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An Interview with 
Karen Lange, Part 3 

 

This is the third part of our four part 

interview with Prof. Karen Lange of 

Wellesley College. 

 

At the end of Part 2, Prof. Lange asked us to 

come up with our own answer to the 

question, “What do we mean to compute?” 

 

Karen: Every schoolkid knows what it 

means to do a computation, intuitively.  

They’ve done a lot of them, but if you try 

and write down what is computation, that’s 

kind of tricky.  It was a little less than 100 

years ago that Alan Turing and others were 

wrestling with that exact philosophical 

question: What do we mean by computation 

exactly?  And they were wrestling with 

exactly, precisely what should computation 

mean? 

And now, I think, most people have 

accepted that Alan Turing came up with this 

idea for what computation is.  He was 

coming to answer a philosophical question.  

People are always like, “Oh, math and 

beauty, or math philosophy, what does it do 

for us?”  It gave us computers!  In that 

sense, it was coming from a truth and beauty 

place. 

So, once you have an idea — once 

you formalize what it means to compute — 

if you’re an engineer, you can start to figure 

out how to actually build the machine. 

Obviously, that’s been done, but on the 

philosophical side, you can start saying to 

yourself, “What can computers not do?”  

And that’s exactly where computability 

theory starts. 

There are lots of things I can 

program a computer to do.  Consider the 

problem: I give you a whole number.  Is it 

prime or not?  I can write a computer 

program for it.  For example, I could 

systematically go through the positive 

integers starting at 2 and checking if the 

number is divisible by that positive integer.  

If it gets to the square root of the number 

without finding a factor, then the computer 

says, “The number is prime.”  Otherwise, it 

says, “The number is not prime.”  This is not 

a fast algorithm.  The computer scientists 

have written much faster programs, but I 

could just factorize it.  It might take a while, 

but I can do it. 

But a natural question would be to 

ask, “Are there problems, like a yes/no 

problem, where if you give me a natural 

number, I cannot write a computer program 

to give you the answer?” 

And the first cool fact of 

computability theory is that there are lots of 

non-computable problems.  There’s lots of 

math problems that computers cannot solve 

in this way.  Now, you might say, “How do 

you know that?  Give me some examples.”  

And I’d be happy to do that, but I just can’t 

help making the connection to what we’ve 

been talking about, because it’s so awesome. 

We’ve talked about how the rational 

numbers are countable, and it’s not too hard 

to think about the idea that you can list out 

all the computer programs in the world.  

Your list is going to have some really 

crummy programs in it, but I don’t care 

about that.  I just want a list of all the 

programs in the world. 

  

“Math and beauty, or math 

philosophy, what does it do 

for us?”  It gave us 

computers!  In that sense, it 

was coming from a truth and 

beauty place. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of the content.   We 
hope that you consider the value of such content and decide 
that the efforts required to produce such content are worthy of 
your financial support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                           Girls’ Angle: A Math Club for Girls 
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Content Removed from Electronic Version 
 

 
 
 
 
 
 
 
 
 
 
 
 

America’s Greatest Math Game: Who Wants to Be a Mathematician. 
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout  
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Romping Through the Rationals, Part 7 
by Ken Fan | edited by Jennifer Sidney 
 
Emily: Let’s see if we can prove that any two 

finite rational rompers that represent the 

same rational numbers and begin and end 

with the same number can be transformed 

into each other via a finite sequence of swap 

operations.  For inductive purposes, suppose 

they agree on the first n – 1 terms but differ 

at the nth term, like this: 

 

a1, a2, a3, …, an – 1, an, …, aN 

 

a1, a2, a3, …, an – 1, bn, …, bN 

 

where an ≠ bn, but aN = bN.  Let’s again call 

the second sequence the “target” sequence. 

 

Jasmine: Now we know that any number x 

that occurs in one of the sequences must also 

occur in the other; furthermore, x appears 

precisely the same number of times in both 

sequences. 

 

Emily: Since the two sequences are identical for the first n – 1 terms and also on the last term, 

every number x also appears in the subsequence an, …, aN – 1 precisely the same number of times 

that x appears in the subsequence bn, …, bN – 1. 

 

Jasmine: Also, an – 1 and bn appear consecutively – an – 1, bn – in the first sequence somewhere 

after the (n – 1)-th term, since the two sequences represent the same rational numbers. 

 

Emily: The situation where an = an – 1 and an + 1 = bn feels slightly different to me from the case 

where an – 1, bn appears in the first sequence somewhere after the nth term, so I’d like to handle 

those cases separately. 

 

Jasmine: Okay, let’s think about the case where an = an – 1 and an + 1 = bn, then.  In that case, the 

first sequence goes 

 

a1, a2, a3, …, an – 1 = 1, an = 1, an + 1 = bn, an + 2, …, aN. 

 

To swap that bn so that it becomes the nth term, we need a 1 to occur after the (n + 1)-th term. 

 

Emily: Let’s see if counting 1’s will guarantee that such a 1 exists. 

 

Emily and Jasmine are studying sequences an 
of nonnegative integers that have the property 
that consecutive terms are relatively prime 
and every nonnegative rational number is 
equal to an/an + 1 for a unique n.  They have 
dubbed these sequences “rational rompers.” 
 
After finding a counterexample to their latest 
conjecture, they expanded their “splice” 
operation to a new operation that they call a 
“swap.”  In thinking about swaps, they ended 
up proving that any two finite rational 
rompers that begin and end the same way and 
represent the same rational numbers must 
contain the same numbers, and each number 
that appears must appear precisely the same 
number of times in both sequences. 
 
Armed with this knowledge, will they be able 
to prove their conjecture? 
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Jasmine: Okay.  If no such 1 exists, then the total number of 1’s that occur from term n to term N 

in the first sequence is just one.  And this would have to be true of the target sequence, too. 

 

Emily: But that’s impossible!  Since the first sequence represents the rational number 1 as the 

ratio of an – 1 and an, the target sequence must also represent 1.  But we know that none of the 

consecutive ratios ak/ak + 1 equal 1 for k < n – 1, and we know an – 1/bn is not 1 since bn can’t be 1, 

so there must be two consecutive 1’s somewhere among the terms from n to N in the target 

sequence.  That contradicts the fact that the number of 1’s must be the same in both sequences! 

 

Jasmine: Super!  So now let’s assume that am = an – 1 and am + 1 = bn, where m > n, so our first 

sequence goes like this: 

 

a1, a2, a3, …, an – 1, an, …, am = an – 1, am + 1 = bn, …, aN. 

 

What we hope for is that one of the ak for n ≤ k ≤ m reappears after the (m + 1)-th term, for then 

we could perform a swap and move the bn located in position m + 1 to position n, completing our 

inductive argument. 

 

Emily: Let’s assume that doesn’t happen.  That is, for each k between n and m, inclusive, let’s 

assume that ak does not appear again after the (m + 1)-th term.  If what we hope for is true, this 

assumption should lead to a contradiction. 

 

Jasmine: Hey Emily, the first n – 1 terms of the two sequences are identical and don’t seem to 

play a role in our analysis.  So, to simplify things, let’s just assume that n = 2, and that both 

sequences start with the same number, then differ on their second terms. 

 

Emily: I think you’re right, so let’s make that simplification.  Then our two sequences go: 

 

 a1, a2, …, am = a1, am + 1 = b2, …, aN 

 

a1, b2, …, bN 

 

where m > 2 and aN = bN, but a2 ≠ b2. 

 

Jasmine: And we assume that none of the numbers a2, …, am appear after the (m + 1)-th term in 

the first sequence. 

 

Emily: Actually, would you mind if, for the moment, we also assume that m = 3?  I realize that 

this will not always be the case; but if what we’re trying to prove is true, we’d certainly have to 

be able to prove it if m = 3, which might be easier to prove anyway. 

 

Jasmine: That’s fine with me.  In the case m = 3, we are hoping that either a1 or a2 appears after 

the 4th term in the first sequence, so we assume that does not happen.  What can we say? 

 

Emily: Since a2 is not equal to either a1 or b2, that would mean that a2 appears exactly once in 

both sequences. 

 



 

© Copyright 2024 Girls’ Angle.  All Rights Reserved.                                                                10 

Jasmine: So somewhere after the 2nd term of the target sequence, there occurs a2.  And since 

a1/a2 and a2/a1 are represented numbers, that occurrence of a2 must be sandwiched between two 

occurrences of a1. 

 

Emily: But if a1 ≠ b2, that would mean the target sequence contains three a1’s, whereas the first 

sequence would only contain two … a contradiction! 

 

Jasmine: The only way a1 could equal b2 is if a1 = b2 = 1 and the first sequence begins  

1, a2, 1, 1, ….  But then we’d be able to perform a swap that moves the a2 located in position 2 to 

in between the consecutive 1’s, resulting in agreement with the target sequence on the first two 

terms! 

 

Emily: Nice!  That settles the situation when m = 3. 

 

Jasmine: Onto the case m = 4!  So now the first sequence goes 

 

a1, a2, a3, a4 = a1, a5 = b2, …, aN 

 

and we’re hoping to find another occurrence of a2, a3, or a4 = a1 after the 5th term (in this first 

sequence).  So we assume this does not happen. 

 

Emily: We’ve handled the case where a1 = a2, so we can assume those aren’t equal; but it seems 

like a3 could be equal to either a1 or a2, which would affect the tallies of how many times a2, a3, 

and a4 occur. 

 

Jasmine: All of these cases make it a challenge to keep things organized!  But let’s forge ahead 

and look at the three possibilities separately: either a3 = a1, a3 = a2, or a3 is neither a1 nor a2.  If 

a3 = a1, the sequence actually goes 1, a2, 1, 1, a5 = b2, …, aN.  So 1 appears three times, and a2 

appears once.  The target sequence begins with 1, b2, so there must be two more 1’s in that 

sequence, and they must appear consecutively since both sequences represent the rational 

number 1.  The first sequence also represents 1/a2, a2/1, and 1/b2, so the term before the two 

consecutive 1’s in the target sequence must be a2, and the term after must also be a2.  Hey!  

That’s two appearances of a – a contradiction! 

 

Emily: Yay!  And if a3 = a2, the first sequence goes a1, 1, 1, a1, b2, …, aN.  So both a1 and 1 

appear twice.  The target sequence must go a1, b2, …, and somewhere after the 2nd term, there 

must occur consecutive 1’s.  These 1’s must be sandwiched between two occurrences of a1 … 

but that means that a1 must appear at least three times in the target sequence – a contradiction! 

 

Jasmine: This counting strategy seems to be working!  Now, what about when a3 is neither a1 nor 

a2?  In that case, a1 appears twice, and a2 and a3 each appear just once. 

 

Emily: Wait.  Isn’t it possible that a3 = b2, in which case a3 appears twice? 

 

Jasmine: Oh, good catch.  More cases!  Well, either way, there must be an occurrence of a1 after 

the 2nd term in the target sequence, and that occurrence of a1 must be preceded by a3 and 

followed by a2.  So if a3 ≠ b2, the target sequence must go a1, b2, …, a3, a1, a2, ….  And since 
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a2/a3 is represented and a2 only appears once, there must be an a3 after that a2.  So after the 

second term, there would be two occurrences of a – a contradiction!  And if a3 = b2, then the first 

sequence begins a1, a2, a3 = b2, a1, a3 = b2, …, and the target sequence would have to go 

a1, b2 = a3, a1, a2, a3, ….  Hm.  I don’t see a contradiction. 

 

Emily: I guess that is a real possibility.  But in that case, we can perform a swap.  We move the 

a2 located in position 2 to be in between the 4th and 5th terms, transforming the first sequence to 

the sequence a1, a3 = b2, a1, a2, a3, …, which agrees with the target sequence on the first two 

terms; in fact, on the first five terms!  So that case works out, too! 

 

Jasmine: Cool! 

 

Emily: Gosh, it’s looking like our swapping conjecture is true.  But how are we going to prove it 

for all m > 2?  Each time we increase m, the number of cases we need to consider grows. 

 

Jasmine: And the m = 4 case shows us that in some cases, we’ll find a contradiction via counting, 

but in other cases, we may not actually get a contradiction and, instead, have to find a swap 

operation that does what we want. 

 

Emily: Should we look at the m = 5 case? 

 

Jasmine: Well, let’s say we do that: we carefully cover all of the cases, which seem to be 

determined by various equalities between the terms, and we find out that, yes, that case works, 

too.  That exercise will only help us if it suggests a more general observation that we would be 

able to apply to any value of m. 

 

Emily: Yes, because if we don’t make such an observation, I guess we’d be in the same situation 

we’re in now, except that we’d be wondering whether to look at the m = 6 case. 

 

Jasmine: Instead of the case m = 5, let’s take a bird’s-eye view of the general situation and see if 

we can notice something about it that is more general. 

 

Emily: Okay. 

 

Jasmine: So, we’ve got two sequences: 

 

 a1, a2, …, am = a1, am + 1 = b2, …, aN 

 

a1, b2, …, bN 

 

where m > 4 and aN = bN.  Also, a2 ≠ b2.  And we assume that none of the numbers that appear 

among the first m terms reappears after the (m + 1)-th term.  We hope to get either a 

contradiction or find a swap operation that can transform the first sequence to one that agrees 

with the target sequence on the first two terms.  What can we say? 

 

Emily and Jasmine think. 
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Emily: Somehow, we want to use the fact that any number x appears the same number of times 

in both sequences.  The myriad cases begin to pop up as we try to keep track of which terms 

equal which terms, because such equalities change the tallies for the number of times each 

number appears in the sequence. 

 

Jasmine: Yes, and when m is large, that could lead to a lot of different cases! 

 

Emily: Maybe we can finesse these cases away by not worrying about any equalities between the 

first m terms.  After all, we don’t really have to count the number of times any particular number 

appears; we just have to use the fact that every number appears the same number of times in both 

sequences. 

 

Jasmine: How do you mean? 

 

Emily: It’s like when you have two sets and want to know if they have the same number of 

elements.  You don’t need to actually count the number of elements in each one and see if the 

counts come out equal.  Instead, you can just pair them up and see if each element in one set gets 

paired uniquely with an element in the other, and vice versa. 

 

Jasmine: I see where you’re going. 

 

Emily: In our situation, we know that we can pair each of the terms a1 through am with a 

different term in the target sequence in such a way that each term is paired with a term of the 

same value.  That is, we can pair up the first term in the first sequence, a1, with the first term a1 

in the target sequence, and we can pair the second term in the first sequence, a2, with some 

occurrence of a2 in the target sequence, and so on.  Thus, we can define a function j which maps 

an index k between 1 and m, inclusive, to an index j(k) such that bj(k) = ak, and in such a way that 

j(k) = j(l) if and only if k = l. 

 

Jasmine: I like this idea!  And since that accounts for all occurrences of the numbers that appear 

among the first m terms of the first sequence … 

 

Emily: … unless b2 happens to be equal to one of the first m terms … 

 

Jasmine: Oh yeah, you’re right.  I keep forgetting about that possibility!  Actually, why don’t we 

just go ahead and extend the domain of j to all k such that 1 ≤ k ≤ m + 1, and then go ahead and 

insist that j(1) = 1 and j(m + 1) = 2.  This way, we can, in fact, say that j(k) > 2 for all 2 ≤ k ≤ m, 

and any index z not in the range of j must hold a value bz that is different from any of the first m 

terms of the first sequence. 

 

Emily: Okay, that seems like a good piece of housekeeping. 

 

Jasmine: Wait a second! 

 

Emily: What? 
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Jasmine: Doesn’t it have to be that if 2 ≤ k ≤ m, then bj(k) must be preceded and followed only by 

other terms that have been paired?  Because if bj(k) is preceded or followed by, say, x, where x is 

not a number that appears among the first m terms of the first sequence, it means that the rational 

number x/bj(k) or bj(k)/x must be represented by the sequence.  But this number is not represented 

by the first sequence, because the only terms equal to bj(k) in the first sequence must occur among 

the first m terms. 

 

Emily: That sounds correct.  The only value of k I’m unsure about is when k = m.  Let me think 

that through.  If k = m, then bj(k) = a1.  In the first sequence, there could occur an a1 followed by 

any term among the first m terms, or it can be followed by b2.  If it’s not followed by b2, then 

what you said is correct.  So the question is, could it be that bj(m) + 1 = b2?  Ah, I see; that’s not 

possible because the first two terms of the target sequence are a1 and b2, so a1/b2 is already 

represented there, therefore cannot be represented again.  Thus bj(m) + 1 must also be a number that 

appears among the first m terms of the first sequence.  So, yes, I agree with you! 

 

Jasmine: I think I’m seeing a proof … 

 

Emily: Me too!  Because what you just said means that the indices j(k) for 2 ≤ k ≤ m must be 

clumped together; otherwise, one of them would be next to a number that isn’t paired up, and 

that would contradict the fact that the sequences represent the same rational numbers! 

 

Jasmine: Yes, and that clump of indices cannot be immediately preceded or followed by a 

number that isn’t paired up, for the exact same reason. 

 

Emily: That means that if none of the numbers that appear among the first m terms of the first 

sequence appear again after the (m + 1)-th term, the first sequence can only be m + 1 terms long 

and b2 must occur amongst the first m terms of the first sequence.  That is, the first sequence 

must look like this: 

a1, a2, …, ak = b2, …, am = a1, am + 1 = b2, 

 

for some k that satisfies 2 < k < m + 1. 

 

Jasmine: But in that case, we can move the block of terms from the 2nd through the (k – 1)-th 

term and situate it between the m and (m + 1)-th term via a single swap maneuver! 

 

Emily: That’s it!  It works! 

 

Jasmine: High five!  We’ve proven that any two rational rompers can be transformed from one to 

the other by a sequence (possibly infinite) of swaps; furthermore, two rational rompers differ in 

finitely many places if and only if one can be transformed to the other via a finite sequence of 

swaps.  Indeed, any two finite rational rompers that represent the same rational numbers and 

have the same first terms and the same last terms can be transformed into each other via a finite 

sequence of swaps. 
 
Emily: Hey Jasmine, I think it’s time to swap some cash for another banana bonanza! 
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Optimal Resource Placement: 
From Disneyland to Dominating Sets, Part 1 
by Jillian Cervantes and Pamela E. Harris12 
 
Legend has it that when Walt Disney designed the Disneyland park in the 1950s, he was 
remarkably intentional about the placement of trash cans [1]. Disney postulated that as guests 
walked around the park, they would carry their garbage for a maximum of 30 feet before 
dropping it on the ground. To maintain the cleanliness of his theme park, Disney decreed that 
trash cans should be placed throughout the space so that a Disneyland guest is never more than 
30 feet away from the nearest receptacle. 
 
In 2010, about sixty years after the opening of Disneyland, the first mass-market electric cars 
became available. There arose a phenomenon amongst electric vehicle drivers known as “range 
anxiety,” which is the fear that one’s electric vehicle will run out of battery power before 
reaching the next charging station [5]. As a result, governments who wished to incentivize 
electric vehicle usage had to think about the optimal placement of charging stations within a 
given area. The average range of an electric car battery is 350 kilometers, so government bodies 
realized that they needed to ensure drivers were never more than 350 kilometers away from the 
nearest charger. 
 
What do these two problems have in common? Whether you’re choosing the placement of 
Disneyland trash cans or electric vehicle charging stations, it’s imperative that you meet your 
specific distance requirements (30 feet for the trash cans, 350 kilometers for the charging 
stations). But installing these amenities costs money. How can you be certain that you’re 
installing the optimal number of resources? In other words, how can you minimize the number of 
resources used while still meeting the strict distance requirements? 
 
The answer lies in the mathematical concept of a dominating set. In order to understand 
dominating sets, let’s first learn a bit about graphs. 
 
In the context of graph theory, a graph is a structure defined by two sets. The members of one set 
are called vertices and the members of the other set are called edges. For our purposes, an edge 
is a set consisting of two distinct vertices, and we say that the edge connects those two vertices.3 
 

Let’s take a look at the grid graph with 3 rows and 4 columns of vertices. 
 

 
 

 
1 Both authors are from the Department of Mathematical Sciences at the University of Wisconsin, Milwaukee. 
2 This publication supported in part by a grant from MathWorks. 
3 In some cases, edges are taken to be ordered pairs of vertices and can be thought of as an arrow that points from 
one vertex to another. Notice that in our definition, an edge cannot connect a vertex to itself. 
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We denote this type of grid graph according to the number of vertices in each column and row. 
The graph above would be denoted 3 × 4. (It has 12 vertices and 17 edges.) 
 
We now define a dominating set of a graph. A dominating set is a set of vertices that satisfy the 
property that every vertex in the graph is either in the set, or a distance of 1 away from a vertex 
in the set. Here, the distance between two vertices of a graph is the minimum number of edges 
that need to be traversed to travel from one vertex to the other along edges of the graph. So a 
distance of 1 between two vertices means that the vertices are separated by one edge. For 
example, these two sets of circled vertices each dominate the 3 × 4 graph: 

 
But the set below does not, as vertices v1 and v2 are neither selected nor neighboring a selected 
vertex: 

 
Given a graph G, a natural question to ask is, what is the minimum number of vertices that can 
dominate the graph? This number is called the domination number, and is denoted γ(G). 
 
Exercise. Consider the graph 3 × 4 and determine if the domination number is 3. Why or why 
not? 
 
The formal study of graph domination began in 1962, when Claude Berge published a book on 
graph theory [2], which included the domination problem. However, math questions related to 
domination were being asked nearly 100 years prior, through the mathematical study of chess!4 
 
In 1862, C.F. De Jaenisch tried to find the minimum number of 
queens required to cover, or dominate, an n × n chess board [8]. In 
this instance, to dominate a chess board is to place pieces such that 
all vacant squares can be attacked at least once. Shown at right is a 
solution for the classic 8 × 8 chess board. (How would you realize 
this chess question in terms of finding a dominating set for a 
graph? What would the vertices and edges of the graph be?) 
 

 
4 For those new to chess, we recommend this primer: www.buffalolib.org/sites/default/files/gaming-
unplugged/inst/1%20Basic%20Chess%20Instructions.pdf. 
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In 1975, Cockayne and Hedetniemi published a survey paper on domination of graphs, and this 
spurred an increased interest in the subject [4]. Since then, over 2000 papers have been published 
on domination theory.5 
You may be asking, how can there be over 2000 original publications on this one specific 
subject? Well, a wonderful thing about graph theory is that it is highly applicable and it has many 
parameters that can be adjusted to create new problems. Let’s take a tour of some important 
mathematical results over the history of domination theory. In 1983, Michael Jacobson and Lael 
Kinch gave the domination numbers for 2 × n, 3 × n, and 4 × n grid graphs [7]. In his 1992 PhD 
thesis [3], Tony Yu Chang proved the following inequality for n ≥ m ≥ 8, and conjectured that it 
was actually an equality for n ≥ m ≥ 16: 
 

γ(m × n) ≤ 
( 2)( 2)

4
5

m n+ + 
−  

, 

 

where x    denotes the floor of x, i.e., greatest integer less than or equal to x. 

 
Chang’s conjecture remained unsolved for nearly twenty years! His formula was proved to be an 
equality for n ≥ m ≥ 16 in 2011 by Gonçalves, Pinlou, Rao, and Thomassé, who gave a 
computer-aided proof [6]. 
 
Why was this conjecture so difficult to prove? It turns out that proving a lower bound for the 
domination number is much harder than proving an upper bound. This is because proving an 
upper bound only requires showing that the proposed bound does indeed dominate the graph. On 
the other hand, proving a lower bound requires demonstration that any number of vertices 
smaller than the proposed bound cannot possibly dominate the graph. Do you have any ideas for 
how this could be proved? We’ll walk through such a proof in Part 2! 
 
For now, let’s consider an application. Imagine you are a city planner and your city is 
represented by a 2 × 8 grid graph. You have been tasked with determining the number of cell 
phone towers that should be placed in the city, and the eligible spots for cell towers are the 
vertices of your grid graph. 
 

 
 
If you’ve ever been unfortunate enough to find yourself in a cellular dead zone, you understand 
the importance of placing enough towers to sufficiently cover your city so that no one is left 
without reception. As you might imagine, budgets are tight, and the city council is pressuring 
you to minimize the number of towers—the more towers you place, the more money the city will 
have to spend to install them. 
 

 
5 If you are curious to learn more about recent results in this area, we encourage you to search www.arxiv.org, which 
is a repository of preprints in mathematics, physics, and computer science. 
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You know that a cell phone user will get sufficient reception as long as they are at most distance 
1 away from a tower. That means that if you place towers on the vertices of the city in such a 
way that each vertex is at most distance 1 from a tower, the city is guaranteed to be free of dead 
zones. 
 
Activity. One option is to place towers at every vertex, but you could dominate the graph with 
less. Take some time to try to dominate the grid graph above with as few vertices as you can. 
Really do it, stop reading here! 
 
Challenge Activity. What is the smallest number of towers you have been able to place on the 
map which dominate the map? How do we know this is the smallest? If you are convinced that 
your number of towers is as small as possible, in how many distinct ways could you place that 
number of towers to still dominate the map? 
 
We’ll give solutions in the next installment where we’ll discuss the following theorem proven by 
Jacobson and Kinch in 1983 [7]. 
 

Theorem. We have γ(2 × n) = 
1

2

n + 
  

. 

 

Here, x    denotes the ceiling function, i.e., the smallest integer greater than or equal to x. 
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Path Counting for Partitions 
by Robert Donley6 
edited by Amanda Galtman 
 
We continue our investigation of partitions, Young diagrams, and the Young lattice. In the 
previous installment, we defined a partial order on the set of partitions and considered methods 
for counting chains using an up operator.  Here we give a direct method, known as the hook 
length formula, for computing these numbers.  Young diagrams play a crucial role, both in 
calculations and in the recording of data. 
 
We keep the definitions and notation from previous installments; as usual, partitions are denoted 
by non-increasing strings of digits.  In particular, some exercises in this part require the Hasse 
diagrams used in the previous part.  Conveniently, L(4, 3) appears on the previous issue’s cover. 
 
Definition: Suppose m, n ≥ 1.  Denote by L(m, n) the set of all partitions λ with at most m parts 
such that each part λi ≤ n.  Alternatively, the corresponding Young diagrams fit inside a rectangle 
with width n and height m. 
 
Definition: Recall that we say λ covers μ if μ ≤ λ and there are no other elements between μ and 
λ.  For partitions, λ has the same parts as μ except in one entry.  For the corresponding Young 
diagrams, λ is obtained by adding one square to μ.   
 
For lattice path counting, we count (saturated) chains from 0 to λ.  These are sequences from 0 
to λ such that each element is covered by the next element in the sequence. 
 
Definition: Let f λ denote the number of chains from 0 to the partition λ. 
 

In the previous installment, we represented chains in L(m, n) using certain Gelfand-Tsetlin 
patterns.  Young diagrams give another way to represent chains, although the data is organized 
quite differently.  Consider the following chain from 0 to 321 in L(3, 3): 
 

0 → 1 → 2 → 21 → 31 → 32 → 321. 
 
If we represent each partition as a Young diagram, then we can label the squares in the order we 
add them, and the last diagram encodes all information needed to recreate each step of the chain. 

 
Thus, chains are determined by special fillings of Young diagrams. 
 
Definition: A standard Young tableau is a Young diagram with k squares, filled with the 
numbers 1, …, k such that these numbers increase along each row and column. 
 
Exercise: Choose four other chains from 0 to 321 in L(3, 3) and record the corresponding 
standard Young tableaux. 

 
6 This content is supported in part by a grant from MathWorks. 
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Exercise: Reconstruct the paths in L(2, 3) with the following diagrams: 

 
To interpret these tableaux, we recall the notion of a ballot sequence from the installment 
“Central Binomial Coefficients and Catalan Numbers” (see Volume 15, Number 5 of the Girls’ 
Angle Bulletin).  Consider an election with k voters and n candidates.  The results of the election 
are recorded by a Young diagram with k squares and n rows; the length of each row records the 
number of ballots cast for each candidate, and the candidates are listed in order of non-increasing 
ballot counts. If the largest row is unique, then the first candidate is the winner of the election.  
Otherwise, the election ends in a tie. 
 
If votes are tracked and recorded one at a time in the Young diagram, then a standard Young 
tableau arises if the first candidate always has at least as many ballots as the second candidate, 
the second candidate always has at least as many ballots as the third candidate, and so on. 
 
Exercise: Suppose six voters cast ballots in an election with candidates A, B, and C with Young 
diagram corresponding to 321.  Determine the ballot sequence for each of your four chains in the 
first exercise.  For instance, the ballot sequence for the given chain to 321 is AABABC. 
 

Another notion clarified by the use of Young diagrams are corners.  We can add squares only at 
inside corners, which may include the spaces at the top right and lower left of the diagram.  We 
can remove squares only from the outside corners.  When we apply the up operator to a 
partition, it is the inside corners that are indexed.  On the other hand, covering in the Hasse 
diagram is determined by the outside corners. 
 
Exercise: For each element in the Hasse diagrams for L(3, 3) and L(3, 4), count the inside and 
outside corners.  Verify that these numbers match the number of inbound and outbound edges at 
each element. 
 
Exercise: What are the minimum and maximum numbers of corners of each type in a Young 
diagram with r rows and c columns?  Describe the Young diagrams for which these numbers 
attained.  What does it mean if a Young diagram has only one outside corner?  One inside 
corner?  Consider the differences in L(m, n) and the general Young lattice. 
 
One key difference between Pascal’s triangle and the Young lattice is covering of elements.  As 
we recall below, covering in Pascal’s triangle is entirely uniform, determined entirely by whether 
an element is on the boundary or not.  On the other hand, corners, and therefore shape, determine 
covering in the Young lattice. 
 
These ideas are useful for checking our work when constructing Hasse diagrams for L(m, n).  
The up operator gives an algorithm to construct all partitions for a given level, and the corners 
can be used to guarantee that we have included all edges of the diagram. 
 
If we want to check our work when listing all chains ending at a given level, we can set up a 
decision tree.  From top to bottom, a decision tree simply records all possible choices at each 
step.  To differentiate from how the Hasse diagram works, each branch of the decision tree 
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records the distinct chains.  To determine 
the chain count to λ, we count branches 
that end in λ.  For instance, the tree on the 
right shows all paths to the fourth level of 
the Young lattice. 
  
Exercise: Verify the counts and chains in 
the decision tree on the right. 
 
Chain counting gives a measure of covering in a Hasse diagram.  Another way is to simply look 
at all elements below a given element in the diagram. 
 

Definition: For a given λ in L(m, n), the downset I(λ) is the poset consisting of all μ ≤ λ in 
L(m, n) with the induced partial order.  We obtain the Hasse diagram of I(λ) from L(m, n) by 
erasing all nodes that are not in I(λ) and their adjacent links. 
 
Exercise: Draw the downsets for λ = 33, 321, and 111 in L(3, 4).  For which λ is I(λ) a chain?  
For which λ is I(λ) vertically symmetric?  Under what circumstances is the union or intersection 
of downsets another downset? 
 
Exercise: Prove that any chain from 0 to λ is contained in I(λ). 
 
Exercise: For the chain from 0 to 321 in L(3, 3) on page 18, circle I(λ) in the Hasse diagram of 
L(3, 3) for each λ in the chain.  Compare to the decision tree with 321 in the last row. 
 
We return to chain counting without using the up operator.  First, we recall several of the chain 
counting formulas already available from previous installments. 
 
Example: The simplest example occurs when λ corresponds to a row or column of squares.  That 
is, if λ = 11…11 or n, then f λ = 1. 
 
Exercise: Prove that if f λ = 1, then λ is given by the previous example.  Under what conditions 
does f λ = 2?  Can f λ equal any positive integer? 
 
Definition: We call the Young diagram for λ a hook if all squares in the diagram are the corner 
square, squares to its right, or squares below it.  That is, a hook corresponds to a partition 
(w + 1)1…1 with h 1s for some h, w ≥ 0. 
 
In this case, each chain to λ from 0 corresponds to a word that, when read left 
to right, indicates the order in which squares are added to the right or below.  

Thus, for such a hook, f λ = 
h w

w

+ 
 
 

. 
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Exercise: Find all words in the letters H and W corresponding to chains from 0 to λ = 31.  Also, 
list the corresponding tableaux. 
 
More generally, Pascal’s 
triangle models the set of all 
hooks.  In the Young lattice, if 
we keep only the nodes 
corresponding to hooks, a 
triangle results.  After we 
choose parameters consistently, 
we obtain a visual proof of the 
formula for f λ for hooks. 
 
Exercise: Prove that every 
hook with more than one square 
covers either one or two other hooks.  Prove that the downset of a hook consists only of hooks.  
What hooks are contained in L(m, n)?  Describe the shape of the downset of a hook in the Hasse 
diagram of hooks above. 
 
Exercise: Prove the formula for f λ by giving a one-to-one correspondence of Pascal’s triangle 
with the poset of hooks.  This correspondence should preserve all covering relations.  (Recall 
that nodes of Pascal’s triangle are ordered pairs (x, y) with nonnegative integer entries.  See the 
installment “n-Cubes and Up Operators” in Volume 16, Number 2 of the Girls’ Angle Bulletin 
for an example of a rectangular section of Pascal’s triangle.) 
 
Next, we consider a Young diagram with two lengths, a and a + b.  Each 
diagram of this type occurs in L(2, a + b).  In fact, the calculation for 
these f λ extends the first Catalan number formula from the installment in 
Volume 15, Number 5 of the Girls’ Angle Bulletin. 
 
To calculate f λ, turn Figure 3 from that installment upside down and identify the nodes on the 
right half of the diagram with partitions (a + b, a) as seen in the previous installment.  We obtain 
the formula for f λ as a difference of two binomial coefficients as in the first Catalan number 
formula. 

 
Exercise: For λ = (a + b)a, verify that 
 

f λ = 
2 2 21

1 1

a b a b a bb

a a aa b

+ + +     +
− =     

− + +     
. 

 
Compare with values in L(2, 3) from the previous installment. 
 
Note that we obtain the Catalan number formula when b = 0 and the formula for hooks when 
a = 1.  If we interpret f λ as the number of paths from (0, 0) to (a + b, a) that never go above the 
line y = x in the first quadrant, then the second equality calculates f λ as a fraction of all paths to 
(2a + b, a) in the first quadrant. 
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Exercise: In the difference formula, prove that the second term counts all paths from (0, 0) to 
(a + b, a) in the first quadrant that go above the line y = x at least once.  (If you get stuck, look up 
the Reflection Method for the ballot problem.) 
 
To proceed further, we give the hook length formula, although we omit the proof.  The hook 
length formula demonstrates an advantage of Young diagrams over the partition notation, as the 
geometry of the diagram provides for both calculation and recording of data for the formula.  
Furthermore, the hook length formula gives a calculation of f λ that requires no direct use of the 
up operator or Hasse diagrams. 
 
The main calculation in the formula depends on the hooks in the Young diagram. 
 
Definition: The hook length corresponding to a square in a Young diagram 
is the length of the hook with that square as the corner.  For the hook length 
formula, we record each hook length in the corresponding square. 
 
For instance, the diagram at the right shows the case of a single hook of 
length 4, and the four examples below give diagrams with all hook lengths recorded.  Do you 
notice any patterns? 

                              
 

Hook length formula for f λ: Suppose λ is a partition of k, and let P be the product of all hook 
lengths in the Young diagram corresponding to λ.  Then the number of chains from 0 to λ is 
 

f λ = k!/P. 
 
Exercise: Use the hook length formula to calculate f λ for the four diagrams above.  Compare 
with the values obtained from the up operator for L(3, 4). 
 
Exercise: Prove that the hook length formula agrees with the above formulas when λ 
corresponds to a hook or has exactly two parts.  Verify the hook length formula for all values of 
L(2, 3) directly. 
 
At first, the hook 
length formula 
may seem 
unwieldy for large 
diagrams, but hook 
lengths behave 
uniformly within 
the rectangles 
sectioned by the 
inside corners of the diagram.  To simplify computations, we can note the hook length of the 
square at the lower right of the rectangle and then extend by adding 1 as we move to the left or 
above within the rectangle.  See the diagrams above. 
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We recall the formula for a product of positive consecutive integers. 
 
Exercise: Fix n ≥ 1.  Prove that n(n + 1)…(n + m – 1) = (n + m – 1)!/(n – 1)!. 
 
Exercise: Calculate the hook length formula in the case of a rectangle with height m and width n.  
Compare with the up operator calculations for λ = 333, 444, and 4444. 
 
Exercise: Calculate the hook length formula in the case when the rows have only two sizes.  
Compare with the up operator calculations for λ = 4411, 4422, and 4433 in L(4, 4). 

 
Let’s calculate f λ for λ = (a + b + c)(a + b)a, the general case 
with three parts.  With a, b, and c as in the diagram at right, the 
above reasoning shows that the product of hook lengths is 
 

( 1)! ( 1)! ( 2)!
! ! !

( 1)! ( 1)! ( 2)!

a b b c a b c
a b c

b c b c

+ + + + + + +

+ + + +

, 

 
from which we obtain the formula 
 

f λ = 
(3 2 )!( 1)( 1)( 2)

!( 1)!( 2)!

a b c b c b c

a a b a b c

+ + + + + +

+ + + + +

. 

 
Exercise: Compare with the values calculated by the up operator for λ = 321, 421, 431, and 432. 
 
Exercise: Compare with the formula for a hook (a = 1, b = 0), for two parts (a = 0), and for 
rectangles with three parts (b = c = 0). 
 
Exercise: Rewrite f λ as a product of a fraction with the multinomial coefficient 
C(a + b + c, a + b, a) from “Compositions and Divisors” (see Volume 16, Number 3 of the Girls’ 
Angle Bulletin).  Since the multinomial coefficient counts all chains to (a + b + c, a + b, a) in the 
first octant of three-space, this formula expresses f λ as a fraction of all such chains. 
 
Finally, we consider the special case of triangular Young diagrams. 
 
Exercise: Calculate the hook length formula for λ = n(n – 1)…321.  What happens to the 
rectangular sections?  What pattern appears in the product of hook lengths? 
 
Exercise: To improve the formula from the previous exercise, prove that 
 

1 × 3 × 5 × ∙∙∙ × (2n – 1) = 
(2 )!

2 !n

n

n
. 

 
Exercise: Use this formula to calculate f λ for λ = 1, 21, 321, 4321, and 54321.  Then, look up the 
associated sequence in the Online Encyclopedia of Integer Sequences (oeis.org). 
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Cubics, Part 1 
by Lightning Factorial | edited by Jennifer Sidney 

 
How can we find solutions to the cubic equation 
 

ax3 + bx2 + cx + d = 0, 
 
where a, b, c, and d are fixed real numbers and x is unknown? 
 
For the record, I know that there are formulas, analogous to the quadratic formula, for the 
solutions to this cubic equation.  But I can’t remember what they are other than that they involve 
taking cube roots.  I’ve been asked to see how far I can get on my own … just for fun. 
 
But I don’t want to spoil your fun, so if you want to think about it yourself, read no further and 
see what you can make of it!  If you figure out a way to the goal, we’d love to hear about it, so 
please send your way of deriving the cubic formula to girlsangle@gmail.com. 
 
Here goes … 
 
The first thing I notice is that if a = 0, then the equation is a quadratic equation (or if b is also 0, a 
linear equation, or if a, b and c are all 0, then there’s no unknown at all to solve for!).  Since I 
know how to solve quadratic equations, I’ll assume that a is not 0. 
 
If a is not 0, I can divide the entire equation by a to obtain 
 

x3 + (b/a)x2 + (c/a)x + (d/a) = 0, 
 
which is an equation of the form x3 + Bx2 + Cx + D = 0.  If I’m able to solve cubic equations 
where the lead coefficient is 1, then I can solve all cubic equations.  So, resetting notation, I’ll 
focus on solving the cubic equation 
 

x3 + bx2 + cx + d = 0. 
 
I already feel stuck, so I guess I’ll graph some cubic functions of this form. 
 
The graphs suggest that there will always be at least one solution.  And as x tends to infinity, so 
does x3 + bx2 + cx + d, because for large x, x3 is much bigger than the absolute values of any of 
the other terms, as well as their sum.  Similarly, as x tends to negative infinity, so does  
x3 + bx2 + cx + d.  Therefore, the graph of the cubic must cross the horizontal axis somewhere, 
and where it crosses corresponds to a real-valued solution to the cubic equation.  This is different 
from quadratic functions, whose graphs may not cross the horizontal axis at all. 

In the spirit of figuring things out, we asked Lightning Factorial to try to find a 
formula for the roots of a cubic equation in terms of its coefficients.  The cubic 
formula, like the quadratic formula, is well known and can readily be looked 
up.  But trying to figure something out yourself can be far more fun and can 
lead to real adventure.  Let’s see what Lightning comes up with! 
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So, let r be a real-valued solution to the cubic equation. 
 
If I long divide x3 + bx2 + cx + d by x – r, I will get a quadratic and a constant remainder, so I 
know I can always find an identity that looks like 
 

x3 + bx2 + cx + d = (x – r)(x2 + mx + n) + C, 
 
for some constants m, n, and C.  But since r is a solution to the cubic equation, it must be that 
C = 0.  So our cubic can be factored as a product of x – r and a quadratic; I know how to find the 
roots of a quadratic, so if I can find one real solution of the cubic, I’ll be able to find all of its 
roots. 
 
But how can I even find one real root of the cubic? 
 
I wonder if it would be easier to find one real root if I knew that there was precisely one real 
root, because then the real root would be unique, and it might be easier to find the real root as 
opposed to a real root.  I’ll try that. 
 
I know that one circumstance in which there could be only one real root is if the cubic is strictly 
increasing with x, and that would happen if the derivative of the cubic with respect to x is always 
positive.  The derivative of the cubic is 
 

3x2 + 2bx + c, 
 
and this is positive for all x if its discriminant, 4b2 – 12c, is negative; we know this because if the 
discriminant is negative, the derivative doesn’t have real roots, so cannot cross the horizontal 
axis. 
 
So let’s assume that 4b2 – 12c < 0, or b2 < 3c. 
 
Since complex roots come in conjugate pairs, the roots of the cubic would have to be r, p + qi, 
and p – qi, where i is the square root of -1 and q > 0. 
 
I don’t know if this idea will lead anywhere, but if I translate the cubic horizontally by -p, its two 
non-real roots would then be on the imaginary axis, and the quadratic equation with those roots 
has the form x2 + q2.  That is, there must be some t such that translation of the cubic horizontally 
by t must result in a cubic of the form (x – s)(x2 + q2), and only one value of t should yield a 
cubic that can be so factored (because, for any other value, the complex roots would not be on 
the imaginary axis).  This means that there should be a unique value of t such that 
 

(x – t)3 + b(x – t)2 + c(x – t) + d = (x – s)(x2 + q2), 
 
for some (real numbers) s and q. 
 
Expanding and gathering like terms, this identity becomes 
 

x3 + (b – 3t)x2 + (c – 2tb + 3t2)x + (-t3 + bt2 – ct + d) = x3 – sx2 + q2x – sq2. 
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Equating coefficients, we find that 
 

s = 3t – b 
q2 = c – 2tb + 3t2 

sq2 = t3 – bt2 + ct – d 
 
Hey, the third equation is the product of the first two!  This means that 
 

(3t – b)(3t2 – 2tb + c) = t3 – bt2 + ct – d. 
 
Simplifying, I get 
 

8t3 – 8bt2 + 2(c + b2)t + d = 0. 
 
Drat!  Maybe I should have known: to find this special value t, I need to solve another cubic 
equation!  So, that approach doesn’t help, unless this cubic equation happens to be one I can 
solve by using something like the rational root theorem.  But that doesn’t seem likely to happen 
in general. 
 
Hm.  I know this is a detour, but only one value of t could possibly be the appropriate value to 
shift the graph horizontally and result in the two nonreal roots being on the imaginary axis, so 
this last cubic equation must have a unique real root.  Even though the earlier condition I found 
for having only one real root is not a necessary condition, I’m curious if this cubic also satisfies 
it.  First, I must divide throughout by 8 to make the lead coefficient 1: 
 

t3 – bt2 + (c + b2)t/4 + d/8 = 0. 
 
Is it true that (-b)2 < 3(c + b2)/4? 
 
How about that!  It, in fact, simplifies to exactly b2 < 3c, which is what I was assuming about the 
original cubic! 
 
The unique real solution t is the negative of the real part of the nonreal roots of the original 
cubic; so although this idea didn’t lead me to a cubic formula, I now know that if 
 

x3 + bx2 + cx + d 
 
is a cubic with two nonreal roots, then the real part of the nonreal roots is the root of another 
cubic – the cubic x3 + bx2 + (c + b2)x/4 – d/8 (the sign changes come from setting x = -t), with 
coefficients that are rational functions of b, c, and d.  I wonder if that points to a more general 
truth, namely, if I have a polynomial of degree n with rational coefficients, will the real parts of 
its roots be, themselves, roots of a polynomial of degree n with rational coefficients? 
 
I’ll have to think about that later.  Back to trying to find a cubic formula! 
 
What else can I try? 
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MeditateMath 
by Addie Summer 
 
The topic of this Meditate to the Math is Descartes’ Rule of Signs: 
 

 
Find a quiet place to think.  Try to think your way to understanding the truth of Descartes’ rule.  
If you get stuck, thinking about one of the statements below might help. 
 
 
  

 
Consider a polynomial with real coefficients. Let S be the number of 
changes of sign in the coefficients as you go through them in order of 
increasing degree.  Let R be the number of positive real roots of the 
polynomial (counted with multiplicity).  Then R ≤ S and R = S (mod 2). 

 

If S = 0, can you see that there are 
no positive real roots (i.e., R = 0)? 

What happens when the polynomial only 
has two terms?  Three terms? 

Suppose the first 
and last (in order 
of degree) nonzero 
coefficients have 
the same sign.  Is 
S even or odd? 

Suppose the first and 
last (in order of degree) 
nonzero coefficients 
have the same sign.  Is 
R even or odd? 
 

What can you say about the positive real 
roots of the derivative of the polynomial? 

Let r be a root of the polynomial with multiplicity m.  How does 
the sign of the polynomial change as you cross over this root r? 

? 

Without loss of 
generality, you can 
assume that the 
constant term of the 
polynomial is not zero. 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 34 - Meet 1 
February 1, 2024 

Mentors: Elisabeth Bullock, Serina Hu, Shauna Kwag, 
Gautami Mudaliar, Hanna Mularczyk, AnaMaria Perez, 
Padmasini Venkat, Jane Wang, Doris Woodruff, 
Saba Zerefa 

 One of our fifth grade members proved that for any positive integer n, there exists a 
Fibonacci number which is a multiple of n.  Can you prove this too? 
 

Session 34 - Meet 2 
February 8, 2024 

Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Clarise Han, Serina Hu, Gautami Mudaliar, 
Hanna Mularczyk, AnaMaria Perez, Vievie Romanelli, 
Swathi Senthil, Padmasini Venkat 

 Let n be a positive integer and let S(n) be the sum of the divisors of n.  Can you prove 
that S(ab) = S(a)S(b) when a and b are relatively prime positive integers? 
 There’s a wealth of mathematics in sorting algorithms.  How many algorithms can you 
think of that sort a list according to some criterion?  For each algorithm you come up with, in 
what order should the elements be for the worst-case scenario, i.e., the scenario where the 
algorithm would take the longest to sort out the list?  How long would you expect your algorithm 
to take to sort a list on average? 
 

Session 34 - Meet 3 
February 15, 2024 

Mentors: 
 
 
 

 

Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Clarise Han, Gautami Mudaliar, Hanna Mularczyk, 
AnaMaria Perez, Padmasini Venkat, Jing Wang, 
Dora Woodruff, Saba Zerefa 

 Suppose you have two polynomials p(x) and q(x).  How can you find the sum and the 
product of the roots that are common to both polynomials? 
 

Session 34 - Meet 4 
February 29, 2024 

Mentors: Elisabeth Bullock, Jade Buckwalter, Clarise Han, 
Shauna Kwag, Gautami Mudaliar, Hanna Mularczyk, 
AnaMaria Perez, Swathi Senthil, Dora Woodruff, 
Saba Zerefa 

 Through the years, members have invented a number of games that involve math.  It 
happened again, at this meet!  What math game might you create?  To be clear, here, I do not 
mean using math to analyze the game, but that math is a main subject of the game.  Perhaps the 
members who created the game will refine it to a point where we’ll describe it in this magazine.  
We’ll see!  
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Calendar 

 
Session 33: (all dates in 2023) 
 

September 14 Start of the thirty-third session! 
 21  
 28 Support Network Visitor: Isable Vogt, Brown University 
October 5  
 12  
 19  
 26  
November 2  
 9  
 16  
 23 Thanksgiving - No meet 
 30  
December 7  

 

Session 34: (all dates in 2024) 
 

February 1 Start of the thirty-fourth session! 
 8  
 15  
 22 No meet 
 29  
March 7  
 14  
 21  
 28 No meet 
April 4  
 11  
 18 No meet 
 25  
May 2  
 9  

 
 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax-free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 

The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 

What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high-level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax-free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


