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An Interview with 
Sarah Spence Adams, 
Part 1 

 

Sarah Spence Adams is Professor of 
Mathematics and Electrical & Computer 
Engineering at Olin College.  She earned a 
Bachelor of Science from the University of 
Richmond and a PhD in Mathematics from 
Cornell University under the supervision of 
Stephen B. Wicker. 
 
Ken: You’re an expert on secret codes.  
Let’s start with a basic question: What do 
secret codes have to do with math?  How 
does math enter the picture? 
 
Sarah: Secret codes have been around for 
millennia, and math has been lurking 
beneath the surface in the majority of known 
examples.  For example, the Caesar cipher, 
said to be used by Julius Caesar around 100 
B.C., shifts each letter forward by three 
letters so that every A in an original message 
is replaced by a D, and similarly Bs are 
replaced by Es, and so on.  To shift a Z 
“forward” by three, it has to “wrap around” 
to C.  Mathematically, we can think about 
this as performing addition modulo 26, 
where we consider the letters A to Z as the 
numbers 0 to 25, respectively, and all 
addition “wraps around” to keep all numbers 
between 0 and 25.  For example, to shift 
forward Y by three, we think about Y as 24, 
and compute 24 + 3 modulo 26, which 
means that the normal answer of 27 has to 
“wrap around” to 1.  The number 1 then 
converts to B, so we see that this Caesar 
cipher would encrypt Y as B. 
 LVQ’W WKDW FRRO? 

Modern secret codes, or 
cryptographic ciphers, use more advanced 
mathematical ideas/structures such as 
modular exponentiation, discrete logarithms, 

and elliptic curves.  One really cool thing is 
that modular arithmetic is at the core of 
these more advanced topics.  It is fascinating 
to me that modular arithmetic is found in 
both ancient, easy-to-break ciphers and 
modern, highly secure ciphers. 
 
Ken: What exactly is coding theory?  What 
are the “big problems” in coding theory? 
 
Sarah: Whereas cryptography involves 
secret codes that are used to keep 
information safe from intruders or 
eavesdroppers, coding theory involves error 
control codes that are used to keep 
information safe from the inevitable errors 
that occur during the transmission of a 
message or during the storage and later 
retrieval of data.  For example, a message 
traveling to Earth from a deep space satellite 
might experience errors due to a solar flare 
or other atmospheric disturbances, while 
data being retrieved from a DVD might 
experience errors due to fingerprints or 
scratches on the DVD. 
 Error control codes insert 
redundancy into the original message so that 
the intended message can be recovered even 
if parts of it are corrupted by errors.  A silly 
example would be to consider the telephone 
game, where one friend begins by 
whispering a sentence into another friend’s 
ear.  This sentence is passed around a room 
via whispers, and usually, the last person 
says a sentence out loud that is wildly 
different from the original sentence.  If we 
changed this game and allowed each person 
to repeat the sentence five times, we would 
expect that this repetition would help reduce 
the number of errors that get introduced and 
propagated around the room.  Error control 

Coding theory is a big field that 

requires cooperation among 

mathematicians, engineers, and 

telecommunications experts. 
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codes do something similar, however they 
can’t simply repeat each message five times 
as that would slow down our 
communications too much. 
 The big problem in coding theory is 
to figure out how to introduce redundancy in 
clever ways, tailored to the needs of a 
particular application.  There are many 
factors to consider when creating or 
choosing error control codes for particular 
channels, including the expected frequency 
of errors, the expected distribution of errors 
(spread out or clumped together?), how 
much power or bandwidth is available, how 
fast we need the transmissions to be, and 
whether the communication channel is “one-
way” or if we can ask for a repeat 
transmission if something goes wrong.  
Coding theory is a big field that requires 
cooperation among mathematicians, 
engineers, and telecommunications experts. 
 
Ken: Could you please explain one of the 
more sophisticated mathematical concepts 
that you use in your work and how it is 
used? 
 
Sarah: Some of the most powerful and 
beautiful error control codes are built using 
ideals of polynomial rings over Galois 
fields.  I learned about these structures as an 
undergraduate, and then I concentrated on 
codes built using these structures during 
graduate school.  I love applying these 
beautiful mathematical structures to real-
world problems. 
 To understand ideals of polynomial 
rings over Galois fields,1 we need to first 
understand the concept of a field.  In this 
interview, I will keep things as informal as 
possible, so you are encouraged to look at an 
abstract algebra book to see the formal 
details.  A field is a special collection of 

 
1 Galois fields are finite fields.  For a Learn by Doing 
on finite fields, see page 23-26 of Volume 9, Number 
1 of the Girls’ Angle Bulletin.  Galois fields are 

elements, along with two operations, that 
behave in nice ways.  The real numbers 
form a field under addition and 
multiplication due to the nice properties 
about how real numbers interact with each 
other.  For example, real numbers follow the 
associativity, commutativity, and 
distributivity properties for both addition 
and multiplication.  Also, there is a special 
element, namely 0, that “does nothing” 
under addition.  For any real number x, we 
know x + 0 = 0 + x = x.  Similarly, there is a 
special element, namely 1, that “does 
nothing” under multiplication.  For any real 
number x, we have x(1) = 1(x) = x.  These 
special numbers are called additive and 
multiplicative identities, respectively.  
Finally, every real number x has an “additive 
inverse,” meaning a number that can be 
added to x to obtain the additive identity (0).  
For example, 5 has an additive inverse of -5 
because 5 + (-5) = 0.  Similarly, every 
nonzero real number x has a “multiplicative 
inverse,” meaning a number that can be 
multiplied by x to get back to the 
multiplicative identity (1).  For example, 12 
has a multiplicative inverse of 1/12 because 
(12)(1/12) = 1.  In summary, the real 
numbers under the operations of addition 
and multiplication form a field because 
those operations satisfy the associative, 
commutative, and distributive properties, 
they have additive and multiplicative 
identities, and all real numbers have an 
additive inverse, while all nonzero real 
numbers also have a multiplicative inverse. 
 Sometimes it helps to understand a 
definition by considering a counterexample.  
The integers under addition and 
multiplication do not form a field.  Although 
they satisfy most of the requirements for a 
field, multiplicative inverses do not exist for 
all integers.  For example, consider the  

named after Évariste Galois, a French mathematician 
who lived from 1811 to 1832. 
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Dear Reader, 
 

We’re committed to producing quality math educational 
content and make every effort to provide this content to you 
for free. 

We are also committed to surviving as a nonprofit! 
 For this issue, those who do not subscribe to the print 
version will be missing out on a portion of this interview with 
Prof. Sarah Spence Adams and other content.   We hope that you 
consider the value of such content and decide that the efforts 
required to produce such content are worthy of your financial 
support. 
 We know that mathematical interest and talent is 
unrelated to economic status, which is why we provide so 
much content for free.  But we hope that those of you who are 
comfortable financially will help us to continue in our efforts. 
 So, please consider subscribing to the Bulletin.  Thanks 
to our sponsors, subscriptions cost $36/year.  With a 
subscription, you have also gained access to our mentors via 
email and the ability to influence content in this Bulletin.  Visit 
www.girlsangle.org/page/bulletin_sponsor.html for more 
information. 
 
Thank you and best wishes, 
Ken Fan 
President and Founder 

                           Girls’ Angle: A Math Club for Girls 
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Content Removed from Electronic Version 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The American Mathematical Society is generously offering a 25% discount on the two book set 
Really Big Numbers and You Can Count On Monsters to readers of this Bulletin.  To redeem, go 
to http://www.ams.org/bookstore-getitem/item=MBK-84-90 and use the code “GIRLS” at checkout.
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The Needell in the Haystack1 
Natural Language Processing, Part 3: 
From Language Models to AI Chatbots 
by Anna Ma | edited by Jennifer Sidney 
 

You have probably heard about or encountered the wonders of ChatGPT, 
an artificial intelligence chatbot developed by OpenAI.  ChatGPT has 

been shown to do some pretty incredible things: it can help you outline an essay, explain how to 
make a peanut butter sandwich from the perspective of a pirate, or even write a story about 
Natural Language Processing (NLP), a dragon, and a Princess.2  But how does it work?  Is there 
a human who sits behind the scenes and answers prompts, Wizard-of-Oz style?  That’s not likely, 
especially with the breadth of topics and speed at which ChatGPT responds to prompts.  In this 
installment of “Needell in the Haystack” (“NITH”), we will see how language models can be 
used to generate text.  We’ll review a simple language model discussed in the last installment of 
“NITH” and then generalize to the n-gram model.  Finally, we will discuss how many modern 
chatbots such as ChatGPT work by contrasting simpler models with the Transformer Model.3 
 

 
Figure 1. The text dataset is split into word pairs, or bi-grams, to train the transition matrix. 

 
A Simple Language Model 
 
Before diving in, let’s review some fundamental concepts of language models we’ve discussed 
previously.  Language models are computational models used to generate human text.  We first 
recap a simple model that takes a text data set, splits it into pairs of words known as bi-grams, 
and trains a transition matrix.  These steps are summarized and reviewed in Figure 1 and 
Figure 2.  This model is known as the bi-gram model because of the use of word pairs. 
 
 

 START I my math think mango is very squishy fun problems and has challenging END 

START 0 1/2 1/4 1/4 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

my 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
math 0 0 0 0 0 0 2/3 0 0 0 0 0 1/3 0 0 

think 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
mango 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

is 0 0 0 0 0 0 0 1/3 1/3 1/3 0 0 0 0 0 

very 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
squishy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

fun 0 0 0 0 0 0 0 0 0 0 1/3 0 0 0 2/3 
problems 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

and 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

has 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
challenging 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

END 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
1 This content is supported in part by a grant from MathWorks.  Anna Ma is an Assistant Professor at the University 
of California Irvine. 
2 See Part 1 of this series, “Natural Language Processing: A Princess, a Dragon, and a Simple Model,” on pages 7-
11 of the Girls’ Angle Bulletin, Volume 16, Number 2.  
3 The ‘GPT’ in ChatGPT stands for Generative Pre-trained Transformer.  ChatGPT is a transformer model that 
generates text based on data it was previously trained with. 

Figure 2. The elements of the 
transition matrix are determined by 
counting the number of bi-grams that 
start with word I and end with word 
J, and dividing by the number of 
word pairs that start with word I.  For 
example, the entry in row I = “math” 
and J = “is” is 2/3 because three bi-
grams start with the word “math” 
(highlighted in red in Figure 1) and 
two of them end with the word “is.” 
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The transition matrix contains conditional probabilities between words.  For instance, 
P(is | math) = 2/3, highlighted in red in Figure 2, represents the probability that “is” appears next 
conditional on “math” appearing before it.  The transition matrix can be used to assign 
probabilities to entire sequences of words by multiplying the conditional probabilities appearing 
in a sequence.  For example, the transition matrix in Figure 2 assigns a probability of 4/54 to the 
sentence “I think math is fun,” because  
 
P(START I think math is fun END) 

= P(START)P(I | START)P(think | I)P(math | think)P(is | math)P(fun | is)P(END | fun) 
= 1 × 1/2 × 1 × 1 × 2/3 × 1/3 × 2/3 = 4/54, 

 
where we use Bayes’ Theorem, which says P(EF) = P(F)P(E | F) where E and F are words.  
 Unfortunately, this transition matrix assigns an even larger probability to the sentence “I 
think math is squishy,” since 
 
P(START I think math is squishy END) 

= P(START)P(I | START) ∙ P(think | I) ∙ P(math | think) ∙ P(is | math) ∙ P(squishy | is) ∙ 
   P(END | squishy) 
= 1 × 1/2 × 1 × 1 × 2/3 × 1/3 × 1 = 2/18. 

 
This highlights a significant issue with our current model.  
 
Drawbacks of the Current Model 
 
In any data science application and with any machine learning model, it’s important to 
understand what our method can and cannot do.  While this bi-gram model can be used to 
complete sentences, the (minimal) text data set it was trained on only mentions mangoes and 
math.  Thus, it cannot complete sentences about other topics, nor sentences such as 
 

“There is no place like home.  There is no place like ___” 
 
If we want a model that can generate more varied sentences, we will need more training data.  
 However, even with more data, this model is still limited because the probability of the 
next word is only dependent on the preceding word.  Here’s an example to highlight this 
limitation: 
 

“My favorite subject in school is math and ___” 

 
The sentence is about math, so one might expect the current model to be able to complete this 
sentence (assuming additional data about math is added to the data set).  Still, the model doesn’t 
understand context.  The context of the sentence is “favorite subjects”; however, to complete the 
sentence, the bi-gram model only pays attention to the word “and” when determining the next 
word.  In the next section, we will discuss the generalization of the bi-gram model: the n-gram 

model is a model that moves us a step closer to contextual awareness. 
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The N-Gram Model 

 
The n-gram model is a generalization of the bi-gram model in which the previous n – 1 words are 
used to determine the next word, instead of only using the previous word to determine the next 
word.  This is accomplished by conditioning not just on the preceding word, but on the n – 1 
preceding words.  We call this a generalization because the bi-gram model is a special case of 
the n-gram model when n = 2.  In Figure 1, we broke up our text data set into bi-grams.  For an 
n-gram model, we would break up the text into n-grams, as shown in Figure 3.  
 

 
Figure 3. The text dataset is split into 4-grams to train the transition matrix. 

 
The transition matrix for a 4-gram still contains conditional probabilities, except here, we 

conditioned on the preceding three words.  The transition matrix for the 4-gram model is given in 
Figure 4.  For example, the conditional probability that “is” follows “I think math,” 
P(is | I think math), is 1 since there are two 4-grams that start with “I think math” and both end 
with “is” (highlighted in red in Figure 3).  We can also compute 
 
P(START I think math is fun END) 

= P(START I think) ∙ P(math | START I think) ∙ P(is | I think math) ∙ 
   P(fun | think math is) ∙ P(END | math is fun) 
= 1/2 × 1 × 1 × 1/2 × 1 = 1/4, 

 
where P(START I think) = 1/2 because two out of the four sentences in the data set start with 
“START I think.”  
 The conditional probability that “squishy” follows “think math is” is 0 since there are no 
4-grams that start with “think math is” and end with “squishy.”  In particular, “squishy” does not 
appear in the context of “math” in our data set, and the 4-gram model allows us to capture this.  
We can also compute 
 
P(START I think math is squishy END) 

= P(START I think) ∙ P(math | START I think) ∙ P(is | I think math) ∙ 
   P(squishy | think math is) ∙ P(END | math is squishy) 
= 1/2 × 1 × 1 × 0 × 0 = 0, 

 
where P(END | math is squishy) = 0 since “math is squishy” doesn’t precede any word in our 
original data set (and thus does not have a row in the transition matrix). 
 What do you notice when comparing the matrices in Figure 2 and Figure 4?  For one 
thing, the 4-gram transition matrix has fewer columns.  The 4-gram transition matrix also has 
less variation in its entries and is more sparse (more zero entries); its values are only 0, 1, or 1/2.  
Combined, this means that the 4-gram model generates fewer unique sentences in comparison to 
the bi-gram model.  In fact, you can verify that the 4-gram model only assigns nonzero 
probabilities to four sentences, all with probability 1/4: 
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 1. “I think math is very fun” 
 2. “I think math is fun” 
 3. “My mango is squishy” 
 4. “Math has challenging and fun problems” 
 
Do these sentences seem familiar?  Compare them with the sentences in Figure 3.  While the 4-
gram model may capture contextual information, more data is needed to generate unique 
sentences that aren’t from the training data set.  This highlights the trade-off of using the bi-gram 
model versus the 4-gram model. 
 

 math is very fun squishy challenging and problems STOP 

START I think 1 0 0 0 0 0 0 0 0 

I think math 0 1 0 0 0 0 0 0 0 

Think math is 0 0 1/2 1/2 0 0 0 0 0 

Math is very 0 0 0 1 0 0 0 0 0 

Is very fun 0 0 0 0 0 0 0 0 1 

Math is fun 0 0 0 0 0 0 0 0 1 

START my mango 0 1 0 0 0 0 0 0 0 

My mango is 0 0 0 0 1 0 0 0 0 

Mango is squishy 0 0 0 0 0 0 0 0 1 

START math has 0 0 0 0 0 1 0 0 0 

Math has challenging 0 0 0 0 0 0 1 0 0 

Has challenging and 0 0 0 1 0 0 0 0 0 

Challenging and fun 0 0 0 0 0 1 0 1 0 

And fun problems 0 0 0 0 0 0 0 0 1 

 
Figure 4. The transition matrix for the 4-gram model. 

 
 
The Transformer Model 
 
ChatGPT uses a more sophisticated model: the transformer model.  A transformer model is a 
series of functions that can output a sequence of words.  Unlike the methods we’ve already 
discussed, the manner in which probabilities are assigned is not as straightforward, but this won’t 
stop us from getting a general idea of how the transformer model works.  Figure 5 provides a 
visualization of the n-gram model (top) and a simplified transformer model (bottom) so that we 
can compare the two. 
 Let’s first put the n-gram model with n = 2 into the context of Figure 5.  The input for the 
bi-gram model is the preceding word, and the output is the next chosen word.  For example, if 
you want to complete the sentence, “I think math is,” then “is” is the input to the model.  Next, 
the transition matrix takes the word “is” and checks which words will likely appear after “is.” 
One of these words, for example, “fun,” is then selected and returned as the output.  
 The main similarities between n-gram and transformer models are that they have an 
input, an output, and a step that determines the probabilities of the next word appearing.  In the 
bi-gram model the input is one word and the output is one word, whereas in a transformer model, 
the input can be a sequence of words and the output another sequence of words.  The transition 
matrix in the bi-gram model tells us the conditional probabilities between pairs of words.  The 
transformer model replaces the transition matrix step with a neural network.  For simplicity, we 
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will consider neural networks as a black box function that takes some input and returns a 
probability.  Instead of discussing the neural network portion, let’s shift our attention to another 
key difference between the two approaches. 
 

 
 

Figure 5. (Top) n-gram model and (bottom) transformer model. 

 
 

The attention step of the transformer model is what allows it to draw relationships of 
words in the context of a sentence.  For a given sequence of words, the attention mechanism 
places different weights on each word; words that are important to the context of the sentence get 
larger weights than words that are not important to the context of the sentence.  For example, 
consider the sentence 
 

“My favorite subjects in high school are math and ….” 
 
The attention step tells the model to use the fact that the next word should be related to 
“subjects” in “high school.”  This is just one of many reasons transformers can perform so well.  
Most large-scale transformer models even use multiple attention functions to capture different 
levels of abstraction of a sequence of text.  
 
Concluding Remarks 
 
In today’s fast-paced world, language models are of great potential, but understanding what’s 
happening under the hood and the limitations of technologies, such as ChatGPT, is essential.  
Language models consist of probabilities based on a large corpus of training data.  Thus – at least 
when using language models – any chatbot will be limited to the quality and/or quantity of data 
used to train it.  In addition to the quality and quantity of data, how that data is being used in the 
model (e.g., bi-gram versus n-gram) heavily impacts how we should interpret and how much we 
should rely on the output of the model.  The key to comprehending these limitations is 
understanding the foundational mathematics and assumptions beneath the models.  I hope the 
“NITH” NLP series has given you an extraordinary glimpse into the world of chatbots! 
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Generating Functions for Partitions 
by Robert Donley1 
edited by Amanda Galtman 
 
In the previous installment, we developed counting methods for compositions and introduced 
partitions.  These concepts differ only in a notion of ordering, so we might not expect significant 
differences in theory.  On the contrary, partitions are a topic of intense perennial interest and 
occupy a central role in several fields within mathematics and physics.   
 
We begin with the generating function approach to partitions, with a focus on partial sums, 
partial fractions, and the binomial series.  With these techniques, we find that partitions are 
counted by functions called quasipolynomials.  We’ll explain what a quasipolynomial is later, 
when the context will make the notion clearer. 
 
Definition. A partition of a positive integer k into m parts is a sum of entries x1 + . . . + xm = k 
where each xi is a positive integer and xi ≥ xi + 1.  (The xi are the parts of the partition.) 
 
When all parts are single-digit numbers, we simply list the parts as a string of digits.   
 

We define the function p(k) to be the number of partitions of k of any length, while p[n](k) 
denotes the number of partitions of k with parts in 1, ..., n.  As a useful convention, we define 
p(0) and p[n](0) to be 1. 
 

Example: As strings of digits, the partitions of 5 are given by 
 

5       41       32       311       221       2111       11111 
 
Thus, for example, p(5) = 7 and p[3](5) = 5. 
 
We counted compositions using generating functions with several variables.  Similar methods 
apply here, but since no ordering is required to identify a partition, we simply count using 
exponent rules with a single variable.  For example, the generating function for p[1](k) is 
 

p[1](0) + p[1](1)t + p[1](2)t2 + . . . = 1 + t + t2 + . . . = 
1

1 t−

. 

 
The second equality is the geometric series formula.  Since only strings of 1s are allowed, the 
exponent merely records the number of 1s. 
 
For the generating function of p[2](k), we multiply the generating function for p[1](k) by the factor 
that generates all multiples of 2 to get 
 

p[2](0) + p[2](1)t + . . . = (1 + t + t2 + . . . )(1 + t2 + t4 + . . .) = 
2

1 1

1 1t t
⋅

− −

. 

 

 
1 This content is supported in part by a grant from MathWorks. 
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In general, the generating function for p[n](k) is given by 
 

p[n](0) + p[n](1)t + p[n](2)t2 + . . . = 
2

1 1 1

1 1 1 nt t t
⋅

− − −

⋯ , 

 
and the generating function for all partitions is given by the infinite product 
 

p(0) + p(1)t + p(2)t2 + . . . = 
2 2

1 1 1

1 1 1t t t
⋅

− − −

⋯. 

 
Each additional factor includes the corresponding part with all its multiplicities.  To find the 
coefficient of tk in the general formula, we require only the first k terms of the product, and of 
these, only the terms up to tk contribute. 
 
Example: The levels of the Hasse diagram below give p[2](k) for 0 ≤ k ≤ 5.  We confirm by 
multiplying 
 

(1 + t + t2 + t3 + t4 + t5)(1 + t2 + t4) = 1 + t + 2t2 + 2t3 + 3t4 + 3t5 + . . .. 
 
Exercise: Verify that each partition corresponds to a unique set of exponents in the product 
above.  For instance, 2111 arises from the exponents in the product t3 ∙ t2 = t3∙1 ∙ t1∙2 as three 1s 
and one 2. 
 

Exercise: Expand 2 2

1 1 1 1

1 1 (1 ) 1t t t t
⋅ = ⋅

− − − +
 as a partial 

fraction, apply the geometric series to each term, and 
combine like terms.  Then, extract the coefficient of tk to 
find the complete formula for p[2](k). 
 
It is convenient to write the formula based on remainders. 
Express k as 2s + r, where s and r are integers and r is 0 or 
1, depending on whether k is even or odd, respectively. In 
this notation, p[2](2s) = s + 1 and p[2](2s + 1) = s + 1. 
 
Here’s another way to calculate p[2](k).  If we multiply the 
generating function for a sequence {ak} by 1/(1 – t), then the result gives the generating function 
for the sequence of partial sums sk = a0 + . . . + ak. 
 
Exercise: Obtain p[2](k) using partial sums.  That is, expand the geometric series for 1/(1 + t), 
take the partial sums, and then take the partials sums again.  
 
Exercise: On the other hand, note the special case of the binomial series 
 

1 + 2t + 3t2 + 4t3 + . . . = 2

1

(1 )t−
. 

 
How do we adjust the partial sums if we multiply this series by 1 – t + t2 – t3 + . . .? 
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To append factors for larger parts to the generating function, if we multiply by  
 

1 + ts + t2s + . . . = 
1

1 st−

, 

 
then we obtain aerated partial sums, or sums with uniform gaps. 
 
Example: We multiply the two factors 1/(1 – t) and 1/(1 – t2) for p[2](k) using an aerated partial 
sum.  If we multiply the generating function for {ak} by 1/(1 – t2), then we obtain the generating 
function with coefficients sk = ak + ak – 2 + ak – 4 + .... 
 
For instance, the following table shows a calculation of p[2](8): 
 

n  k 0 1 2 3 4 5 6 7 8 

1  1   1  1  1  1  1  1  1  1  

2 1 1 2 2 3 3 4 4  5  

 
Exercise: Fix n ≥ 3.  Find the formula for the number of partitions with parts 1 and n.  Explain 
both by using partial sums and by listing the partitions directly. 
 
This process works in general to calculate values for other p[n](k); we account for each new factor 
by applying an aerated partial sum.  To obtain p[n](k), we sum the value directly above with 
entries to its left, leaving gaps of size n – 1.  For instance, we can obtain small values for p[3](k) 
and p[4](k) using the following tables: 
 
 

n  k 0 1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 1 

2 1 1  2  2 3  3  4 4  5  

3 1 1 2 3 4 5 7 8  10  

 
 

n  k 0 1 2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 1 

2 1 1 2 2 3 3 4 4 5 

3  1  1 2 3  4  5 7 8  10  

4 1  1 2 3 5 6 9 11  15  
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Exercise: Confirm all counts in the last table by finding the corresponding partitions.  Then 
repeat using aerated partial sums.  Find p[3](k) up to k = 23.  A later exercise will use these 
values. 
 
Exercise: The values on the diagonal starting in column 1 stabilize to values of p(k).  Explain 
this fact using the recursive rule. 
 
A three-term recursive formula is given by p[n](k) = p[n – 1](k) + p[n](k – n). 
 
Exercise: Prove the three-term recurrence, either by considering parts or by manipulating 
generating functions.  Then explain the mechanics of the recurrence in the tables above.  Use the 
recurrence to verify the above tables.  
 
Exercise: Iterate the three-term recurrence by replacing the second term until it naturally stops, 
and interpret as a sum along a diagonal.  What happens if we iterate by replacing the third term? 
 
We now have the basic techniques for our main task: to find the general formula for p[3](k).  
First, let’s rewrite the generating function for p[3](k) as 
 

2

2 3 3 2 2 6

1 1 1 1 1

1 1 1 (1 ) (1 )(1 ) (1 ) (1 )

t t

t t t t t t t t t

− +
⋅ ⋅ = =

− − − − + + + − −

. 

 

Exercise: Verify the second equality directly or by factoring 1 – t6.  To obtain the quadratic 
factors, factor 1 + t3 and 1 – t3. 
 
To proceed as before, we take two partial sum sequences of the numerator and then apply aerated 
partial sums with gap length 5. 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

1 – t + t2 1 -1 1 0 0 0 0 0 0 0 0 0 0 

partial sums of 
row above 

1 0 1 1 1 1 1 1 1 1 1 1 1 

partial sums of 
row above  1  1 2 3 4 5  6  7 8 9 10 11  12  

              
aerated partial 

sum of row above 
with gap length 5 

1 1 2 3 4 5 7 8 10 12 14 16  19  

 
Except when k = 0, the values in the third line equal k, and an argument similar to the above 
gives the recurrence 

p[3](k) = k + p[3](k – 6). 
 
Exercise: Verify the recurrence, and describe the implementation in the table. 
 
Here’s where remainders simplify our work.  For example, consider the values for k = 6s + r, 
where s and r are integers with 0 ≤ r < 6.  Then the recurrence becomes 
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p[3](6s + r) = (6s + r) + p[3](6(s – 1) + r). 
 
Now define p[3], r(s) = p[3](6s + r), so the recurrence becomes 
 

p[3], r(s) = (6s + r) + p[3], r(s – 1). 
 
Let’s see what pattern results if we iterate the recurrence: 
 

p[3], r(0) = r, 
p[3], r(1) = (6 + r) + r 
p[3], r(2) = (6∙2 + r) + (6 + r) + r, 
p[3], r(3) = (6∙3 + r) + (6∙2 + r) + (6 + r) + r. 

 
In general, 

p[3], r(s) = (6∙s + r) + . . . + (6∙2 + r) + (6 + r) + r 
 = 6(1 + 2 + 3 + . . . + s) + (s + 1)r 
 = 3s(s + 1) + (s + 1)r. 

 
If we simplify and rename, we have p[3](6s + r) = 3s2 + (r + 3)s + r.  For instance, with r = 2, we 
have p[3](6s + 2) = 3s2 + 5s + 2.  When a function, such as p[3](k) is given by different 
polynomials for different remainder classes (i.e., different values of r in this case), we call the 
function a quasipolynomial. 
 

Exercise: Find the formula for the quadratic polynomial p[3], 0(s) with k = 6s.  Why do we 
consider this case separately?  Verify these six polynomials by evaluating up to k = 23. 
 
Why not use the original recurrence?  This way gives a polynomial count for each remainder 
class directly.  The term p[3](k – 3) suggests fewer remainders to consider, but the formula for 
p[2](k) splits into two cases, resulting in the same six cases for p[3](k). 
 

Exercise: Rederive these polynomials using the original recurrence. 
 

Exercise: Find a single formula for p[3](k) by expanding the generating function using partial 
fractions and geometric series.  You should at least note how the terms match the partial fraction 
expansion with unknown constants. 
 

Answer: p[3](k) = 
2 11 1 17 1 2 2

( 1) cos( )
3 16 4 72 8 9 3

k
k k kπ+ +   

+ + + − +   
   

. 

 

Here, 
a

b

 
 
 

 denotes the binomial coefficient, “a choose b.” 

 
The roots of t2 + t + 1 require complex numbers and contribute a cosine term to the final formula.  
The sum of the final two terms always has absolute value less than 1/2, so we obtain the same 
result if we sum the first three terms and round to the nearest integer. 
 
Exercise: Verify this formula and approximation rule for k up to 11.  Expand each term to verify 
the polynomials for each remainder for n = 6. 
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The generating function for general p[n](k) belongs to a special class of rational functions.  The 
roots of the denominator consist only of roots of unity; these roots are solutions to some 
tm – 1 = 0 and have the form 
 

t = 2 / 2 2
cos sinki m k k

e i
m m

π
π π

= + . 

 
This property of the denominator guarantees  the quasipolynomial behavior of p[n](k).    
We highlight some features of quasipolynomials in the following exercise sequence. 
 
Exercise: Fix n ≥ 1.  Recall that the nth binomial series is given by 
 

211
1

1 2(1 )n

n n
t t

t

+   
= + + +   

−    
… . 

 

Verify that f(k) ≡ 
1n k

k

+ − 
 
 

 is a polynomial in k. 

 
Exercise: Fix n ≥ 1.  Define 
 

21
(0) (1) (2)

(1 )m n
f f t f t

t
= + + +

−

…. 

 
Use the binomial series to explain why f(mk + r) is a polynomial for each remainder r upon 
division by m. 
 
Exercise: Consider 
 

2
2 2

1
(0) (1) (2)

(1 )(1 )
f f t f t

t t
= + + +

− +

…. 

 
Verify that f(4s + r) is a polynomial in s for r = 0, 1, 2, 3.  Express the left-hand side in the form 
of a rational function with denominator as in the previous exercise. 
 

Exercise: Derive the formula for p[2](k) from the generating function 2 2

1

(1 )

t

t

+

−
.  Repeat 

for p[3](k). 
 

These final exercises consider some variations on the number of parts. 
 

Exercise: Repeat the general analysis for the number of partitions with parts equal to 2 or 
greater.  Find the polynomials and general formula for the case with only parts 2 and 3. 
 

Exercise: Find the polynomials and general formula with parts 1, 2, and 4.  How about parts 2, 
3, and 4?  How far can you get with parts 1, 2, 3, and 4?
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The best way to learn math is to do math.  Here are the 2023 Summer Fun problem sets. 
 
We invite all members and subscribers to send any questions and solutions to us at 
girlsangle@gmail.com.  We’ll give you feedback and might put your solutions in the Bulletin! 
 

In the August issue, we will provide some 
solutions.  You could wait until the 
August issue to see the answers, but you 
will learn a lot more if you try to solve 
these problems on your own. 
 
Some problems are very challenging and 
could take several weeks to solve, so 
please don’t approach these problems 
with the idea that you must solve them 
all.  Our main goal is to give you some 
interesting things to think about. 
 
If you get stuck, try to formulate a related 
question that you can see a way to 
actively explore to get your mind moving 
and your pencil writing.  If you don’t 
understand a question, email us. 
 
If you’re used to solving problems fast, it 
can be frustrating to work on problems 
that take weeks to solve.  Try to enjoy the 
journey and don’t be afraid to follow 

detours.  It’s like hiking up a mountain.  Getting to the top rewards one with a spectacular view, 
but during the journey, there’s a lot to see and experience.  So here’s a meta-problem for those of 
you who feel frustrated when doing these problems: see if you can dissolve that frustration and 
replace it with a relaxed, optimistic sense of adventure! 
 
This is Summer Fun, not Summer Torture!

  

 
 

The goal may be the lake, but who knows what 
wonders you’ll discover along the way? 
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Best Ice Cream Cone 
by Clarise Han 

 
Coco wants to make the best ice cream cone ever and is choosing between the 
following yummy ice cream flavors and toppings: 
 
Flavors: vanilla, chocolate, strawberry, mint chocolate, rocky road, cookie dough, 
matcha. 
 
Toppings: strawberry bits, popping boba, Oreos, gummy bears, marshmallows, 
chocolate chips, sprinkles, hot fudge, caramel sauce. 
 
1. Coco wants a cone with three stacked scoops of ice cream.  How many possibilities 
are there?  (For ice cream connoisseurs, the scoop order in the stack matters!) 
 
2. Coco wants all three scoops to be of different flavors.  Now how many possibilities 
are there? 
 
3. Coco decides she wants five scoops, all different, stacked in her cone.  Now how 
many possibilities are there? 
 
4. Coco loves the combination of mint chocolate and cookie dough and insists on 
having them.  Considering all of the scoops are of different flavors and the maximum 
number of scoops is five, how many different cones can Coco make that include mint 
chocolate and cookie dough? 
 
5. If all five scoops are of different flavors, and mint chocolate and cookie dough must 
be included in the ice cream cone, what is the probability that the mint chocolate and 
cookie dough scoops are touching each other? 
 
6. Coco is choosing her toppings.  How many different three-topping combinations are 
there?  (The three toppings in the mixture must all be different.) 
 
7. Coco wants a five-topping combination that includes at least one of hot fudge or 
caramel sauce.  How many different toppings are possible? 
 
8. How many ice cream cones can Coco make with three different flavors of ice cream 
and up to five toppings, providing that one of the flavors is matcha and one of the 
toppings is popping boba? 
 
9. Coco and her friend Didi both make a seven-stack ice cream cone using 
all seven flavors.  Assuming each possible stack is equally likely, 
what is the probability that no two flavors occupy the same positions 
 in the two stacks? 
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Scissors Congruence 
by Matthew Bates and Jane Wang 
 

A polygon is figure in the plane made up of straight segments that connect to enclose an area.  
For simplicity, we will restrict our attention to polygons that do not self-intersect.  Here are some 
examples of polygons: 
 

 
 
Here is a question about cutting up shapes: Imagine that you have two polygons.  When is it 
possible to cut up the first polygon via finitely many straight cuts and rearrange the pieces to 
form the second polygon.  When two polygons can be rearranged as such, we call them scissors 

congruent.  Here are some examples of polygons that are scissors congruent: 
 

 
 
Let’s start by getting a feel for scissors congruence.  
 
1. Show that the following pairs of shapes are scissors congruent by finding a way to cut and 
rearrange the first shape to the second.  Each shape is displayed on a grid so that you can see the 
scale of the shape. 

 
 

 
 

 
 

(a) (b) (c) 
 
2. Justify why two shapes that do not have the same area cannot be scissors congruent. 
 
It turns out that different area is the only thing that stops two polygons from being scissors 
congruent.  We will show this amazing fact in the next series of exercises.  Note that 
the exercises are independent from each other, so if you’re stuck on one, try 
the other ones and come back to it later! 
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3. Prove that every triangle is scissors congruent to a rectangle.  
 
4. In this exercise, we will prove that every rectangle is scissors congruent to a square.  
 

(a) Suppose that we have a rectangle of width w and height h with h ≤ w ≤ 4h.  Superimpose 
a square of area hw onto the rectangle so that their bottom left corners match, and connect 
the top left corner of the square to the bottom right corner of the rectangle (as shown 
below).  Consider the following proposed decomposition of the rectangle into a square of 
equal area. 

 

 
  

Show that this is indeed a scissors congruence of the rectangle into an equal area square 
by: 

 
i. proving that the rectangle pieces and square pieces are congruent, and 

ii. figuring out where the condition h ≤ w ≤ 4h was used. 
  

(b) Show that every rectangle is scissors congruent to a rectangle of width w and height h for 
which h ≤ w ≤ 4h. 

 
(c) Use the results of parts 4a and 4b to prove that every rectangle is scissors congruent to a 

square of the same area. 
  
5. In this exercise, we will show that the union of two squares is scissors congruent to a single 
square.  Consider the following figure: 
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(a) Prove that this is a scissors congruence of the union of two squares to a single square. 
 
(b) Explain why this scissors congruence gives a proof of the Pythagorean theorem that 

a2 + b2 = c2 in any right triangle with side lengths a and b and hypotenuse c. 
 
6. Show that scissors congruence is an equivalence relation.  That is, show that it satisfies the 
following three properties: 
  

(a) Every polygon is scissors congruent to itself. 
 
(b) If polygon P is scissors congruent to polygon Q, then Q is scissors congruent to P. 
 
(c) Let P, Q, and R be three polygons.  If P is scissors congruent to Q and Q is scissors 

congruent to R, then P is scissors congruent to R. 
 
7. A triangulation of a polygon is a way of cutting up a polygon into finitely many triangles. 
Here are two examples of triangulations of a hexagon:  
 

 
 
Draw triangulations on each of the three polygons in the introduction.  
  
8. Show that every polygon has a triangulation. 
 
[Hint 1: The vertices of the triangles do not all have to be vertices of the original polygon.] 
[Hint 2: Can you start by showing that you can decompose every polygon into trapezoids?] 
 
9. The following exercise is not necessary for our scissors congruence proof, but is an interesting 
challenge: Show that every polygon has a decomposition into triangles where the vertices of each 
triangle lie on vertices of the polygon (e.g. the right triangulation of the hexagon in Problem 7 
satisfies this property, but the left one does not).   
 
[Hint: it may help to induct on the number of sides of the polygon.] 
 
10. Use the results of the previous exercises to show that any two polygons with 
the same area are scissors congruent to each other.  
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Arts and Graphs 
by Hanna Mularczyk 
 
Graph Drawing 

 
A (simple) graph is a collection of vertices along with a collection of edges, which are pairs of 
distinct vertices.  Thus, to define a graph G we simply need to list the set of vertices, V, and the 
set of edges, E. 
 
Example 1: V = {1, 2, 3, 4, 5, 6, 7}, 
                    E = {(1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (2, 6), (4, 6), (5, 6), (6, 7)} 
 
If you’ve worked with graphs before, you know that this is not how we usually present them.  
Graphs are meant to be drawn!  And as we are merely human, we often draw them on the most 
readily-available medium: 2-dimensional paper, or for the more pedantic mathematician, a 2-
dimensional plane. 
 
How opportune that we have such a piece of paper at 
this very moment!  Let’s draw the above graph.  We 
draw vertices as dots and edges as lines between the 
two vertices that define them.  Here is a drawing of 
the graph from Example 1. 
 
There is ultimately only one way to list the vertices 
and edges of a graph (up to relabeling and re-
ordering).  But there are many ways to draw a graph! 
 
1. Draw the graph from Example 1 in a way that’s different to how I did. 
 
Intentionally or unintentionally, when we draw a graph, we often take aesthetic considerations 
into account.  This may come as a surprise to those who think mathematicians live robot-like 
existences, but like any other kind of drawing, graph drawing is an art. 
 
2. Before continuing, reflect on what kinds of decisions you made when making your drawing in 
the previous question and what kinds of qualities you would strive for in a graph drawing.  Then, 
taking into account the subjective nature of the italicized words, draw the same graph as above: 
 

a. In the nicest way you can 
b. In the least nice way you can 
c. In the most line-like way you can 
d. In the most random way you can 
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Planar Graphs 

 

If you saw that I drew the graph from above in the following 
way (at right), you might be less satisfied with it, compared to 
my initial drawing.  Why?  Likely because I drew it in such a 
way where edges intersect in places that aren’t vertices.  For 
example, the edge (1, 5) crosses (2, 4), (2, 3), and (2, 6).  We 
call a drawing of a graph planar if no edges cross each other.  
We call a graph itself planar if there exists a planar drawing 
of it.  The example graph we’ve been using so far is planar, as 
proven by my first drawing, even though there are some drawings of it that have crossings, like 
my last drawing.  Remember we only need one planar drawing for the graph to be planar! 
 
3. For each of the following graphs, decide whether it is planar or not.  If a graph is planar, draw 
a planar drawing of it.  If a graph is not, explain why a planar drawing can’t exist. 
 

a. V = {1, 2, 3, 4}, E = {every pair of vertices} (the complete graph on 4 vertices) 
b. The complete graph on 5 vertices 
c. V = {1, 2, ..., 6}, E = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)} 
d. V = {1, 2, ..., 6}, E = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5)} 

 
 
 
If you’re not convinced by the artistic lure of planar 
graphs, let’s show that they also have nice quantitative 
qualities, too.  One cool thing that happens in a planar 
drawing is that the edges and vertices divide the plane into 
connected faces, much like the face of a cube. Note that we 
count the region outside of the boundary of the graph as a 
face too. Our favorite example graph has 4 faces. 
 
 
4. In my graph and each of the graphs from problem 3 that you identified to be planar, count the 
number of vertices (v), edges (e), and faces (f).  Use this data (along with data from other planar 
graphs you might want to draw) to come up with a formula relating these quantities.  (For a hint, 
see the end of this Summer Fun problem set on the next page.) 
 
5. Prove your formula for all connected, planar graphs!  (For a hint, see the end of this Summer 
Fun problem set on the next page.) 
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Beyond the Plane 

 

While the plane is our most readily-available graph-drawing surface, it certainly isn’t our only 
option.  What’s stopping you from grabbing a sharpie and drawing one on the side of a baseball 
or mug?  Of course, this can be hard to picture without the surface itself.  But we can model 
many surfaces by taking a polygon and gluing its sides together. 
 
The torus (better known as the donut) can be constructed by taking a square and gluing both 
pairs of opposite sides together (without twists).  We can draw a graph on the torus by drawing a 
graph on the square and making sure the edges and vertices of the graph line up when we glue it 
together.  Suddenly we find that graph drawings that weren’t possible in the plane are now 
possible on the torus! 
 

 
 
6. Draw the graph from Problem 3b on the torus so that no edges cross each other. 
 
The Möbius strip is a slightly stranger surface that we obtain by gluing two opposite edges of a 
rectangle after we have twisted the paper by a half turn (if you haven’t done this in person 
before, try it with a long, thin, strip of paper and a piece of tape).  We denote this by putting the 
arrows on these opposite edges in opposite directions. Again, make sure edges and vertices on 
the boundary line up after the twist! 

 
 
7. Draw the graph from Problem 3c on the Möbius strip so that no edges cross each other. 
 

8. Count the vertices, edges, and faces in your drawings from Problems 6 and 7 (remembering 
that faces extend across the gluing boundary!).  Do these surfaces obey the formula you found 
for Problem 4? 

 
 
 

  Hint to Problem 4: Can you fill in the blanks in the following formula with 
operations on the left side and an integer on the right side?  v  __  e  __  f  =  __. 
 
Hint to Problem 5: What happens when you remove an edge? 
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Notes from the Club 

 
These notes cover some of what happened at Girls’ Angle meets.  In these notes, we include 
some of the things that you can try or think about at home or with friends.  We also include some 
highlights and some elaborations on meet material.  Less than 5% of what happens at the club is 
revealed here. 
 

Session 32 - Meet 12 
May 4, 2023 

Mentors: Jade Buckwalter, Anne Gvozdjak, Clarise Han, 
Shauna Kwag, Padmasini Krishnan, Hanna Mularczyk, 
Kate Pearce, AnaMaria Perez, Laura Pierson, 
Swathi Senthil, Jane Wang, Rebecca Whitman, 
Muskan Yadav, Valerie Yuen 

We held our traditional end-of-session Math Collaboration.  Math Collaborations are like escape 
rooms except that participants must solve lots of math problems to solve the event.  For our end-
of-session Math Collaborations, the math problems involve mathematics members have explored 
during the session.  Starting with Alexandra Fehnel’s cubic Math Collaboration from Session 21, 
mentors have been dreaming up amazing plots and meta puzzles for this event (including one 
member-created event at the end of Session 30!).  This session’s exciting Math Collaboration 
was created by mentors Elisabeth Bullock and AnaMaria Perez, who encoded the directions to a 
directional combination lock as a series of arrows hidden in mystery nonograms whose row and 
column specifications could only be obtained by solving math problems.  Try your hand at 
solving a few of the problems from the event! 
 
Using exactly 4 slices, cut a cake into 
 a) 11 pieces. 
 b) 14 pieces. 
 c) 15 pieces. 
d) Using 2 slices, cut a donut into 5 pieces. 
e) Using 3 slices, cut a donut into 9 pieces. 
 

What is the shortest path from the point p = (3, 2) that touches all the 
sides of the square with vertices (0, 0), (4, 0), (4, 4), and (0, 4), and 
then returns to p? 

 
Karia has a grid of 7 hexagonal telescope cells and she wants to place them 
on a circular mounting board of minimal area.  If the cells are identical with 
apothem of length 4, what is the minimal area of the mounting board? 
 

What is the distance between the two common points of intersection 
of the graphs of (x + 4)2 + (y – 3)2 = 126/4 and x2 + y2 = 25/4?  

 
 
 
Each regular hexagon in the figure has side length 1. 
What is the area of the rectangle? 
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Calendar 
 
Session 32: (all dates in 2023) 
 

January 26 Start of the thirty-second session! 
February 2  
 9  
 16  
 23 No meet 
March 2  
 9  
 16  
 23  
 30 No meet 
April 6 Karia Dibert, University of Chicago 
 13  
 20 No meet 
 27  
May 4  

 

 
Session 33: (all dates in 2023) 
 

September 14 Start of the thirty-third session! 
 21  
 28  
October 5  
 12  
 19  
 26  
November 2  
 9  
 16  
 23 Thanksgiving - No meet 
 30  
December 7  

 
Girls’ Angle has run over 150 Math Collaborations.  Math Collaborations are fun, fully 
collaborative, math events that can be adapted to a variety of group sizes and skill levels.  We 
now have versions where all can participate remotely.  We have now run four such “all-virtual” 
Math Collaboration.  If interested, contact us at girlsangle@gmail.com.  For more information 
and testimonials, please visit www.girlsangle.org/page/math_collaborations.html. 
 
Girls’ Angle can offer custom math classes over the internet for small groups on a wide range of 
topics.  Please inquire for pricing and possibilities.  Email: girlsangle@gmail.com. 
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Girls’ Angle: A Math Club for Girls 
Membership Application 

 
Note: If you plan to attend the club, you only need to fill out the Club Enrollment Form because all 

the information here is also on that form. 

 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address (the Bulletin will be sent to this address): 
 
 
 
 
 
Email: 
 
 

Home Phone: ____________________________               Cell Phone: ____________________________ 
 
Personal Statement (optional, but strongly encouraged!): Please tell us about your relationship to 
mathematics.  If you don’t like math, what don’t you like?  If you love math, what do you love?  What 
would you like to get out of a Girls’ Angle Membership? 
 
 
 
 
 
 
 
 
——————————————————————————————————————————- 
 
The $50 rate is for US postal addresses only.  For international rates, contact us before applying. 
 
Please check all that apply: 
 

□ Enclosed is a check for $50 for a 1-year Girls’ Angle Membership. 
 

□ I am making a tax-free donation. 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com. 
 

 
A Math Club for Girls 
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Girls’ Angle 

Club Enrollment 
 

Gain confidence in math!  Discover how interesting and exciting math can be!  Make new friends! 

 

The club is where our in-person mentoring takes place.  At the club, girls work directly with our mentors 
and members of our Support Network.  To join, please fill out and return the Club Enrollment form.  
Girls’ Angle Members receive a significant discount on club attendance fees. 
 
Who are the Girls’ Angle mentors?  Our mentors possess a deep understanding of mathematics and 
enjoy explaining math to others.  The mentors get to know each member as an individual and design 
custom tailored projects and activities designed to help the member improve at mathematics and develop 
her thinking abilities.  Because we believe learning follows naturally when there is motivation, our 
mentors work hard to motivate.  In order for members to see math as a living, creative subject, at least one 
mentor is present at every meet who has proven and published original theorems. 
 

What is the Girls’ Angle Support Network?  The Support Network consists of professional women 
who use math in their work and are eager to show the members how and for what they use math.  Each 
member of the Support Network serves as a role model for the members.  Together, they demonstrate that 
many women today use math to make interesting and important contributions to society. 
 
What is Community Outreach?  Girls’ Angle accepts commissions to solve math problems from 
members of the community.  Our members solve them.  We believe that when our members’ efforts are 
actually used in real life, the motivation to learn math increases. 
 
Who can join? Ultimately, we hope to open membership to all women.  Currently, we are open primarily 
to girls in grades 5-12.  We welcome all girls (in grades 5-12) regardless of perceived mathematical 
ability.  There is no entrance test.  Whether you love math or suffer from math anxiety, math is worth 
studying. 
 
How do I enroll? You can enroll by filling out and returning the Club Enrollment form. 
 
How do I pay? The cost is $20/meet for members and $30/meet for nonmembers.  Members get an 
additional 10% discount if they pay in advance for all 12 meets in a session.  Girls are welcome to join at 
any time.  The program is individually focused, so the concept of “catching up with the group” doesn’t 
apply. 
 
Where is Girls’ Angle located? Girls’ Angle is based in Cambridge, Massachusetts.  For security 
reasons, only members and their parents/guardian will be given the exact location of the club and its 
phone number. 
 
When are the club hours? Girls’ Angle meets Thursdays from 3:45 to 5:45.  For calendar details, please 
visit our website at www.girlsangle.org/page/calendar.html or send us email. 
 

Can you describe what the activities at the club will be like? Girls’ Angle activities are tailored to each 
girl’s specific needs.  We assess where each girl is mathematically and then design and fashion strategies 
that will help her develop her mathematical abilities.  Everybody learns math differently and what works 
best for one individual may not work for another.  At Girls’ Angle, we are very sensitive to individual 
differences.  If you would like to understand this process in more detail, please email us! 
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3).  As a nonprofit, we rely 
on public support.  Join us in the effort to improve math education!  Please make your donation out to 
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038. 
 

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle.  He has a Ph.D. 
in mathematics from MIT and was a Benjamin Peirce assistant professor of mathematics at Harvard, a 
member at the Institute for Advanced Study, and a National Science Foundation postdoctoral fellow.  In 
addition, he has designed and taught math enrichment classes at Boston’s Museum of Science, worked in 
the mathematics educational publishing industry, and taught at HCSSiM.  Ken has volunteered for 
Science Club for Girls and worked with girls to build large modular origami projects that were displayed 
at Boston Children’s Museum. 
 

Who advises the director to ensure that Girls’ Angle realizes its goal of helping girls develop their 

mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors.  They are: 
Connie Chow, founder and director of the Exploratory 
Yaim Cooper, Institute for Advanced Study 
Julia Elisenda Grigsby, professor of mathematics, Boston College 
Kay Kirkpatrick, associate professor of mathematics, University of Illinois at Urbana-Champaign 
Grace Lyo, assistant dean and director teaching & learning, Stanford University 
Lauren McGough, postdoctoral fellow, University of Chicago 
Mia Minnes, SEW assistant professor of mathematics, UC San Diego 
Beth O’Sullivan, co-founder of Science Club for Girls. 
Elissa Ozanne, associate professor, University of Utah School of Medicine 
Kathy Paur, Kiva Systems 
Bjorn Poonen, professor of mathematics, MIT 
Liz Simon, graduate student, MIT 
Gigliola Staffilani, professor of mathematics, MIT 
Bianca Viray, associate professor, University of Washington 
Karen Willcox, Director, Oden Institute for Computational Engineering and Sciences, UT Austin 
Lauren Williams, professor of mathematics, Harvard University 

 

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as 

their desire to help others learn math.  But does it really matter that girls be instructed by people 

with such a high-level understanding of mathematics? We believe YES, absolutely!  One goal of 
Girls’ Angle is to empower girls to be able to tackle any field regardless of the level of mathematics 
required, including fields that involve original research.  Over the centuries, the mathematical universe 
has grown enormously.  Without guidance from people who understand a lot of math, the risk is that a 
student will acquire a very shallow and limited view of mathematics and the importance of various topics 
will be improperly appreciated.  Also, people who have proven original theorems understand what it is 
like to work on questions for which there is no known answer and for which there might not even be an 
answer.  Much of school mathematics (all the way through college) revolves around math questions with 
known answers, and most teachers have structured their teaching, whether consciously or not, with the 
knowledge of the answer in mind.  At Girls’ Angle, girls will learn strategies and techniques that apply 
even when no answer is known.  In this way, we hope to help girls become solvers of the yet unsolved. 
 
Also, math should not be perceived as the stuff that is done in math class.  Instead, math lives and thrives 
today and can be found all around us.  Girls’ Angle mentors can show girls how math is relevant to their 
daily lives and how this math can lead to abstract structures of enormous interest and beauty. 
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Girls’ Angle: Club Enrollment Form 
 
Applicant’s Name: (last) ______________________________ (first) _____________________________ 
 
Parents/Guardians: _____________________________________________________________________ 
 
Address: ___________________________________________________________ Zip Code: _________ 
 
Home Phone: _________________ Cell Phone: _________________ Email: ______________________  

 

Personal Statement (optional, but strongly encouraged!): We encourage the participant to fill out the 
optional personal statement on the next page. 
 
Permission: I give my daughter permission to participate in Girls’ Angle.  I have read and understand 
everything on this registration form and the attached information sheets. 
 
___________________________________________________            Date: _______________________ 
(Parent/Guardian Signature) 
 
Participant Signature: ___________________________________________________________________ 
 
Members: Please choose one. 
 

□ Enclosed is $216 for one session 
(12 meets) 
 

□ I will pay on a per meet basis at $20/meet. 

Nonmembers: Please choose one. 
 

□ I will pay on a per meet basis at $30/meet. 
 

□ I’m including $50 to become a member, 
and I have selected an item from the left. 

 
□ I am making a tax-free donation. 

 
 
Please make check payable to: Girls’ Angle.  Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA 
02141-0038.  Please notify us of your application by sending email to girlsangle@gmail.com.  Also, 
please sign and return the Liability Waiver or bring it with you to the first meet. 

Please fill out the information in this box. 
 

Emergency contact name and number: ____________________________________________________________________________ 
 

 

Pick Up Info:  For safety reasons, only the following people will be allowed to pick up your daughter.  Names:  
 
___________________________________________________________________________________________ 
 

Medical Information:  Are there any medical issues or conditions, such as allergies, that you’d like us to know about? 
 
______________________________________________________________________________________________________________ 
 
Photography Release: Occasionally, photos and videos are taken to document and publicize our program in all media forms. We will 
not print or use your daughter’s name in any way. Do we have permission to use your daughter’s image for these purposes?    Yes       No 
 

Eligibility: Girls roughly in grades 5-12 are welcome.  Although we will work hard to include every girl and to communicate with you 
any issues that may arise, Girls’ Angle reserves the discretion to dismiss any girl whose actions are disruptive to club activities. 
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Personal Statement (optional, but strongly encouraged!): This is for the club participant only.  How 
would you describe your relationship to mathematics?  What would you like to get out of your Girls’ 
Angle club experience?  If you don’t like math, please tell us why.  If you love math, please tell us what 
you love about it.  If you need more space, please attach another sheet. 
  

 
Girls’ Angle: A Math Club for Girls 

Liability Waiver 
 

 I, the undersigned parent or guardian of the following minor(s) 
 
 
_____________________________________________________________________________________, 
 
do hereby consent to my child(ren)’s participation in Girls’ Angle and do forever and irrevocably release Girls’ 
Angle and its directors, officers, employees, agents, and volunteers (collectively the “Releasees”) from any and 
all liability, and waive any and all claims, for injury, loss or damage, including attorney’s fees, in any way 
connected with or arising out of my child(ren)’s participation in Girls’ Angle, whether or not caused by my 
child(ren)’s negligence or by any act or omission of Girls’ Angle or any of the Releasees. I forever release, 
acquit, discharge and covenant to hold harmless the Releasees from any and all causes of action and claims on 
account of, or in any way growing out of, directly or indirectly, my minor child(ren)’s participation in Girls’ 
Angle, including all foreseeable and unforeseeable personal injuries or property damage, further including all 
claims or rights of action for damages which my minor child(ren) may acquire, either before or after he or she 
has reached his or her majority, resulting from or connected with his or her participation in Girls’ Angle. I agree 
to indemnify and to hold harmless the Releasees from all claims (in other words, to reimburse the Releasees and 
to be responsible) for liability, injury, loss, damage or expense, including attorneys’ fees (including the cost of 
defending any claim my child might make, or that might be made on my child(ren)’s behalf, that is released or 
waived by this paragraph), in any way connected with or arising out of my child(ren)’s participation in the 
Program. 
 
 
Signature of applicant/parent: ___________________________________________________ Date: ___________________ 
 
Print name of applicant/parent: __________________________________________________ 
 
Print name(s) of child(ren) in program: ___________________________________________ 
 

 


