 

 
This scheme exploits the fact that triangles with the same base and height have the same area.  
Visually, this is not always obvious.  Often people presented with two triangles with the same 
base and height do not believe that they have the same area.  This can be an example of how 
mathematics can help you see the truth. 

 
August and PowderPuff worked together 
and came up with a whole cutting 
procedure (see left).  They split the larger 
right triangle into two halves.  The right 
half was used to make 3 pieces by 
dividing its base into 3 equal parts.  Then, 
they noticed that the other half was the 
mirror image of the right triangle on the 
left side of the brownie.  By joining these 
two halves together along their 
hypotenuses, they could form a rectangle.  
They could then cut the resulting 
rectangle into 6 equal pieces using any 
standard technique for cutting up 
rectangles into equal parts.  So there 
solution involved cutting, moving and 
more cutting.  Of course, six people 
would be given two small pieces instead 
of a single eight square inch piece. 
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Throughout all this, Sylvia took an entirely different approach.  Earlier in the 
session, she had done some work with the division of triangles into a perfect 
square number of congruent triangles, each similar to the original.  Would 
such a technique work for this trapezoid?  Is there a way to dissect the 
trapezoidal brownie into 15 pieces that are all congruent to each other?  If 
there were such a way, then one would be able to know that everybody was 
getting an equal share without having to make any computations involving 
area at all.  After all, if everybody’s piece was identical, then there would be 
no complaint about someone getting more. 
 
But, is it possible? 
 

Sylvia’s first attempt to answer this was to try to tile the trapezoid with 
triangles.  Starting with a triangle, she drew multiple copies of it to fill out 
the trapezoid.  There was a snag, however, because as the trapezoid got 
filled, the triangle would no longer fit snugly into the remaining parts. 
 
She knew how to divide a triangle into 16 congruent pieces.  But she wanted 
to divide a trapezoid into 15 congruent pieces.  What is the difference 
between a triangle and a trapezoid?  What is the difference between 16 and 
15? 
 

Sylvia was holding a triangle dissected into 16 congruent pieces, when an idea struck her.  She 
folded the tip of the triangle over…a brilliant idea!  The result was a trapezoid…divided into 15 
congruent triangles.  But, alas, this particular trapezoid wasn’t exactly like the brownie shape.  
The trapezoid she held was an isosceles trapezoid. 
 
One feels that having gotten so tantalizing close to such an elegant solution, there must be a way! 
 
Finally, Trisscar couldn’t attend this last meet of the second session, so we can only wonder 
what she might have dreamed up in order to divide this brownie.  Knowing her, it would have 
been fascinating! 
 
Comments 
 
Let’s underscore two items from this brownie cutting experience. 
 
1. If you divide a triangle into several triangles by drawing lines from a 
vertex to equally spaced points on the opposite side, all the resulting 
triangles will have the same area as each other.  You probably haven’t 
learned about matrices and determinants yet.  But when you do, you will learn that the 
determinant of a matrix remains unchanged if you add any multiple of one column to another.  
This fact about determinants boils down to the same principle that underlies this equal area 
dissection of a triangle. 
 
2. The idea August and PowderPuff had of joining two non-rectangular pieces to make a 
rectangle is an idea that can be used to cut any polygon.  It turns out that you can take any 
polygon, cut it into some pieces and rearrange those pieces to form any other polygon with the 
same area (including a rectangle).  This result is known as the Bolyai-Gerwien theorem. 
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Special Announcements 
 
We wish all the girls who visited Girls’ Angle even just for one meet during this past year a 
wonderful summer and we hope to see you again in the fall! 
 
Girls’ Angle thanks Rosie’s Bakery for baking us a delicious brownie for our geometry meet on 
May 8.  Their Cambridge store is located at 243 Hampshire Street. 
 

Calendar 
 
Session 2: (all dates in 2008) 
 

January 31 Start of second session! 
February 7  
 14  
 21 No meet 
 28 Visitor: Tanya Khovanova, mathematician 
March 6  
 13  
 20 Visitor: Elissa Ozanne, Harvard Medical School* 
 27 No meet 
April 3  
 10 Visitor: Karen Willcox, MIT Aeronautics Department** 
 17 Visitor: Leia Sterling, MIT Aeronautics Department 
 24 No meet 
May 1 Visitors: Sarah Ackley and Adele Schwab, MIT Physics 
 8  

 
*Dr. Ozanne’s visit was postponed one week and took place on March 20. 
**Girls’ Angle went to MIT for Prof. Willcox’s presentation. 
 
Session 3: (all dates in 2008) 
 

September 11 Start of third session! 
 18  
 25  
October 2  
 9 Yom Kippur - No meet 
 16  
 23  
 30  
November 6  
 13  
 20  
 27 Thanksgiving - No meet 
December 4  
 11  
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Girls’ Angle: A Math Club for Girls 
 
Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 
 
What is Girls’ Angle?  Girls’ Angle is a math club for girls and a supportive community for all girls and 
women engaged in the study, use and creation of mathematics.  Our primary mission is to foster and 
nurture girls’ interest and ability in mathematics and empower them to be able to tackle any field, no 
matter the level of mathematical sophistication required.  We offer a comprehensive approach to math 
education and use a four component strategy to achieve our mission: Girls’ Angle mentors, the Girls’ 
Angle Support Network, the Girls’ Angle Bulletin and Community Outreach. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 
What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society.  They write 
articles for the Bulletin, take part in interviews and visit the club. 
 
What is the Girls’ Angle Bulletin? The Girls’ Angle Bulletin is a bimonthly (6 issues per year) 
electronic publication that features interviews, articles and information of mathematical interest as well as 
a comic strip that involves mathematics. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-10.  We aim to overcome math anxiety and build solid foundations, so we welcome all 
girls regardless of perceived mathematical ability.  There is no entrance test. 
 
In what ways can a girl participate?  There are 3 ways: membership, subscription and premium 
subscription.  Membership is granted per session and includes access to the club and extends the 
member’s premium subscription to the Girls’ Angle Bulletin to one year from the start of the current or 
upcoming session.  You can also pay per session.  If you pay per session, you will get a subscription to 
the Bulletin, but the premium subscription will start when total payments reach the premium subscription 
rate.  Subscriptions are one-year subscriptions to the Girls’ Angle Bulletin.  Premium subscriptions are 
subscriptions to the Girls’ Angle Bulletin that allow the subscriber to ask and receive answers to math 
questions through email.   We currently operate in 12 meet sessions, but girls are welcome to join at any 
time.  The program is individually focused so the concept of “catching up with the group” doesn’t apply. 
 
Where is Girls’ Angle located?  Girls’ Angle is located about 10 minutes walk from Central Square on 
Magazine Street in Cambridge, Massachusetts.  For security reasons, only members and their 
parents/guardian will be given the exact location of the club and its phone number. 
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When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org or send us email. 
 
Can you describe what the activities at the club will be like?  Girls’ Angle activities are tailored to 
each girl’s specific needs.  We assess where each girl is mathematically and then design and fashion 
strategies that will help her develop her mathematical abilities.  Everybody learns math differently and 
what works best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to 
individual differences.  If you would like to understand this process in more detail, please email us! 
 
Are donations to Girls’ Angle tax deductible?  Yes.  Currently, Science Club for Girls, a 501(c)(3) 
corporation, is holding our treasury.  Please make donations out to Girls’ Angle c/o Science Club for 
Girls and send checks to Ken Fan, P.O. Box 410038, Cambridge, MA 02141-0038. 
 
Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was an assistant professor of mathematics at Harvard, a member at the 
Institute for Advanced Study and a National Science Foundation postdoctoral fellow.  In addition, he has 
designed and taught math enrichment classes at Boston’s Museum of Science and worked in the 
mathematics educational publishing industry.  Ken has volunteered for Science Club for Girls and worked 
with girls to build large modular origami projects that were displayed at Boston Children’s Museum.  
These experiences and the enthusiasm of the girls of Science Club for Girls have motivated him to create 
Girls’ Angle. 
 
Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 
mathematical interests and abilities?  Girls’ Angle has a stellar Board of Advisors.  They are: 

Connie Chow, executive director of Science Club for Girls 
Yaim Cooper, graduate student in mathematics, UC Berkeley 
Julia Elisenda Grigsby, NSF postdoctoral fellow, Columbia University 
Grace Lyo, Moore Instructor, MIT 
Lauren McGough, MIT ‘12 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, Senior Research Scientist, Harvard Medical School. 
Kathy Paur, Ph.D., Harvard 
Katrin Wehrheim, assistant professor of mathematics, MIT 
Lauren Williams, Benjamin Pierce assistant professor of mathematics, Harvard 

 
At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 
their desire to help others learn math.  But does it really matter that girls be instructed by people 
with such a high level understanding of mathematics?  We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Applying For: □ Membership (Access to club, premium subscription) 

□ Subscription to Girls’ Angle Bulletin 
□ Premium Subscription (interact with mentors through email) 

 
Parents/Guardians: _____________________________________________________________________ 
 
Address: __________________________________________________________ Zip Code: __________ 
 
Home Phone: _________________ Cell Phone: _________________ Email: ______________________  
 
Emergency contact name and number: ___________________________________________________ 
 
Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  
They will have to sign her out.  Names: ____________________________________________________ 
 
Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to 
know about? __________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program 
in all media forms. We will not print or use your daughter’s name in any way. Do we have permission to 
use your daughter’s image for these purposes?             Yes  No 
 
Eligibility: For now, girls who are roughly in grades 5-10 are welcome.  Although we will work hard to 
include every girl no matter her needs and to communicate with you any issues that may arise, Girls’ 
Angle has the discretion to dismiss any girl whose actions are disruptive to club activities. 
 
Permission: I give my daughter permission to participate in Girls’ Angle. I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
 
Membership-Applicant Signature: _________________________________________________________ 
 

□ Enclosed is a check for (indicate one) (prorate as necessary) 
□  $216 for a 12 session membership                       □  $100 for a one year premium subscription 
□  $20 for a one year subscription                            □  I am making a tax free charitable donation. 

 
□ I will pay on a per session basis at $20/session.  (Note: You still must return this form.) 

 
Please make check payable to: Girls’ Angle c/o Science Club for Girls.  Mail to: Ken Fan, P.O. Box 
410038, Cambridge, MA 02141-0038.  Please notify us of your application by sending email to 
girlsangle@gmail.com.  Paying on a per session basis comes with a one year subscription to the Bulletin, 
but not the math question email service.  Also, please sign and return the Liability Waiver. 
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Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 
 
 
 
 
 
 

  
A Math Club for Girls A Math Club for Girls 
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