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An Interview with 
Karen Lange, Part 1 

 

Karen Lange is the Theresa Mall Mullarkey 

Associate Professor of Mathematics at 

Wellesley College.  She earned her Bachelor 

of Arts in Mathematics with a minor in 

Computer Science with High Honors from 

Swarthmore College.  She then earned a 

PhD in mathematics at the University of 

Chicago under the supervision of Robert 

Soare and Denis Hirschfeldt. 

 

Ken: What’s the first mathematical idea that 

caught your interest?  What did you find 

interesting about it, and about how old were 

you? 

 

Karen: I really love this question, and two 

things came to mind.  One was in sixth 

grade, and we were learning about the 

distributive property of addition. There was 

something where we were supposed to 

always use the distributive property to solve 

something in addition:  D(A + B) is equal to 

DA + DB.   

And I didn’t use the distributive 

property the way that I was supposed to in 

this entire assignment.  I remember being 

really frustrated, because even though I was 

correct, the entire thing was marked as 

wrong because I hadn’t done what I was 

supposed to do.  And I remember my dad 

trying to explain to me what I was supposed 

to do, and me just being very confused, 

because I thought, “But this was true.”   

 I was supposed to write A plus B, 

and then multiply by D, and I had probably 

just done the opposite.  I remember that 

being very frustrating, this idea that 

something can be true, but not what a 

teacher is looking for.  That I was having 

trouble seeing the difference between what 

they wanted me to do, versus just solving 

the addition problem.   

 That’s not the best example, though.  

My other example actually was an idea that I 

kind of came up with, like my first 

mathematical discovery that was mine. 

Obviously, it wasn’t new or anything like 

that.  I think it was in ninth grade, and a 

teacher had given us a bunch of Pythagorean 

theorem kinds of problems about distance.  

They were just, “Oh, find the distance 

between these two points in the plane.”   

And he gave us a bunch of these, and 

I remember thinking, “Wait a minute, I’m 

just using the Pythagorean theorem every 

single time to solve these distance-between-

two-points problems.”  I should say, he 

hadn’t told us about the existence of a 

formula for the distance between two points 

in a line.  And so, I remember being in my 

bedroom, thinking, “I’m doing the same 

thing every single time.  I could write a 

formula for this.  There’s a formula here.”   

 I got really excited that I came up 

with this formula, (x1 minus x0) squared plus 

(y1 minus y0) squared, and then the square 

root.  I didn’t think it was by itself all that 

interesting, but I was a little bit like, “We’re 

doing the same process over and over again.  

My teacher should know that there’s a 

formula for this.”  I remember going to the 

teacher the next day, and saying, “We’re just 

doing this formula over and over again.  

Why are we doing this?”  Now, as a teacher, 

I know why he was having me do it.   

But I remember him telling me, “Oh, 

you just read it in the book.”  And I 

Once you realize that you can 

make discoveries yourself, well, 

then you’re unstoppable, because 

you have a better understanding of 

where any math that you’ve 

learned comes from. 
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remember being very offended.  I was like, 

“What do you mean it’s in the book?  I just 

figured this out.”  I remember, in general, 

being excited about realizing I could create 

mathematics, and then again, being a little 

bit frustrated that he was thinking I read it in 

the book.  Embarrassingly at the time, I was 

not reading the book much at all.  

But anyway, that was probably 

somewhere in ninth grade, and I really 

appreciate that he — Mr. Gustavson was my 

teacher — set up a lot of experiences like 

that that were discovery things. 

 

Ken: That is a great story!  I think that is 

one of the conceptual breakthroughs that has 

to happen in the whole long process of 

becoming a mathematician.  That’s pretty 

cool that you had the idea on your own 

there, just coming to you as an idea, while 

you were working out these distance 

problems.  Did that experience affect the 

way you teach math today? 

 

Karen: Definitely.  Actually, the reason I 

remember Mr. Gustavson — the other thing 

about his class that was amazing — is that it 

was a class called “Algebra, Logic and 

Proof.”  Everybody had seen algebra before, 

but seen just the manipulations, and the idea 

of the class was to introduce us all to the 

idea of proof and logic. 

So, we would study truth tables, and 

then we would use a very simple proof 

system to prove a lot of the algebra that we 

learned.  We had learned a lot of the rules of 

algebra previously, but then how do you 

start from essentially the properties of real 

numbers, and of integers, depending on the 

context, and derive all of these basic 

algebraic facts that we use? 

And so, on one side, there was a lot 

of skill-building where you could learn by 

doing the rote work, but then it connected to 

what we were doing.  On the discovery side, 

I realized, as you say, the agency: “Oh, I can 

discover some mathematics.” 

On that side, it’s definitely 

influenced my teaching in the sense that I 

want to try to give students that experience.  

So, I love to teach.  Sometimes I get to teach 

a first-year number theory class, and I like to 

teach it in the discovery-based, inquiry-

based learning style of, “Hey, work out 

some examples.  Write out the first 100 

primes or at least the primes within 100, and 

look for patterns there.  Once you have your 

patterns, are there things that you can 

prove?”   

 Because I do find there’s just so 

much power in ownership, in knowing that 

you discovered it yourself.  Other people 

have discovered it before, but once you 

realize that you can make discoveries 

yourself, well, then you’re unstoppable, 

because you have a better understanding of 

where any math that you’ve learned comes 

from.  You understand where it came from, 

but then you also realize, “Oh, wait.  I can 

start asking my own questions, seeing my 

own patterns, and then trying to prove 

them.” 

So, definitely, it impacts how I teach 

in terms of trying to find ways, within the 

constraints of what content I’m “supposed” 

to be teaching, to give students some of that 

discovery experience.  The other part, 

though, that I was alluding to with this class 

was that it was my first introduction to proof 

— this idea that I could prove things.  I 

could know and be sure of what was true, 

without needing external authority.  There is 

this idea that I should be able to know and 

determine if something is true, just using my 

own logic and capabilities, and that I can 

come up with a written verification of 

what’s true, on my own.  So, that class just 

blew my whole mind. 
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Ken: At that age, were you already aware of 

the difference between belief and proof?  A 

lot of students know things, and they’ll say 

them as if they are definitely true, and they 

will simply think that the statements are 

definitely true and don’t need proof. 

 

Karen: I’m not sure if I, until that class, had 

made that realization.  I think, unfortunately, 

it wasn’t necessarily that I believed.  I think 

that my philosophy was more like, “The 

authorities have told me the truth, and I 

believe the authorities, right?”  It was a 

belief in authority, and realizing that with 

mathematics, I can be the authority for 

myself.  I didn’t need somebody higher up 

with more expertise to tell me what was true 

or false.  I, myself, could be the determiner 

of truth, which again goes to that agency 

part of mathematics. 

 

Ken: That’s really cool.  When you’re using 

this style of teaching, do you sometimes 

have students who have difficulty 

articulating what they notice?  How do you 

help those students? 

 

Karen: That’s a great question, because 

that’s one of the big challenges in teaching, 

articulating what you notice.  One thing that 

I find really helpful about some of these 

discovery styles of teaching, is actually for 

me to back up, and — like your club — 

have people, students, peers doing math 

together.  Oftentimes, a reason people aren’t 

so good at articulating patterns they see is a 

fear that anything they think they see “isn’t 

right.”  Sometimes, they don’t think they see 

anything, but sometimes it’s, “Well, I see 

this, but I’m not confident that that’s the 

right thing to see.”  Then, people just won’t 

even put ideas out there.   

 The peer aspect is so helpful when I 

back out of the situation and people are 

working with other people who are going 

through that same experience of discovering 

their own agency.  They see, “Oh, another 

student isn’t so sure either. I notice this 

seems to be true.  I don’t know if this is 

right, but maybe it’s something — there’s 

something going on with all the even 

numbers doing something,” and the other 

student realizes, “Oh, I thought there might 

be something with the even numbers, but I 

didn’t have the confidence yet to say it.”  

 When they see other students who 

are maybe a little bit braver put themselves 

out there, that actually goes a long way.  

There’s also the scale of interaction, having 

people crowdsource ideas, maybe not in 

front of me, but just having two or three 

people brainstorm their ideas together. 

 At first, the student might not 

articulate what their ideas are, but after they 

get more practice with smaller groups, and 

especially smaller groups of peers who are 

in the same place in their math journeys, 

then they get braver.  They realize, “Oh, I’m 

not the only one who wasn’t sure but also 

thought there was something about the even 

numbers having some kind of property.” 

So, actually, I’ve had to learn to get 

more out of the way.  It’s less about me 

directly interacting than about scaffolding 

these smaller group peer-to-peer 

interactions.  I’ve helped bring people out, 

but this is a lifelong journey.  

 

To be continued… 

 
 
 
 

“What do you mean it’s in the 

book?  I just figured this out.” 
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A Tiling Problem 
by Emily Caputo, Sophie Harteveldt, and Alina Patwari 
edited by Amanda Galtman 
 
Introduction 
 
Do you have any interest in triangles? If so, continue reading. Our journey with triangles began 
when the second author pondered this problem: What type of triangle can be split into three 
congruent triangles, each similar to the original? In thinking about this problem, she came up 
with an apparently novel tiling problem: What is the number of ways one can dissect a right 
isosceles triangle into smaller right isosceles triangles? 
 
We call any such dissection into N tiles an N-tiling. Working on this problem manually proved 
to be challenging, because the number of N-tilings grows extremely fast with N and it was hard 
to think of a systematic way to find them all. Even for N = 5, there are many ways to dissect into 
five tiles. To limit the number of tilings, we added another requirement: All the tiles must be 
edge-to-edge. In other words: Any overlapping edges must touch at all points of both edges. The 
“edge-to-edge” requirement was inspired by Johannes Kepler’s work in Harmony of Worlds, 
where he explores different subsets of edge-to-edge tilings. 
 
With this reformulation, we found an efficient algorithm 
for finding all finished tilings. The algorithm also 
provides an upper bound on the number of N-tilings. 
 
Definitions and Terminology 

 
Tile: An isosceles right triangle. 
 
Finished Tiling: An edge-to-edge tiling of an isosceles right triangle with isosceles right 
triangles. See the bottom of page 10 for examples. 
 
Unfinished Tiling: An edge-to-edge tiling consisting of tiles 
whose union is not, itself, an isosceles right triangle but fits 
into the corner of a 45° angle. The union of all the tiles plus 
the sides of the 45° angle must not have any holes. 
 
We use tiling to refer to either a finished or unfinished tiling. 
 
Frontier: When a tiling is placed into the corner of a 45° 
angle so that the union of all the tiles and the sides of the 45° 
angle have no holes, the frontier is the boundary of the tiling 
that connects the two sides of the 45° angle and separates the 
interior of the 45° angle into a part completely covered by 
tiles and a part completely devoid of tiles. 
 
N-tiling: A tiling consisting of N tiles. 
 
 

Primary mentorship for this mathematical 
investigation was provided by Elisabeth 
Bullock, Ken Fan, and Swathi Senthil. 
We believe this is a novel tiling problem. 

 
A non-edge-to-edge 4-tiling (left) and an 
edge-to-edge 4-tiling (right). 

An unfinished tiling with its frontier 
indicated in red. 
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The Tiling Problem 
 
We orient an isosceles right triangle so that a Cartesian coordinate system could be placed upon 
the triangle so that its vertices are located at (0, 0), (1, 0), and (1, 1). How many distinct N-tilings 
are there of this isosceles right triangle? 
 
We count tilings that are mirror images of each other about the altitude to the hypotenuse as 
different tilings. 
 
Development of Our Algorithm 

 
To solve this problem, we originally created a “brute force” method for finding every possible 
finished tiling. The algorithm builds tilings by filling tiles into the corner of a big 45° angle, 
which we orient so that one side of the angle is the positive horizontal axis and the other side 
runs through the first quadrant. The algorithm is seeded with the two 1-tilings: one tiling with the 
tile’s right angle vertex on the horizontal axis and one tiling with the right angle vertex on the 
side running through the first quadrant. The algorithm inductively finds every (N + 1)-tiling by 
adding one tile to every N-tiling in every possible way, staying within the bounds of the big 45° 
angle. The algorithm checks each of these tilings to see if its frontier is a vertical line segment 
connecting the sides of the 45° angle. If so, and if this particular finished tiling has not been 
found before, the algorithm adds the tiling to a list of finished (N + 1)-tilings. This method was 
logically sound but inefficient. The algorithm took a week to find the number of 10-tilings alone, 
and the amount of time it took to find N-tilings seemed to grow more than exponentially with N. 
 
To make a more efficient algorithm, we created a system of codifying tilings by systematically 
adding tiles. The codification system is called the lexicographic code. 
 
Here’s how the code works. As noted above, there are only two ways to place the first tile into 
the corner of the 45° angle. The first way adds a vertical line in the big angle, and the second one 
adds a line that makes a 135° angle to the horizontal side of the big angle. (By accounting for 
both of these cases, we can be sure all finished tilings can be detected by checking if the frontier 
is vertical. That is, a finished tiling may be fit into the big 45° angle so that its frontier is slanted 
instead of vertical, and it won’t be recognized as finished if we only check for a vertical frontier, 
but if it is flipped around the angle bisector of the big 45° angle, its frontier will be flipped to 
vertical, and that will be recognized as finished.) The first tile is coded as either 90 (for the 
vertical frontier case) or 135 (otherwise). 
 
Each following tile is assigned a lexicographic code of the form (a, b), where a is a positive 
number and b is one of the three letters H, R, or L. The value a is the number of first edge on the 
frontier where this tile is attached, counting the edges on the frontier from bottom to top.  (The 
frontier is composed of a bunch of line segments that are the edges of the tiles that run along it.) 
The value b codifies the orientation of the added tile. There are three possible orientations, which 
we label H, R, and L. These labels correspond to the location of the right angle of the added tile, 
relative to the frontier edge where the tile attaches. If the right angle vertex is not on the edge, 
that orientation corresponds to H. If the right angle vertex is on the edge’s endpoint that is 
encountered first as you travel along the frontier from bottom to top, that orientation corresponds 
to L. The only remaining orientation corresponds to R. 
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For example, the figure above adds a blue tile to the frontier in all three ways (H, R, and L) from 
left to right. Since that tile attaches to the second edge from the bottom along the frontier, the 
lexicographic codes for the blue tile are (2, H), (2, R), and (2, L), respectively. 
 
In this way, we codified each tiling as a list of lexicographic 
codes in the order that the tiles are added. To make this code 
unique, we adopted the convention of adding tiles in such a way 
that the a value for each tile must be greater than or equal to the 
a value for the tile preceding it. For example, the tiling shown at 
right has the code 
 

90, (1,H), (1,R), (1,R), (1,L), (2,H), (3,L), (3,H). 
 
This method of adding tiles guarantees that each new finished tiling found is unique. The 
algorithm doesn’t need to check whether the tiling has been found before, which saves a 
considerable amount of computation time. However, as N increased, we found that the algorithm 
allowed for holes to appear. This was not an issue in terms of efficiency, but it meant a working 
algorithm would be very hard to code. Therefore, we abandoned this method and tried to come 
up with a new ordering of the placement of tiles to guarantee an absence of holes. 
 
Current Algorithm 

 
To find finished tilings, as before, we start with a 45° angle situated in the Cartesian plane as 
before and fill this angle with tiles until they form a tiling with a vertical frontier. Our algorithm 
is a method of adding tiles that is efficient, finds all possible finished tilings, and does not find 
the same finished tiling more than once. 
 
The idea is to systematically add tiles to the specific edge on the frontier that is first encountered 
when travelling along the frontier from the bottom up, among those frontier edges with an 
endpoint furthest to the left. 
 
We again seed our search with the two ways to place a single tile in the corner of the 45° angle, 
and then proceed inductively on the number of tiles in the tiling. 
 
The frontier consists of line segments that are the edges of tiles attached to the frontier. We keep 
track of the coordinates of the endpoints of each edge. To add our next tile, we find the endpoints 
with the smallest x-coordinate. If there are multiple vertices with the same minimum x-
coordinate, we pick the one with the lowest y-coordinate. If this endpoint is shared by two tile 
edges on the frontier, we pick the edge we first encounter when traversing the frontier from the 
bottom. We call this segment the lowest, leftmost edge on the frontier. It is uniquely specified. 

 
 

H                             R                             L 
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We then add a tile to this edge. While we have abandoned our lexicographic code, we still use 
the three orientations R, L, and H explained above to indicate how the tile is added. We create 
new, unique tilings by adding a new tile in each of the three orientations as long as adding the 
new tile stays inside the big 45° angle and doesn’t overlap existing tiles. 
 
If a new tiling has a vertical frontier, we add it to a list of finished tilings. 
 
We repeat this process of adding a new tile to all (N + 1)-tilings found (including finished ones)! 
 

Proof that the Algorithm Works 
 
First, we prove that the algorithm never double-counts a finished tiling. 
 
To prove this, consider a finished tiling that the algorithm finds twice. As the 45° angle is filled 
in with tiles, there must be two different ways of adding tiles (consistent with our algorithm) that 
produce this finished tiling.  The first tile must be the same, but at some point, the paths to 
produce this finished tiling must diverge. Just prior to the moment of divergence, the in-progress 
tilings are identical and have the same frontier. Since the frontier uniquely determines the edge to 
which we add the next tile, the paths can diverge only due to a different orientation of the added 
tile. But then the finished tilings could not be identical.  
 
Next, we prove that every finished tiling is found by the algorithm. 
 
To prove this, suppose we have a finished N-tiling T. If N = 1, there is only one finished 1-tiling. 
Since we seed the algorithm with that tile, the algorithm does find this case.  So, assume N > 1. 
We can place this tiling into the big angle so its frontier is vertical. Starting from the tile in the 
very corner of the big angle, we shall prove by induction on the number of tiles added that the 
algorithm adds tiles until it reconstructs T. This corner tile creates a frontier to which another tile 
attaches, and the algorithm adds this other tile because the algorithm adds tiles in every possible 
orientation.  
 
Suppose K of the N tiles in T have been added by the algorithm and that 1 < K < N. There is a 
unique lowest, leftmost edge E on the frontier. If there isn’t a tile in T that can be added to E, 
then E must be on the boundary of T, since there cannot be holes in the tiling. By algorithm 
design, no part of the frontier is to the left of E’s leftmost endpoint. On the other hand, there 
cannot be tiles to the right of E’s leftmost endpoint because if there were, the frontier of T would 
be a vertical line entirely to the right of E’s leftmost endpoint. Therefore, the frontier of the tiling 
formed by the first K tiles must be a vertical line. However, because K < N, there must be tiles in 
T to the right of the vertical frontier formed by the first K tiles, and since the frontier of T is 
vertical, there must be a tile attached to E. By design, the algorithm will add that tile. 
 
Upper Bound 
 
Let f(N) be the number of finished N-tilings. Our algorithm uniquely specifies which edge a tile 
is added to when constructing tilings. Therefore, we can specify each tiling uniquely by stating 
the orientation of the first, corner tile, and then giving a string of H’s, L’s, and R’s. Thus, we 
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have an immediate upper bound on the number of finished N-tilings: 
f(N) ≤ 2(3N – 1). However, this upper bound includes many tilings 
that are not finished and ignores the fact that not every word in H, 
L, and R corresponds to a tiling. For example, some words require a 
tile outside the big 45° angle and some cause tiles to overlap. We 
expect that this upper bound can be substantially improved.  
 
Numerical Results 
 
This table shows what the algorithm computes for the values of f(N) 
for 1 ≤ N ≤ 20. 
 

N 1 2 3 4 5 6 7 8 9 10 

f(N) 1 1 2 6 10 15 30 69 137 243 

           

N 11 12 13 14 15 16 17 18 19 20 

f(N) 451 853 1562 2912 5555 10459 19644 37039 69305 129346 

 
 

All 30 Edge-To-Edge 7-Tilings 

 

 

 
135 R H H H L 
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Compositions, Partitions, and Young Diagrams 
by Robert Donley1 
edited by Amanda Galtman 
 
We continue the development of partitions from the previous two installments.  In this part, we 
assign to partitions a visual design that complements the generating function approach and that 
reveals properties not necessarily obvious in a purely numerical description of partitions.  We 
keep the definitions and notation from previous installments; in particular, recall that partitions 
are denoted by non-increasing strings of digits and that p[n](k) denotes the number of partitions of 
k with parts less than or equal to n. 
 
First, we draw some direct connections between partitions and compositions.  For a partition 
with largest part bounded by m, we assign a weak composition with m parts by recording the 
multiplicity of each part.  For instance, the partition 554322 of k = 21 yields the weak 
composition 02112.  To pass from a weak composition to the corresponding partition, we list the 
parts as many times as the composition indicates.  
 
Exercise: What does the sum of the composition’s parts equal? 
 
Exercise: For all weak compositions of k = 4 with 3 parts, list the corresponding partitions. 
 
Exercise: What type of partitions correspond to such compositions with binary parts? That is, we  
use parts equal to 0 or 1.  Find the partitions corresponding to the binary numbers with four 
digits. 
 
Another connection between partitions and weak compositions with a fixed number of parts 
follows from successive differences and partial sums.  For instance, if we take successive 
differences of the partition 75433 of k = 22, we obtain the composition 21103.  Here the last 
parts of the composition and partition coincide, as the final difference subtracts 0.  To reverse 
this process, we take partial sums from the right, such as 3 + 0 + 1 = 4. 
 
Exercise: For a weak composition obtained by taking successive differences of the parts of a 
partition, what does the sum of the composition’s parts equal? 

 
Exercise: Find the corresponding weak compositions for the partitions of 5. 
 
Exercise: Which partitions give rise to weak compositions (via successive differences) such that 
the last part is the only nonzero part?  To weak compositions with binary entries and, in 
particular, with all entries equal to 1? 
 
Compositions and partitions diverge with respect to general techniques.  Since a rearrangement 
of a composition yields a new composition, compositions display a large degree of symmetry, 
which points to the framework of group theory.  On the other hand, there is a powerful visual 
approach to partitions that reveals an important symmetry not available to compositions. 
 

 
1 This content is supported in part by a grant from MathWorks. 
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Definition: A Young diagram for a partition is an arrangement of rows of squares, justified to 
the left.  Each part corresponds to a row with that many squares, and the rows are listed from the 
top in non-increasing order by number of squares.  Partly to make generating functions nicer to 
express later, we consider the diagram with no squares to be a Young diagram. 
 
For example, the corresponding Young diagrams for 542 and 7422 are 

 
Exercise: What Young diagram results from a partition with a single part?  From a partition with 
all parts equal to 1?  From a partition with all parts of the same size? 
 

Exercise: What does the width of a Young diagram represent?  What does the height represent? 
 
If we compare Young diagrams with the composition representations above, the multiplicity of a 
part corresponds to the number of rows of that length, and the successive differences correspond 
to the lengths by which the rows overhang the rows immediately beneath them.  The x’s in the 
examples below indicate overhanging squares.  The composition has a part of size 0 if a row has 
no �.  The sum of the differences is the size of the largest part. 

 
 

Exercise: Draw the Young diagrams for the partitions of 5 and smaller, find each successive 
difference of the parts, and verify that the segment lengths sum to the length of the top row. 
 
An important extension of the successive difference formulation is to form a new partition from 
a given partition by removing the squares that would contain x’s in the manner shown above.  
(That is, the boxes in the Young diagram which are viewable from below are removed.)  By 
repeating this process, we get a sequence of partitions and weak compositions.  For instance, 542 
yields the sequence 
 

 
 

with compositions 122, 22, and 2.  Do you see how to reverse the process from the 
compositions?  Note that the number of parts decreases by one at each step.  The corresponding 
sequences for 7422 are partitions 7422, 422, 22, 2 and weak compositions 3202, 202, 02, 2. 
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Exercise: Repeat for the partitions 644 and 6542.  Try more examples, and 
record each sequence of partitions in the shape of an equilateral triangle like 
the one shown at right.             
 
Exercise: Construct the sequences of partitions and Young diagrams 
associated to the weak compositions (of successive differences) 123 and 20301.  What happens if 
all parts of the composition are equal to 1? 
 
Such a decomposition of a partition is a special case of a Gelfand-Tsetlin pattern.  Gelfand-
Tsetlin patterns are number arrangements in the shape of an inverted equilateral triangle such 
that each lower entry is numerically in between the two entries above or equal to one of them.  
These patterns arise in calculations in combinatorics, particle physics, and representation theory. 
 
Exercise: Consider the sequence of partitions 6532, 542, 43, 3.  Draw the Young diagram for 
6532, and, in the order that squares are added (by overlaying Young diagrams for the partitions 
in the sequence in reverse so that their top and left edges are aligned), label the added squares at 
each step with 1 through 4.  What Young diagrams result from restricting to squares with values 
less than 1, 2, 3, or 4, respectively? 
 
Exercise: Explore Gelfand-Tsetlin patterns as follows: choose a partition, extend to a Gelfand-
Tsetlin pattern, label squares as in the previous exercise, and then confirm the restriction 
property.  What properties must a sequence of Young diagrams possess to represent a Gelfand-
Tsetlin pattern? 
 
Many other properties of partitions follow from Young diagrams.  For a given Young diagram, 
another partition occurs if we instead list the sizes of the columns.  From the above diagrams for 
the partitions 542 and 7422, the column lists are 33221 and 4422111, respectively.  We call this 
operation the conjugation of a partition.  Note that conjugation preserves the number of squares. 
 
Exercise: Draw the conjugated partitions above and describe the conjugate of a partition 
geometrically.  Find the conjugates of all the partitions of 5.  What happens if we conjugate the 
conjugate of a partition? 
 
Exercise: What types of partitions are unchanged under the conjugation operation?  Draw 
several examples.  Explain how the Young diagrams for such partitions of k are in one-to-one 
correspondence with partitions of k with distinct odd parts.  Find the generating function that 
counts such partitions. 
 
Exercise: Verify that the first entry of a partition is the number of parts in the conjugate. 
 
In the previous installment, we noted that p[n](k) is also equal to the number of partitions of k 
with at most n parts.  While we first showed this using generating functions, it now follows 
directly from conjugation. 
 
Further results from the previous installment can be visualized with Young diagrams.  Since 
partitions with largest part at most n correspond to those Young diagrams with width less than or 
equal to n, we interpret the hockey stick rule as follows with Young diagrams: 
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p[n](k) = p[n – 1](k) + p[n – 1](k – n) + p[n – 1](k – 2n) + . . .. 
 

 
 
This schematic illustrates the identity at the top of the page when n = 5; the general case follows 
from a similar schematic.  The first rectangle represents all Young diagrams of width at most 5 
and with k squares.  The other three diagrams also represent collections of Young diagrams.  
Each subset is determined by the number of parts of size 5 that it contains; we mark these parts 
with x symbols. The remaining rows allow 4 or fewer squares.   
 
Exercise: Revisit the previous installment and interpret the other results about the partition 
triangle in terms of Young diagrams. 
 
The idea behind the Young diagram proof of the hockey stick rule extends to other shapes.  For 
the hockey stick rule, we append Young diagrams of smaller width to a progression of rectangles 
of width n.  To remove the width condition, we instead consider a progression of squares with 
increasing size. 
 
Young diagrams contain many sub-rectangles, but there is a unique square 
of largest size, called the Durfee square, that fits inside a Young diagram 
from the upper left-hand corner.  For the example of 542 shown at right, 
the Durfee square has size 2. 
 
Exercise: Find the size of the Durfee squares of the Young diagrams corresponding to the 
partitions 111, 54321, and 5555. 
 
Note that every Young diagram decomposes into its Durfee square of size m, a Young diagram 
of height less than or equal to m, and a Young diagram of width less than or equal to m.  Using 
the matching rule, the number of Young diagrams with k squares and a Durfee square of size m 
is the sum of 

p[m](k – m2 – s)p[m](s) 
 
as s ranges from 0 to k – m2.  Since convolution corresponds to a product of generating functions, 
this count is the coefficient of tk in 
 

2 2

2 2

1

(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

m m

m m m

t t

t t t t t t
=

− − − − − −⋯ ⋯ ⋯

. 

 
If we sum over all m, we obtain the equality of generating functions 
 

4

2 3 2 2 2 2

1
1

(1 )(1 )(1 ) (1 ) (1 ) (1 )

t t

t t t t t t
= + + +

− − − − − −

…

⋯

. 
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Exercise: Expand the three terms on the right-hand side to obtain the terms up to t8 of the 
generating function for partition numbers.  For the second term, use the binomial series 
 

2

2

1
1 2 3

(1 )
t t

t
= + + +

−

…. 

 
Then rewrite the third term as 

4 2

2 4

(1 )

(1 )

t t

t

+

−

 

 
and apply the binomial series 

2

4

1
1 4 10

(1 )
t t

t
= + + +

−

… . 

 
Finally, list all partitions for k up to 6 to verify the Durfee square counts from each term. 
 

This approach also works for partitions with distinct parts.  In addition to a 
distinguished square, each Young diagram with distinct row lengths contains 
a distinguished right triangle.  This triangle has sides in the first row and 
column of the Young diagram, and the hypotenuse is the largest diagonal to 
the upper right that completes such a triangle. 
 
Exercise: How many squares are in such a triangle of height m?  When does the triangle contain 
the Durfee square, and vice versa? 
 

Exercise: Prove that every Young diagram with distinct row lengths decomposes uniquely into 
its distinguished triangle of height m and, after shifting square to the left to left justify, a Young 
diagram of height less than or equal to m.  Also prove that a Young diagram constructed in this 
manner has distinct row lengths. 
 
For Young diagrams with distinct rows, the numbers with k squares and distinguished triangle of 
height m is the coefficient of tk in 

( 1)

2

(1 ) (1 )

m m

m

t

t t

+

− −⋯

. 

 
Since the counting functions for partition numbers with odd parts and distinct parts coincide, we 
obtain the equality of generating functions 
 

3 6

3 5 2 2 3

1
1

(1 )(1 )(1 ) (1 ) (1 )(1 ) (1 )(1 )(1 )

t t t

t t t t t t t t t
= + + + +

− − − − − − − − −

…

⋯

. 

 
Recall that the sequence corresponding to the left-hand side is sequence A00009 in the On-Line 
Encyclopedia of Integer Sequences.   
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Exercise: Expand the four terms on the right-hand side of this equation to obtain the terms up to 
t9 of the generating function for partition numbers with odd parts.  List all such partitions for k up 
to eight and verify the counts for each distinguished triangle size. 
 
Denote by Pm, n the number of Young diagrams that fit into a rectangle with height m and width 
n.  Denote by pm, n(k) the number of such diagrams with k squares.  Of course, Pm, n = Pn, m and 
pm, n(k) = pn, m(k). 
 
Exercise: Compute Pm, n directly for rectangles with heights 1, 2, and 3. 
 
Exercise: Give a recurrence relation for Pm, n based on the width n.  Draw the corresponding 
pictures with Young diagrams. 
 
For such a Young diagram with k squares, we assign the composition of n with m + 1 parts 
whose entries are the multiplicities of row lengths 0 through m.  These words are counted by the 
binomial coefficient 

,m n

m n
P

m

+ 
=  
 

. 

 
Exercise: Give another proof of this formula by counting the paths in the rectangle traced by the 
lower edges of all Young diagrams that it contains. 
 
Exercise: Prove that the formula for Pm, n satisfies the recurrence relation. 
 
Now consider pm, n(k).  If we alter the argument for the hockey stick rule, we obtain the 
recurrence relation 
 

pm, n(k) = pm, n – 1(k) + pm – 1, n(k – n). 
 
Let’s calculate the associated generating function Fm, n(t).  First, note that p1, n(k) = 1 if 0 ≤ k ≤ n 
and 0 otherwise.  Thus 
 

F1, n(t) = p1, n(0) + p1, n(1)t + . . . + p1, n(n)tn = 1 + t + t2 + . . . + tn. 
 
In terms of generating functions, the recurrence becomes 
 

Fm, n(t) = Fm, n – 1(t) + tnFm – 1, n(t). 
 
The factor of tn acts as a shift operation.  For instance, if we list only the coefficients for Fm, n(t), 
so that F1, 2(t) is given as 1 1 1, then we obtain F2, 2(t), F2, 3(t), and F2, 4(t) as follows: 
 

1 1 1    1 1 2 1 1  1 1 2 2 2 1 1  
      1 1 1           1 1 1 1              1 1 1 1 1 
1 1 2 1 1  1 1 2 2 2 1 1  1 1 2 2 3 2 2 1 1 

 

Exercise: Find F2, 5(t) and F2, 6(t).  Based on these examples, guess the general pattern, which 
might be familiar, and prove the general pattern for F2, n(t).  Verify the coefficients for F2, n(t) 
with n = 2, 3, 4 by listing all partitions in the corresponding rectangle. 
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Exercise: Find the formula for F3, 3(t) and F3, 4(t).  Verify by listing the partitions. 
 
Exercise: Using Young diagrams, explain why the coefficients of Fm, n(t) are symmetric.  That is, 
consider the squares not used by a Young diagram in the rectangle. 
 
We find the general pattern for F2, n(t) as a product of functions.  From the recurrence, 
 

F2, n(t) = F2, n – 1(t) + tnF1, n(t) = F2, n – 1(t) + tn(1 + t + t2 + . . . + tn). 
  
With F2, 1(t) = 1 + t + t2, we iterate to find 
 

F2, 2(t) = (1 + t2)(1 + t + t2), 
F2, 3(t) = (1 + t2)(1 + t + t2 + t3 + t4). 

  
The general formulas are given by 
 

                  2, ( )nF t


= 


 

 
Exercise: Verify the formulas for F2, 2(t) and F2, 3(t).  Then, assuming the cases with n – 1 are 
true, prove the general formulas for F2, n(t) are true.  Can you prove the formulas by describing 
the associated convolutions? 
 
The general formulas can be further expanded using geometric sums. For instance, when n is 
even, 
 

1 2 1 2

2, 2 2 2

(1 )(1 ) (1 )(1 )(1 )
( )

(1 )(1 ) (1 )

n n n n

n

t t t t t
F t

t t t

+ + + +

− − − − +
= =

− − −

 

 
and, if we convert to binomial series, we obtain 
 

2,

1 / 2 1 2
(2 ) 2

1 1 1
n

k k n k n
p k

+ − − − −     
= − +     
     

, 

2,

1 / 2 / 2 1 2
(2 1)

1 1 1 1
n

k k n k n k n
p k

+ − − − − −       
+ = − − +       

       
. 

 
We express the formulas in this way since binomial coefficients vanish when the upper index is 
negative or smaller than the lower index.  
 
Exercise: Verify these formulas for all values of k when n = 2, 4.  For general even n, show 
vanishing when k > n.  With n fixed, draw the graphs of p2, n as functions of k. 
 
Exercise: Find the analogous formulas for odd n, and repeat the previous exercise with n = 1, 3. 
 

(1 + t2 + . . . + tn)( 1 + t + t2 + . . . + tn) (n even), 
(1 + t2 + . . . + tn – 1)( 1 + t + t2 + . . . + tn + 1) (n odd). 
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Follow Your Nose 
by Ken Fan | edited by Jennifer Sidney 
 
As Prof. Lange2 experienced, with math you don’t always have to read it in a book.  You can 
figure it out. 
 
Last month, I followed a group of 8th graders who took it upon themselves to find all of the 
Pythagorean triples.  Would they succeed? 
 
A Pythagorean triple consists of three whole numbers that correspond to the lengths of the sides 
of a right triangle.  The most famous Pythagorean triple is 3, 4, and 5.  But there are many others, 
such as 5, 12, and 13, or 6, 8, and 10.  These numbers satisfy the famous Pythagorean equation 
that relates the side lengths of a right triangle with hypotenuse of length c and legs of lengths a 
and b: 

a2 + b2 = c2. 
 
Any positive numbers a, b, and c that satisfy this equation correspond to the lengths of the sides 
of a right triangle, with c being the length of the hypotenuse. 
 
The problem of finding all of the Pythagorean triples is well known and was worked out long 
ago.  I just googled “Pythagorean triple” and got back 2,110,000 hits! 
 
But you don’t have to look them up.  You can figure them out, and you might discover how fun 
it is to do so.  Try it! 
 
If you’re skeptical, let’s look at what these 8th graders did.  As we follow their work, ask 
yourself, “Is there anything they did that I couldn’t do myself?” 
 
Examples 
 
The first thing they decided to do was to find more examples of Pythagorean triples.  With more 
examples, they reasoned, they might detect a pattern. 
 
Using a combination of recall and guessing, they added (8, 15, 17), (7, 24, 25), and (9, 12, 15) to 
the solutions (3, 4, 5), (5, 12, 13), and (6, 8, 10). 
 
An Observation 
 
One of them noticed that in three of the solutions, the two larger numbers differed by 1: (3, 4, 5), 
(5, 12, 13), and (7, 24, 25).  They wondered if there were other Pythagorean triples a, b, and c 
where c – b was equal to 1. 
 
To find out, they substituted b + 1 for c in the Pythagorean equation to get 
 

a2 + b2 = (b + 1)2. 
 

 
2 See our interview with Professor Karen Lange on page 3. 
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By expanding (b + 1)2, simplifying, and rearranging terms, they rewrote this equation as 
a2 – 1 = 2b.  From this equation, they saw that if a2 – 1 is even, then b would be an integer.  And 
they saw that a2 – 1 is even if and only if a is odd. 
 
They plugged in consecutive odd integers for a to get more Pythagorean triples.  When a = 1, 
they got the degenerate solution (1, 0, 1); but for bigger odd numbers, they rediscovered (3, 4, 5), 
(5, 12, 13), and (7, 24, 25), then found the solutions (9, 40, 41), (11, 60, 61), (13, 84, 85), etc. 
 
Isn’t that neat?  In just a few minutes, they managed to find an infinite family of Pythagorean 
triples all by themselves!  Is there anything they did that you don’t think you could have done? 
 
A Sensible Next Step 

 

Emboldened by this win, they decided to try to find solutions where c – b = 2. 
 
Guided by what they had just done, they substituted b + 2 for c in the Pythagorean equation and 
simplified to find the equation 

a2 – 4 = 4b. 
 
This equation made them wonder, “For which values of a is a2 – 4 divisible by 4?” 
 
They reasoned that for a2 – 4 to be divisible by 4, a2 must be divisible by 4, and a2 is divisible by 
4 whenever a is even. 
 
By substituting consecutive even numbers for a starting at 2, they found the degenerate solution 
(2, 0, 2), recovered the triples (4, 3, 5), (6, 8, 10), and (8, 15, 17), and found (10, 24, 26), 
(12, 35, 37), (14, 48, 50), etc. 
 
What do you think they did next? 
 
If you guessed that they tried to look for solutions where c – b = 3, you’re right. 
 
But they stopped midway through their procedure, because one of them had this wonderful 
thought: Instead of doing c – b = 3, then c – b = 4, c – b = 5, and so on, what if we try to do all of 
the cases by doing c – b = x?  If we can do that, then we can substitute 1, 2, 3, … for x to get all 
of these special cases. 
 
In other words, they utilized the concept of the variable! 
 
So instead of substituting b + 1, b + 2, or b + 3 for c, they substituted b + x in the Pythagorean 
equation and found this intriguing equation: 
 

a2 – x2 = 2xb. 
 
A few of them recalled the “difference of squares” algebraic identity and applied it to rewrite this 
equation as 

(a + x)(a – x) = 2xb. 
 
So, now the question became: For what values of a and x is (a + x)(a – x) divisible by 2x? 
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Isn’t it neat that a question about right triangles morphed into a specific question about 
divisibility? 
 
Unlike for the cases x = 1 and 2, the solution to the general divisibility problem was not clear.  
They decided to make a table, with rows corresponding to different values of x; in each row, they 
systematically listed values of a for which 2x divides evenly into (a + x)(a – x). 
 

x First several values of a for which (a + x)(a – x) is divisible by 2x 

1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39  

2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  

3 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105 111 117  

4 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80  

5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195  

6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120  

7 7 21 35 49 63 77 91 105 119 133 147 161 175 189 203 217 231 245 259 273  

8 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80  

9 3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 105 111 117  

10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

  
What patterns do you detect? 
 
The 8th graders noticed that sometimes, the values of a that work are the odd multiples of x, such 
as when x = 1, 3, 5, and 7.  But in other instances, there are values of a that work that are not 
multiples of x, such as when x = 8 or 9.  Yet even when the values of a that worked were not 
multiples of x, they were still spaced evenly, forming arithmetic series. 
 
Then, one of the 8th graders noticed that the product (a + x)(a – x) is a product of two numbers 
that differ by 2x, the very same number that the product must be divided by to obtain b.  That is, 
upon division by 2x, a + x and a – x leave the same remainder.  Let’s call this remainder r.  This 
means that a – x is r more than some multiple of 2x.  In other words, there is an integer m such 
that a – x = 2xm + r, which implies a + x = 2x(m + 1) + r.  Using these expressions for a – x and 
a + x, the students needed to determine when (2x(m + 1) + r)(2xm + r) is divisible by 2x.  Now, 
 

(2x(m + 1) + r)(2xm + r) = 4x2m(m + 1) + 2xr(m + 1) + 2xrm + r2. 
 
Given that the first three terms of the right side of this equation are multiples of 2x, it suffices to 
determine values of r such that r2 is divisible by 2x. 
 
Other students were thinking about prime factorizations, since the question of whether a number 
Y is divisible by a number X becomes clear if we know the prime factorizations of Y and X.  We 
need only check that for each prime number p, the exponent of p in the prime factorization of X 
is less than or equal to its exponent in the prime factorization of Y. 
 

So let 31 2 4

2 3 4
2 kn nn n n

k
p p p p⋯  be the prime factorization of 2x.  Here, we have made the prime factor 

of 2 explicit because 2 must appear with positive exponent in the prime factorization of 2x.  And 

let 31 2 4

2 3 4
2 km mm m m

k
p p p p⋯  be the prime factorization of r.  Again, we make the prime factor of 2 

explicit and use the same list of primes p2 through pk for both by allowing the possibility of 

having exponents that are zero.  Then the prime factorization of r2 is 31 2 42 22 2 2

2 3 4
2 km mm m m

k
p p p p⋯ .  
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In order for r2 to be divisible by 2x, we must have 2mi ≥ ni for i = 1, 2, 3, …, k.  In other words, if 
we define 

r0 = 31 2 4/2 /2/2 /2 /2

2 3 42 kn nn n n

k
p p p p

                 
⋯ , 

 

where x    is the least integer greater than or equal to x (also known as the ceiling of x), then r 

must be divisible by r0; conversely, if r is a multiple of r0, then r2 will be divisible by 2x. 
 
Success! 
 
In this way, the 8th graders found that for any positive integer m, we can let a – x = mr0 and get a 
Pythagorean triple!  Specifically, we get the solution 
 

a = mr0 + x,     b = mr0(mr0 + 2x)/(2x),     c = b + x. 
 
Let’s apply this to the case x = 3, which they were about to do before they shifted their focus to 
the general method.  When x = 3, 2x = 6 = 2∙3, so r0 = 2∙3.  Thus, values of a for which  
(a + x)(a – x) is divisible by 2x are a = 6m + 3, for any integer m (consistent with the table).  For 
this value of a, we find b = 6m(6m + 6)/6 = 6m(m + 1), and c = 6m(m + 1) + 3.  For m = 1, 2, 3, 
etc., we find the Pythagorean triples (9, 12, 15), (15, 36, 39), (21, 72, 75), etc. 
 
When x = 4, 2x = 8 = 23, so r0 = 22 = 4.  Therefore, a = 4m + 4, b = 4m(4m + 8)/8 = 2m(m + 2), 
and c = 2m(m + 2) + 4.  We find the Pythagorean triples (8, 6, 10), (12, 16, 20), (16, 30, 34), 
(20, 48, 52), (24, 70, 74), (28, 96, 100), (32, 126, 130), etc. 
 
The 8th graders succeeded in devising an algorithm for producing every single Pythagorean 
triple!  Their method does not use trial and error.  And they did it without having to look in a 
book! 
 
Is there anything they did that you think you couldn’t do yourself?  I’d bet not! 
 
With a little determination, I am sure you would be able to come up with your own method for 
producing Pythagorean triples.  One key to succeeding is not to dismiss your own thoughts.  
When you have an idea, try it!  Notice that the initial ideas these 8th graders had did not 
immediately lead to a general solution; they got to the general solution bit by bit.  So when you 
attempt your idea, don’t expect to find a complete solution initially.  Even if you don’t get a 
complete solution, your efforts will very likely give you other ideas. 
 
Primitivity 

 
The students noticed that many of the solutions they were getting were scaled up from smaller 
solutions.  For example, (6, 8, 10) is scaled up from (3, 4, 5) by a factor of 2.  Also, (3, 4, 5) and 
(4, 3, 5) are essentially the same solution, but the algorithm would produce the first if you set x to 
1 and the second if you set x to 2.  So their algorithm leads to further questions: For which values 
of x and m will the resulting solution be primitive, that is, will not be a multiple of a smaller 
solution?  For which values of x and m will we have a < b < c?  (Can you show that in any 
Pythagorean triple with a2 + b2 = c2, we cannot have a = b?) 
 
At this point, however, the students voted to switch gears and pursue other questions. 
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I’ll pick up their investigation where they left off to show how it could have unfolded.  But if 
you’re interested in seeing how you might expand upon their work, read no further and have fun! 
 
Primitive Pythagorean Triples 
 
Let’s try to determine which values of x and m produce primitive Pythagorean triples.  In the 
equation a2 + b2 = c2, notice that any prime number that divides evenly into any two of the 
numbers a, b, or c must also divide the third.  For example, if a prime number p divides both a 
and b, then p divides a2 and b2; hence p divides a2 + b2, which is c2.  And if a prime number 
divides c2, then it must divide c.  (Please check the other two cases!)  This means that in a 
primitive Pythagorean triple, the numbers are pairwise relatively prime, and if any two numbers 
are relatively prime, then the triple is primitive. 
 
So to understand which values of x and m produce a primitive Pythagorean triple, it suffices to 
determine when any two of a, b, or c are relatively prime. 
 
Let’s recall the formulas the students found for a, b, and c: 
 

a = mr0 + x b = mr0(mr0 + 2x)/(2x) c = b + x 
 
Suppose we wish to understand whether two numbers X and Y are relatively prime.  If X and Y 
have a common divisor greater than 1, they will have a common prime divisor.  But if X and Y 
are relatively prime, then no prime will divide evenly into both.  Thus, to check for relative 
prime-ness, we can proceed prime number by prime number.  That is, for each prime number p, 
we can check to see if p divides both X and Y. 
 
We might as well start with the first prime number, 2. 
 
If x is odd, then – in the notation from earlier – we have n1 = 1 (recall that n1 is the exponent of 2 
in the prime factorization of 2x).  Here r0 will have a factor of 2, but not 4.   This means mr0 is 
even, and since we’re assuming that x is odd, it must be that a is odd.  Because c = b + x, one of 
b and c will be even and the other will be odd.  Therefore, 2 will not be a common factor of a, b, 
and c. 
 
If x is even, then n1 > 1 and r0 will be even.  That means a is even.  Since b and c now have the 
same parity, we need only determine if b is even or not.  We can rewrite the expression for b as 
 
 

b = 
2

2 0
0

2

r
m mr

x
+ . (*) 

 

By construction, 2

0
/ (2 )r x  is a whole number.  Since m is a factor in both terms, if m is even, then 

b will be even and the triple will not be primitive.  So let’s assume m is odd.  We know r0 is 

even, so b will be odd only if 2

0
/ (2 )r x  is odd, and 2

0
/ (2 )r x  is odd if and only if n1 is even. 

 
Putting this together, we’ve found that the triple a, b, c will not have a common factor of 2 if and 
only if x is odd or if 2 appears in the prime factorization of x an odd number of times and m is 
odd.  Otherwise, all three numbers a, b, and c will be even. 
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Now suppose p is an odd prime number. 
 
Suppose p does not divide evenly into x.  If p divided evenly into both b and c, then p would 
divide their difference; but c – b = x, and that would be a contradiction. 
 
So suppose that p does divide into x.  Let n be the exponent of p in the prime factorization of x.  
Since n > 0, p divides r0 and, hence, p divides a.  Because b and c differ by x, which is a multiple 
of p, they will either both be divisible by p or neither will be divisible by p.  To find a primitive 
triple, we would need neither to be divisible by p.  We’ll consider two cases: n is odd, or n is 
even. 
 

If n is odd, then pn + 1 will divide 2

0
r , so p will divide 2

0
/ (2 )r x .  Since p also divides r0, b will be 

divisible by p, and the triple will not be primitive. 
 

If n is even (and not zero), then p does not divide 2

0
/ (2 )r x .  Since p does divide r0, from formula 

(*), we conclude that p divides b if and only if p divides m. 
 
Thus a, b, and c will not have a common odd prime factor p if and only if p appears with even 
exponent in the prime factorization of x and m is not divisible by p. 
 
Putting all of this information about individual prime numbers together, we find that the values x 
and m give rise to a primitive Pythagorean triple a, b, c if and only if 
 
 - x is an odd perfect square and m is relatively prime to x 
 - x is an odd power of 2 times an odd perfect square and m is relatively prime to x 
 
Note that a number that is an odd power of 2 times an odd perfect square is twice a perfect 
square.  So we can restate the condition as follows: 
 

The values x and m give rise to a primitive Pythagorean triple a, b, c if and only if 
x is either an odd perfect square or twice a perfect square, and m is relatively 
prime to x. 

 
To illustrate, let’s take x = 50 = 2∙52 and m = 17.  Then r0 = 10 and a = 220, b = 459, and c = 509, 
and, indeed, 2202 + 4592 = 5092. 
 

A Corollary 
 
A corollary of this investigation is that in any primitive Pythagorean triple, the difference 
between the length of a leg and the length of the hypotenuse will always be either an odd perfect 
square or twice a perfect square. 
 
Using the material in this investigation, can you show that in any primitive Pythagorean triple a, 
b, c with a2 + b2 = c2, exactly one of a or b must be even and c must be odd?  Combining this 
with the corollary, we conclude that the difference between the lengths of the hypotenuse and 
one leg will be an odd perfect square, while the difference between the lengths of the hypotenuse 
and the other leg will be twice a perfect square.  For example, in 220, 459, 509, the difference 
509 – 220 is 289, which is 172, whereas 509 – 459 = 2∙52.  Isn’t that neat? 
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Romping Through the Rationals, Part 5 
by Ken Fan | edited by Jennifer Sidney 
 
Jasmine: We’ve managed to show that we 

can use the splicing operation to modify any 

rational romper so that it begins 0, 1, p, 

where p is a positive integer.  Now I think we 

should try to show that any rational romper 

can be transformed into any other rational 

romper by a sequence of splices inductively, 

by showing that we can modify one to agree 

with the other on its first 3 terms, then its 

first 4 terms, then its first 5 terms, etc. 

 

Emily: Sounds like a good strategy!  So 

suppose an and bn are two rational rompers.  

Since all rational rompers must begin  

0, 1, …, we know that an and bn have the 

same first two terms.  So now let’s assume 

that ak = bk for all k < N, where N is some 

positive integer greater than 2, and suppose 

aN ≠ bN.  Can we show that we can modify 

the sequence an using the splicing operation 

so that the resulting sequence agrees with the 

sequence bn on its first N terms? 

 

Jasmine: Let’s see.  In that setup, the two 

sequences begin like this: 

 

a1, a2, a3, …, aN – 1, aN, aN + 1, … 

 

and 

 

a1, a2, a3, …, aN – 1, bN, bN + 1, …. 

 

For definiteness, let’s also assume that aN – 1 ≠ aN.  If that’s not the case, we can just swap the 

labels of the two sequences. 

 

Emily: Okay.  We don’t want to mess with the first N – 1 terms anymore, so hopefully we can do 

some kind of splice that changes that aN to bN and only involves moving around parts of the 

sequence beyond the first N – 1 terms. 

 

Jasmine: If we’re lucky enough to be able to perform a single splicing operation to make the 

desired change, we would need to find, in the first sequence, the consecutive terms aN – 1, bN 

somewhere after the first N terms. 

 

Emily and Jasmine are studying sequences an 
of nonnegative integers that have the property 
that consecutive terms are relatively prime 
and every nonnegative rational number is 
equal to an/an + 1 for a unique n.  They have 
dubbed these sequences “rational rompers.” 
 
Last time, they seized upon an idea that they 
are hoping will enable them to transform any 
rational romper into any other rational romper 
by a sequence of operations that they call a 
“splice.”  A splice modifies a rational romper 
an in the following way: Suppose x, y are 
consecutive terms in the sequence an and 
suppose there is a subsequence disjoint from 
the consecutive terms x, y, but which also 
begins with x and ends with y.  That is, 
suppose ak = x and ak + 1 = y, and there is a 
subsequence ap, ap + 1, ap + 2, …, aq, where we 
have either p > k + 1 or q < k.  Then we can 
obtain another rational romper by removing 
the subsequence ap + 1, …, aq – 1 and 
reinserting it between ak and ak + 1. 
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Emily: And that will happen! 

 

Jasmine: Why can’t the subsequence aN – 1, bN occur among the first N terms? 

 

Emily: Because the two sequences agree on the first N – 1 terms, and in the second sequence, 

aN – 1, bN occurs as the (N – 1)-th and Nth terms.  Since it’s a rational romper, that must be the 

one and only time those two numbers appear consecutively.  So aN – 1, bN does not occur among 

the first N – 1 terms of either sequence! 

 

Jasmine: Oh, nice!  So let’s say that am = aN – 1 and am + 1 = bN, with m ≥ N.  In fact, we can 

assume that m > N, because we’ve set up our sequences so that aN – 1 ≠ aN.  So our first sequence 

goes like this: a1, a2, a3, …, aN – 1, aN, …, am = aN – 1, am + 1 = bN, am + 2, …. 

 

Emily: We’d like to perform a splice that moves the (m + 1)-th term to the Nth term. 

 

Jasmine: That means we want to find the first occurrence of aN after the (m + 1)-th term.  And 

since any positive integer appears infinitely many times in a rational romper, there will be an M 

which is the smallest positive integer greater than m + 1 such that aM = aN: 

 

 a1, a2, a3, …, aN – 1, aN, …, am = aN – 1, am + 1 = bN, …, aM = aN, aM + 1, …. 

 

I think we’re all set to perform the splice! 

 

Emily: Yes, we can remove the subsequence of terms between the mth term and the Mth term 

and reinsert it between the (N – 1)-th term and the Nth term: 

 

a1, a2, a3, …, aN – 1, am + 1 = bN, …, aM – 1, aN, …, am = aN – 1, aM = aN, aM + 1, …. 

 

The result is a sequence that agrees with the rational romper bn on its first N terms!  Since we can 

always extend the terms on which the sequences agree, by induction, any rational romper can be 

transformed into any other rational romper by a sequence of splices! 

 

Jasmine: Wow, that was painless!  There was no obstruction. 

 

Emily: I’m kind of stunned how everything just works out. 

 

Jasmine: But it may take an infinite number of splice operations to effect the transformation; I 

guess that’s to be expected since two rational rompers might differ in infinitely many places. 

 

Emily: Actually, when can a rational romper be transformed to another rational romper via a 

finite sequence of splices? 

 

Jasmine: Hmm.  If we perform a finite number of splices, there would have to be a point in the 

sequence beyond which none of the terms are affected by any of the splices, because each splice 

affects the positions of only finitely many terms.  So if an and bn are two rational rompers that 

can be transformed into each other via a finite sequence of splices, they would have to agree on 

an infinite tail of terms. 
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Emily: It seems like the converse might be true, too… that two rational rompers that agree on an 

infinite tail of terms must be related by a finite sequence of splices.  But it’s not clear to me that 

the method we used to transform one rational romper to another won’t keep messing up terms 

and require an infinite number of splices in all cases. 

 

Jasmine: Maybe we can prove it by induction in the other direction.  Suppose we have two 

rational rompers an and bn and ak = bk for all k > N for some positive integer N.  If we can show 

that we can perform a splice to the sequence an so that the result agrees with bn on all terms from 

the Nth one on, that would do it. 

 

Emily: To do that, we would probably want to perform splices that move around only terms 

before the (N + 1)-th term.  If that’s possible, then I think it means that splicing should enable us 

to transform any finite “rational romper” to any other finite rational romper that represents the 

same set of rational numbers. 

 

Jasmine: I see what you’re saying.  You’re saying that if an and bn are finite sequences of the 

same length and consecutive terms are relatively prime, and the collection of rational numbers 

ak/ak + 1 is distinct and forms the same set of rational numbers as the rational numbers bk/bk + 1, 

then you want to be able to transform an to bn via a finite sequence of splices? 

 

Emily: Yes, although I think we also want to require that the two sequences have the same last 

term, since no splice can move the last term of a finite sequence to another location in the 

sequence.  This additional constraint isn’t a concern because with actual rational romper 

sequences that agree on an infinite tail of terms, we can apply it to the first so many terms up to 

and including the first term of the tails where they agree. 

 

Jasmine: Maybe the same inductive argument we already came up with will work for these finite 

sequences.  Let’s see. 

 

Emily and Jasmine review their inductive argument. 

 

Emily: I can see that the argument goes through up to where we show that the first sequence 

looks like this: a1, a2, a3, …, aN – 1, aN, …, am = aN – 1, am + 1 = bN, am + 2, ….  But then we have to 

find an occurrence of aN after the (m + 1)-th term, and I don’t see why that has to be true in the 

finite case.  In the infinite case, there’s no problem because every positive integer must appear 

infinitely many times in the sequence. 

 

Jasmine: Actually, I think there’s a counterexample.  Consider the sequence 0, 1, 2, 1, 3, 1, 4 and 

the sequence 0, 1, 3, 1, 2, 1, 4.  Both represent the rational numbers 0, 1/2, 2, 1/3, 3, and 1/4, but 

there’s no way to perform splices to turn one into the other.  In fact, no splice can be performed 

on either sequence! 

 

Emily: Oh dear.  What can be done? 

To be continued … 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 33 - Meet 1 
September 14, 2023 

Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Shauna Kwag, Bridget Li, Gautami Mudaliar, 
Hanna Mularczyk, AnaMaria Perez, Vievie Romanelli, 
Swathi Senthil, Padmasini Venkat, Jing Wang 

 We welcome all new and returning members and mentors to our 17th year of Girls’ Angle! 
 Two separate groups of members happened to be pondering the same topic: How does 
one find the equations of tangent lines to conic sections.  One group was working on parabolas 
while the other was working on ellipses.  Members of neither group knew about calculus.  There 
are different ways of solving this problem.  Can you think of a way? 
 

Session 33 - Meet 2 
September 21, 2023 

Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Bridget Li, Gautami Mudaliar, Hanna Mularczyk, 
Tharini Padmagarisan, AnaMaria Perez, 
Vievie Romanelli, Swathi Senthil, Padmasini Venkat, 
Jane Wang, Jing Wang 

 Some members worked on solving contest problems from the 2022 AMC 10A 
mathematics competition.  If you enjoy solving problems from past competitions, we suggest 
that when you solve them, you try to 
 - solve the problem in more than one way. 
 - see how much you can solve of the problem entirely in your head. 
 - explicitly identify the central idea(s) of the problem. 
 - understand how the answer depends on the given information. 
 - modify the problem or create a related problem. 
 

Session 33 - Meet 3 
September 28, 2023 

Mentors: 
 
 
 
 
 

Visitor: 

Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Gautami Mudaliar, Hanna Mularczyk, 
Tharini Padmagarisan, AnaMaria Perez, 
Vievie Romanelli, Swathi Senthil, Jing Wang, 
Julia Wei, Dora Woodruff 
 
Isabel Vogt, Brown University 

 We’re thrilled to have a Support Network visit from Isabel Vogt, assistant professor of 
mathematics at Brown University and former Girls’ Angle mentor.  Isabel explained her path into 
mathematics and one of her most recent theorems. 

She was raised in South Florida and attended a middle school that specialized in the arts.  
In High School, she began to get more interested in science and math.  On a whim, she applied to 
the Summer Workshop in Mathematics at Princeton University.  She got in, and enjoyed the 
program a lot, but when she arrived at Harvard for college, she majored in physics and 
chemistry.  During her sophomore year, she took a math class from Prof. Joe Harris, and that’s 
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when things clicked: She realized that math was what she wanted to do.  She joined the 
Undergraduate Women in Math club at Harvard and started mentoring at Girls’ Angle. 
 She then attended MIT for graduate school, studying algebraic geometry under the 
supervision of Bjorn Poonen (who also serves on the Girls’ Angle Advisory Board).  There, she 
first encountered a problem that would interest her to this day: to understand the number of 
generic points on a curve of degree d, in an ambient space of dimension r, and with genus g, over 
the field of complex numbers.  This question has its roots in the Euclidean observations that a 
line interpolates 2 points and a circle interpolates 3 points.  That is, through any 2 points, there 
exists a line, but not necessarily through any 3 points, and, generically (meaning, not collinear), 
for any 3 points, there exists a circle through all 3, but through 4 generic points.  There was a 
known formula for the expected number of generic points, but it was not fully proven.  Over the 
course of years of tackling the problem and in collaboration with Eric Larson, she eventually 
settled the question, showing that the expected number is, in fact, correct, except for 4 exceptions 
with (d, g, r) = (5, 2, 3), (6, 4, 3), (7, 2, 5), and (10, 6, 5).  Quanta Magazine recently wrote about 
her work with Larson in an article entitled “Old Problem About Mathematical Curves Falls to 
Young Couple.” 
 

Session 33 - Meet 4 
October 5, 2023 

Mentors: Elisabeth Bullock, Jade Buckwalter, Anushree Gupta, 
Gautami Mudaliar, Hanna Mularczyk, 
Tharini Padmagarisan, AnaMaria Perez, 
Vievie Romanelli, Padmasini Venkat, Jane Wang, 
Dora Woodruff, Angelina Zhang 

 Suppose you have a rectangular grid that is n squares by m squares.  How many ways are 
there to place the numbers 1 through nm into the squares in the grid in such a way that the 
numbers increase down any column or from left to right across any row? 
 

Session 33 - Meet 5 
October 12, 2023 

Mentors: 
 

Elisabeth Bullock, Gautami Mudaliar, Hanna Mularczyk, 
Tharini Padmagarisan, AnaMaria Perez, Swathi Senthil, 
Padmasini Venkat, Jing Wang, Dora Woodruff, 
Angelina Zhang 

 Can you make perspective drawings of all the Platonic solids?  Of the five Platonic 
solids, the cube is probably the easiest, but even that is a challenge.  How do you ensure that the 
drawing represents a block with equal edge lengths? 
 

Session 33 - Meet 6 
October 19, 2023 

Mentors: Jade Buckwalter, Gautami Mudaliar, Hanna Mularczyk, 
AnaMaria Perez, Vievie Romanelli, Swathi Senthil, 
Padmasini Venkat, Jing Wang, Dora Woodruff, 
Saba Zerefa, Angelina Zhang 

 How many different algorithms can you devise to sort a list of numbers? 
 

Session 33 - Meet 7 
October 26, 2023 

Mentors: 
 

Anushree Gupta, Shauna Kwag, Gautami Mudaliar, 
Hanna Mularczyk, Tharini Padmagarisan, 
AnaMaria Perez, Swathi Senthil, Padmasini Venkat, 
Jane Wang, Dora Woodruff, Saba Zerefa, Angelina Zhang 

 Can you devise a method to fold an origami regular octagon?  How can you ensure that 
all 8 sides are the same length and that all the angles have the same measure? 
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Calendar 

 
Session 33: (all dates in 2023) 
 

September 14 Start of the thirty-third session! 
 21  
 28 Support Network Visitor: Isable Vogt, Brown University 
October 5  
 12  
 19  
 26  
November 2  
 9  
 16  
 23 Thanksgiving - No meet 
 30  
December 7  

 

Session 34: (all dates in 2024) 
 

February 1 Start of the thirty-fourth session! 
 8  
 15  
 22 No meet 
 29  
March 7  
 14  
 21  
 28 No meet 
April 4  
 11  
 18 No meet 
 25  
May 2  
 9  

 
 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax-free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 

The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 

What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high-level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 

Parents/Guardians: _____________________________________________________________________ 
 

Address: ___________________________________________________________ Zip Code: _________ 
 

Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax-free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  

 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 

  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


