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From the Founder

Special thanks to MIT graduate student Jane Wangssuming the
responsibilities of Head Mentor this semester atsGAngle. The Head
Mentor is responsible for developing the mathenahtiontent of our
meets and keeping track of where each memberadation to
mathematics.

- Ken Fan, President and Four
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An Interviewwith
Elizabeth Munch

Elizabeth Munch is an Assistant Professor in
the Department of Mathematics and
Statistics at the University at Albany, State
University of New York. She received her
doctoral degree in mathematics from Duke
University under the supervision of John
Harer. In addition to her degree in
mathematics, Prof. Munch also has a degree
in harp performance from the Eastman
School of Music.

Ken: Could you please give us a brief
autobiographical sketch, perhaps
emphasizing aspects that led to your
becoming a mathematician? Also, | know
you also have a degree in harp performance
from the Eastman School of Music and I'm
curious if there was a time when you were
trying to decide between a career in music
and one in math?

Elizabeth: | took a very nonstandard road to
get where | am now. When | was in high
school, I loved both math and music and
was trying to decide what to do in college. |
was involved in many activities with both. |
played with the Rochester Philharmonic
Youth Orchestra and the Hochstein Youth
Orchestra. | already had a decent amount of
work playing harp at weddings and parties.

| was also on my high school’s math league
team, and was on the Upstate New York
ARML team for a few years. | was several
years advanced in math in school, so | was
taking multivariable calculus as a senior. |
ended up deciding on going to college in
harp performance for a few reasons. First, |
was already studying harp with one of the
best professors in the country, Kathleen
Bride, at Eastman and wanted to see where
it would take me. Maybe it was also

because | always felt like | fit in better with
the music crowd than the math crowd.
Maybe | was just stubborn and wanted to
prove to everyone that | could succeed as a
musician.

In any case, | ended up at Eastman as only a
music major. For me, music changed when
it went from being a hobby to being a job. |
just wasn’t as happy with spending day after
day in a practice room. | was too much of a
perfectionist, and that combined with stage
fright made high pressure performances
incredibly rough. However, luckily for me,
Eastman is part of the University of
Rochester. So, | was able to start taking
other classes to try to figure out what |
wanted to do if | didn’'t want to do music. |
started with language classes and astronomy
since | think | was still too stubborn to admit
that | had made the wrong choice. Well,
maybe | should clarify that. | still believe
going to music school was the right choice
for me at the time and | would not have
landed where | am now without that
experience. However, after finally starting

to take math classes, | decided to add a math
degree to my music degree (I did finish
both!).

Ken: Wow, doing both sounds quite
challenging! Was it difficult?

Elizabeth: The hardest part with trying to

do a dual degree was the fact that the two
programs were on different campuses, so |
spent a lot of time on a bus going the 10
miles back and forth between the downtown
Eastman Campus and the main River
Campus. There were also issues with
scheduling since, for example, | had to be in
orchestra every semester which met MWF
afternoons from (I may be misremembering)
1-3 pm. This meant that a lot of classes that
| wanted or needed for my math degree were
not available to me since | couldn’t be on
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The American Mathematical Society is generously offering a 25%uli$©n the two book set
Really Big NumberandYou Can Count On Monstets readers of this Bulletin. To redeem, go
to and use the code “GIRLS” at checkout.



America’s Greatest Math Game: Who Wants to Be ehtagatician.
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A series of Rips complexes.

Each image consists of the same point
cloud. In each image, purple disks of
radiusr are centered on each data point.
An edge is drawn between two data points
if their disks overlap. Successive images
show disks of increasing radius. As the
radius increases, the topology of the

purple region changes. Images courtesy of
Prof. Munch.



The Laws of Probability

Part 1: What Makes a Coin Fair?
by Elizabeth S. Meckes

Everyone knows what it means to toss a fair coin, right? It means that it'tydipedy
to land on heads or tails. But what does that really mean? You toss it once, it lands omheads, s
what? Is it fair? Is it unfair? How do you know?

At this point, you're probably going to tell me that | should toss it a bunch of tithis.
lands on heads every time, we’re pretty sure it's not a fair coin. We know what Bappleh,
and it pushes us a little closer to knowing what fair means: if we toss the coiwf siogs, we
should get about equal numbers of heads and tails. And that’s perfectly fine fordapatur
afternoon, but not very satisfying to a mathematician.

There’s a big difference between what we mean when we talk about “lawkysics
and when we talk about “laws” in mathematics. In physics, we're trying toiloiesioe reality
that we see, and to do it accurately enough to be able to make valid predictions. Bht in mat
even though we often start with real, physical observations like coin tosses, owtriands
different. We want to come up with some axioms (statements we will asadmod)seem
reasonable based on our observations and are as simple as possible; then we want/to see ho
much we can prove. Our goal is to start from these very simple assumptions, thiegé we f
comfortable assuming, and prove that the more complicated things we think we’ve d@bserve
follow just from those axioms.

Understanding what a fair coin is is a great way to see the differenweoednet
mathematical and physical laws at work. The idea that | can’t predithevitee coin lands on
heads or tails is very hard to turn into a mathematical axiom; it's not evernoigdo test it by
experiment. The suggestion | imagined you making before, that | should check fayness
tossing the coin a lot, led us to the general idea that a coin is fair if when gouadst of
times, it lands on heads about half the time. But that’s still awfully fuzzy. Wd omakKe it
sound a bit math-ier by saying thaH is the number of times out oftosses that the coin lands
on heads, then we should hdira ., H, /n=1/2. Butreally I'm just conning you with fancy

language and notation. If | toss the coitimes, | get a certain number fidn. And then if | do

it again, | get a different numbet, is random! Even if | could toss a coin an infinite number of
times in order to take the limit, how do | know I'd get the same thing if | did the vphotess
again?

The answer that probabilists have settled on is that going through limits is ay&al w
define fair. Instead, we assume that we can assign numbers called “giebabil events in a
way that satisfy a small set of axioms which are so simple and so intureasignable that we
don’t mind taking them as a starting point. Then, we prove the limiting statement diadve: t
you toss the coin a lot of times, the limiting proportion of times it lands on headsdelids t

So, what are these axioms? The first one is that | can assign a numericalliprpbabi
which I'll call P(E) to anyeventE. Sticking just with coin tossing, an event is anything | can
describe in terms of the outcomes of a series of coin tossds c&@ad be the event that the first
three tosses are heads, heads, tails. Or it could be that the seventh tos<s itagisuld be
that every other toss is a heads (forever — this is math, so | can have an iedfjuéece of
tosses). | moreover assume that for any elkeR{E) is between 0 and 1 (including possibly 0
or 1). For example, i is the event that the first toss is heads, and I'm trying to talk about a fair
coin, thenP(E) should be 1/2.

1 This content was supported in part by a grant fhéathWorks.
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My second axiom is very simple:His just
the event that something, anything, happens, then
P(E) = 1. And here’s the third and final one, which
is as complicated as it gets: if | have a bunch of
different events,, By, . . . with no overlap, then |
can figure out the probability that one of them
happens by adding up the individual probabilities.
This has to work even if there are infinitely many
Ex.

And that’s it. Those are the properties that
something | call probability has to have. Now,
back to our fair coin. Like we said aboveEifs
the event that the first toss is heads, th@)
should be 1/2. And iE; is the event that the
second toss is heads, the(k>) should be 1/2.

And so on; each individual toss should be equally
likely to be heads or tails. But there’s one other
important feature of a fair coimdependence

How the toss came out on the first try shouldn’t tell
you anything about what's going to happen next,
and vice versa. For our coin tossing, this means
that all of the possible strings of outcomes of a
given length should be equally likely: e.g., the first
three trials have eight total possible outcomes, as
shown at right, and each has probability 1/8.

Phew. Okay, now we really know what a
fair coin is. So what about tossing it a lot of times?
We can start from just the three axioms above and
prove what'’s called the strong law of large
numbers. In symbols, Hx is the number of heads
in the firstn tosses of a fair coin, then the strong
law of large numbers says that

P lim H,_1 =1.
2

ne¥

What this means is that it's essentially certaat th
in an infinite sequence of independent tosses of a
fair coin, the limiting proportion of heads would b
1/2. 1really have to have that cheater word
“essentially” there: it's of course possible tha t
limit might be something else (or even not exist).
In principle, | could toss a fair coin forever agek heads every single time. But what the strong
law of large numbers says is that the probabiligt that will happen is zero. It's not that it tan
happen, but it won't.

So caveats and technicalities aside, modern matienias triumphed: we can start with
very simple, very reasonable assumptions aboutdroshing called probability should work,
and our intuition about what fairness should mearolnes a theorem we can prove.
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The Benefit of
Being Off

by Lightning Factorial
edited by Jennifer Silva

“Stop going for the bull's-eye!”

| checked my dart-throwing
motion and turned to face the audience.

“Who said that?” | asked.

A young woman waved back.

“Oh, hi Addie!” It was Addie
Summer. “Did you just tell meot to
aim at the bull's-eye?”

“Yes!” she replied.

“Do you want me to lose?” |
asked incredulously. “The bull’'s-eye is
worth 50 points.”

“If you can hit it,” commented Addie.

“But even if I'm off a little bit, I still get 25 pints,” | responded.

“I've been keeping track of where your darts ladtcording to my computations, you
have a higher expected score if you aim a litttdoblow and to the left of the bull's-eye,” said
Addie rather matter-of-factly.

“Really? Is that so?” | said in disbelief.

“Itis. Do the math.”

Thus playing darts led me back to mathematicse $wmce thought about Addie’s advice
and reluctantly concluded that she’s right. Heve'y:

The idea can be illustrated clearly with a simptifiversion of darts. Imagine a
“dartboard” that consists of 5 square targetsniovawith the following point values:

If I could hit the 10-point middle target every gnthen | should definitely aim at it with
every throw. But the point Addie was making istthdike most casual dart players, am unable
to hit what I'm aiming at every single time (if el)e

To better model my dart throwing, let's supposé thahis simplified dart game, | hit my
target with frequenc), whereX is a number between 0 and 1, inclusive. For eXxanfpX =1,
that means that | can always hit my target, bXt#1/2, it means that | hit my target only half
the time. And suppose that my dart lands jushédeft of my target with frequency T'll
assume that | miss just to the right exactly asroéts | miss just to the left, so the frequency tha
| miss just to the right is alsd Finally, I'll assume that I'm skilled enough tHanever miss
further off than just to the right or left of myr¢get, that isy + X +Y = 1.

Using this information, | can figure out what myeaage score will be if I aim for
different parts of this simplified dartboard.

12



Suppose, for instance, that | aim directly at tBgint target. WithN dart throws, | can
expectXN of them to hit the targe¥,N of them will hit the O-point target on the leftydY N of
them will hit the O-point target on the right. Tafore, withN dart throws, | would expect to
score 1XN points, or 1&X points per dart on average.

On the other hand, suppose | deliberately aimHeréftmost 6-point target. In this case,
a fractionX of my throws will hit the 6-point target, a framtiY will land off the left side of the
dartboard, and a fractionwill land on the left O-point target. Each dathtow would now be
worth 6X points on average.

The figure below gives the expected points per depending on where | aim.

6X | 16Y | 10X | 16Y | 6X

Notice that aiming for one of the 0-point targetskes each of my darts worth, on
average, 18 points. What Addie was suggesting is that itdsgible for 1& > 10X, meaning
that I'd be better off aiming at the 0-point targedtead of the 10-point target!

Let's figure out when 16> 10X.

Recall that we are also assuming that 2Y = 1. Therefor&X =1 — 2. If we substitute
1 — 2y for X in our inequality, the inequality becomesy2610(1 — %) = 10 — 2(Y. Rearranging
terms and simplifying, this can be rewrittém 5/18.

SinceX = 1 — 2%, the inequalityy > 5/18 is equivalent t¥ < 4/9.

In other words, if | hit my target less than 4/Qloé time, it would indeed be better for
me to aim off-target!

In actuality, if | throw hundreds of darts at
a target, the dart hole pattern created will look
something like the picture on the left. To obtain
more realistic sense of what happens when you
throw darts, take a large sheet of paper and nhark i
with a bull's-eye. | used a big red X for my
bull's-eye. Affix the paper to a wall (that nobody
minds you throwing darts at!). Then throw several
darts, always aiming for the bull's-eye. Make sure
to stand the same distance from the bull’'s-eye that
you plan to stand from a dartboard when you play
darts. The resulting pattern of holes provides a
good sampling of what happens when you aim at a
specific target. The picture at left shows the
results of my throwing 200 darts, aiming at the
center of the red X.
Using this dart hole pattern, | can make a moresteacomputation for the average

value of a dart when | aim at a particular locatidsuperimpose the dart hole pattern over the

dartboard, placing the center of the red X overtéinget point that | intend to aim at. | thenyall

up the score | would get with the 200 throws thakenup the dart hole pattern and divide the

result by 200 to get the average points per dart.

Let’s go through this procedure on our simplifiedtdoard.

13



The setup for this process is shown at
right for the case where | aim at the center of the
left O-point target. As you can see, many throws
would not even land on the dartboard! Darts that
land off of the dartboard as well as darts thad lan
in the white target contribute no points to my
score. Darts that land in the green targets
contribute 6 points each, and darts that landen th
red target contribute 10 points each.

| count 22 dart holes in the left green
target, 27 dart holes in the red target, and nb dar
holes in the right green target, giving me a total
score of 22 x 6 + 27 x 10 = 402 points. |then
divide by 200 to get 2.01 as the average pointsipgr

On the other hand, if | aim for the center of the
red target, as shown at left, | count 5 dart hoidbe
left green target, 43 in the red target, and nartbe
right green target. All other dart holes contréout
nothing to my score. So with these 200 dart throwng
score would be 5 x 6 + 43 x 10 = 460 points, or 2.3
points per dart on average.

It turns out that with this simplified dartboard
and a more realistic count, it would be bettemfer to
aim at the middle of the red target instead ofntiiédle
of the left 0-point target, but not by much.

To determine the ideal spot for me to aim at to
maximize my score, | should perform this computatio

several times, moving the center of the red X a#irahe dartboard. | then can aim at the point
that yields the largest average points per damithimatically, we can define a functiethat
takes a poinP and returns the average points per dart when bain With P as the center of
the red target, we just computed th@) = 2.3; wherP is the center of the left O-point target, we
found thats(P) = 2.01. The operation we perform to commiie known agonvolution. We

can say thas is the “convolution of the dart hole distributiath the dartboard score values.”
One can think of the dartboard score values asgitrie points per dart as a function of where
you should aimf you can always hit your targesnds as giving the points per dart as a function
of where you should aim when accounting for thérithgtion of how you miss the target.

The only difference between our simplified
example and a regulation dartboard (illustraterdigitt)
is that a regulation dartboard presents a more Bxmp
scoring map. The central red circle is worth 5tz
and the small green ring around it is worth 25 t®in
The twenty pizza slices are worth points as shown.

However, there are two rings, the double ring dnad t
triple ring. Putting a dart in the double ringuerth
twice the value of the corresponding pizza sliceergas
putting a dart in the triple ring is worth thremés the
value of the corresponding pizza slice. The most
valuable region on the dartboard is the red trnipig
section in the 20-point sector, which is worth &dnps.
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Although there’s a more complex scoring system, the
same principles apply. We take our dart hole ithigtion and
place the center of the X over the point at whighimtend to
aim. We compute the score we’'d receive by exarginin
where each dart hole is located. Finally, we divige total
score by the number of dart holes to get the aegpagmts
per dart. We do this by placing the center ofXhaver
many different points and finding the point thaelgis the
largest average points per dart. That point isreviaee
should aim when we play. The illustration at Efbws the
set-up I'd use to compute the average points peifdavere
to aim at the triple ring region inside the 19-pg@actor.

If you look closely at the pattern of dart holdse(t
blue dots in the illustration above left), you'desthat
although there’s a hole in the 5-point and 20-pseéttors,

there is no hole in the 9-point sector. You mig that this does not accurately reflect the
truth, especially since the 9-point sector seemsetlto the center of the red X than the 5-point
sector. Having no holes in the 9-point sector m@yust a result of dumb luck. We might
suspect that if we created a dart hole pattern mehy more dart throws, we’d eventually see
some holes in the 9-point sector. Indeed, the rarts you throw, the more accurately you'll be
able to determine the average points per dartoftiniately, the more darts you throw, the more
tedious the computations become.

So, rather than use an actual dart hole patteairaat by having you throw millions of
darts at a wall, we can instead make some assumsmilmout how the dart holes will be
distributed and encode this information idemnsity function. For each poin®, the density
function returns the limit of the fraction of déwles in a circle centered Rtdivided by the area
of the circle, as the radius of the circle tend® tnd the number of dart throws increases without
bound. By modeling your dart throwing with an agprate mathematical function, we can
eliminate quirks that result from peculiaritiesobfance and we can make computations without
having to trouble you with the task of throwing lnihs of darts. However, by replacing an
actual sampling of dart holes with a mathematicadleh, we must bear in mind that we might
introduce simplifying assumptions that are at oddb reality.

Using a density function is exactly what researsl®yan Tibshirani, Andrew Price, and
Jonathan Taylor did to determine optimal targetindarts! They assumed@aussian
distribution of dart holes. The Gaussian distiitnuis informally called the “bell curve,”
because a graph of its density function resembtdaiech bell. The skill level of a player is
reflected in the concentration of dart holes nkartarget. The more concentrated, the higher the
skill level. The authors found that for an unsdliplayer such as me, the optimal place to aim is
in the 8-point sector, about a sixth of the wayrfrihe center toward the rim of the dartboard.

Take it to Your World

Make a dart hole distribution and compute youridmartboard aiming spot.

Read the paper by Tibshirani, Price, and Taylmmfthe footnote below. It contains neat
“heat maps” that represent the function we denbtesl- the average points per dart as a
function of aiming location — for various skill les. As you’'d expect, the more skilled the
player, the mors looks like the dartboard scoring map.

! Tibshirani, R. J., Price, A. and Taylor, J. (2014 tatistician plays dartslournal of the Royal Statistical Society:
Series A (Statistics in Society)/4, 213-226.
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By Anna B.

Mathematics is a journey of discovery. As mathaaats take this journey, they follow many wrong
turns, believe many incorrect facts, and encountany mysteries. Out of these twists and turns comes
the reward of truth and understanding. Howeveypifl look at math books, you might get the impressio
that mathematicians rarely err. In this column, Argives us a peek into her mathematical process of

discovery, bravely allowing us to watch even assthmbles.

Anna continues thinking about irreducible polynolsiaver the finite field with 2 elements.

16



© Copyright 2015 Girls’ Angle. All Rights Reserved

17



In Search of Nice Triangles, Part 2

by Ken Fan | edited by Jennifer Silva
Emily: Jasmine? Are you in the mood to think akioiaingles?
Jasmine: You read my mind!

Emily: Last time, we saw that the only triangleshainteger side lengths and angles that
measure a rational multiple of 360° are the eqeritdtones with integer side lengths.

Jasmine: Right.

Emily: I'm eager to explore what triangles existvié weaken our conditions on either the side
lengths or the angle measures.

Jasmine: Same here. What do you say we lookitorgies with integer side lengths, but only
two angles that are a rational multiple of 360°?

Emily: Okay!

Jasmine: From last time, we know that if all thdediengths of a triangle are integers, then the
cosines of all of the angles must be rational nusibe

Emily: Yes, that follows from the law of cosines.

Jasmine: And we know exactly which “nice” anglesdaational cosines, thanks to the
Chebyshev polynomials and the rational root theorélp to multiples of 360°, they are the
angles which have degree measures 0, 60, 90, 820240, 270, and 300.

Emily: Since the angles in a triangle add up to°18@& can ignore angles that are 180° or larger;
the 0° angle can'’t be part of a triangle, so teavés only the 60°, 90°, and 120° angles to play
with.

Jasmine: If two of the angles measure 60°, thethihg angle also measures ...

Emily: Hold on! | feel so silly!

Jasmine: What?

Emily: The angles of a triangle add up to 180°!

Jasmine: Yeah?

Emily: That means that if two of the angles areoratl multiples of 360, so will be the third!

Jasmine: Oh yeah! That puts us right back in iib@tson we studied last time. There’s no such
thing as a triangle that has exactly two anglesrtteasure a rational multiple of 360°.

18



Emily: Maybe there are interesting nice trianglethwnteger side lengths but only one angle
that measures a rational multiple of 360°.

Jasmine: Let’s find out!
Emily: The one nice angle must measure 60°, 90126Ff.

Jasmlne. If the SpeC|a| angle |S 900, theﬂ We’CQ(III(]g fOI’ For more on Pythagorean tr|p|eS,

Pythagorean triples. see pages 22-24 of Volume 8,
Number 3 of thisBulletin.

Emily: Ah, that's right. That's been well studied.

Jasmine: Let’s concentrate on the other cases steming with triangles with a 60° angle.
Emily: Okay. Here’s a figure.

Emily draws the figure at right.

Jasmine: We ward, b, andc to be positive integers. From the

law of cosines, we know thet = a? + b? — 2ab cos 60°. Since

cos 60° = 1/2, this simplifies & = a2 + b?> —ab.

Emily: This is almost like looking for Pythagoretuiples. For Pythagorean triples, we'd be
looking for positive integer solutions to the edoat? = a? + b2,

Jasmine: It's so similar that | bet we can solvemoblem by tweaking one of the methods for
finding the Pythagorean triples.

Emily: Do you remember how to find Pythagoreanlés@

Jasmine: | remember one way. First, one dividestjuatiore? = a? + b by ¢ to obtain the
equation 1 =d/c)? + (b/c)>. This shows that every Pythagorean triple islsintd a right triangle
with rational leg lengths and hypotenuse 1. Sdoek for points with rational coordinates on
the unit circle® +y? = 1.

Emily: How are those found?

Jasmine: One way is to consider lines through tetig-1, 0). Non-vertical lines through (-1, 0)
intersect the unit circlg? + y? = 1 twice, once at (-1, 0) and once at some fpird). If p andq
are rational numbers, then the slope of the lireerational number. And, as it turns out, if the
slope of the line is a rational numbprandq will be rational numbers as well. So in this way,
rational points onx? +y? = 1 are parametrized by rational numbardor each sucim, we look

at where the line through (-1, 0) with slapéntersectse +y? = 1.

Emily: | see. Let’s try to modify the argumentdolve our problem.
Jasmine: Okay. First, we divide the equatibs a? + b> —ab by ¢ and obtain the equation

1 = @lc)? + (blc)? — @/c)(blc).
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Learn by Doing

Finite Fields
by Girls’ Angle Staff

In last issue’s interview, Judy Walker suggestedesexercises that use finite fields.
Anna, of Anna’s Math Journal, took up Judy’s suggesand continues her exploration in this
issue. This installment of Learn by Doing is irded for readers who are unfamiliar with finite
fields but would like to follow Anna’s investigaticand learn enough about finite fields to start
doing some explorations on their own.

Typically, finite fields are introduced only aft@troducing Galois theory because Galois
theory provides powerful tools that can be usednierstand their structure. Here, we’ll attempt
a different approach that requires little by waydrequisites. For the last problems, it will
help if you know about polynomials, the Euclideégoathm, and Bézout’s theorem.

First, what is a field? The rational numbers, i numbers, and the complex numbers
are all examples of a field. All three sets areigoed with operations of addition and
multiplication, and both operations enjoy many ukpfoperties. If we isolate some of the
common properties of these three examples, werotitaidefinition of a field.

So afield is a set that has two binary operatioabed addition and multiplication,
which are denoted by “+” and juxtaposition, resp@ty. For any elements b, andc in the
field, we must have:

0. Closure of addition and multiplicatioa:+ b andab are in the field.

1. The commutative laws of addition and multiplioata + b =b + a andab = ba.

2. The associative laws of addition and multipimat (@ +b) +c=a+ (b + ¢) and
(ab)c = a(bo).

3. The distributive lawa(b + ¢) =ab + ac.

4. Existence of an additive identity: there exatselement, denoted 0 and called “zero,”
suchthah+ 0 =0 +a=a.

5. Existence of additive inverses: for anin the field, there exists an element, denoted
-a, such thaa + (-a) = (-a) +a=0.

6. Existence of a multiplicative identity: therastg an element different from 0, denoted
1 and called “one,” such that = la =a.

7. Existence of multiplicative inverses for nonzetements: for ang 0 in the field,
there exists an element, denogedor 1/, such thasa® =ata= 1.

These properties are collectively referred to as'tield axioms.”
Problem 1 LetQ the set of rational numbers together with the ugparations of addition and
multiplication. Check that all field axioms ardished. Convince yourself that the set of real

numbers and the set of complex numbers with thelasldition and multiplication are fields.

Problem 2 LetZ the set of integers together with the usual opmratof addition and
multiplication. Z is not a field. Which field axioms fail?

Problem 3. Notice thaZ I Q. Show tha® is the smallest field that contaiAsn the sense
thatifZ1 FI Q andF is a field, therF = Q.
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Problem 4. LetQ[+/2] be the set of real numbers of the foam b~/2 , wherea andb are

rational numbers (with the usual operations of tldiand multiplication). Show thé;[x/i] is
a field.

Problem 5. Use the field axioms to show that in any fietdyltiplication by O always produces
0. That is, for alk in the field, we must hawd® = 0. (Hint: Use the distributive law and thetfac
that0+0=0.)

Problem 6. Show that for any field elemeatwe have (-19 = -a. (Note: If your reaction to this
and the previous question is that there’s nothingrove, it probably means that you are
recognizing these facts from your experience withtiplication of real numbers. The point of
problems 5 and 6 is that these facts are trueyrfialdl because they follow from the field
axioms. There is no field axiom that explicithatgs that you can get the additive inversa oy
multiplying it with the additive inverse of 1, sbi$ something that requires proof. That is, show
that (-1p = -ais a logical implication of the field axioms.)

Problem 7. In fact, show that for arggyandb in a field, (a)b = -(ab).

In a field, we generally writa —b for a + (-b). We also use standard symbols for integers as
shorthand for elements in a field obtained by régmbaddition of 1 or -1. (E.g.2is1+ 1 and -3
is-1-1-1)

A finite field is a field that has a finite number of elements.

Problem 8 Perhaps the most sensible first question tahskit finite fields is, “Do they exist?”
To answer, one might begin by trying to constrbetdmallest possible one. Because 0 and 1
must be distinct, there is no field with 1 elemeBut perhaps there is a field with just the 2
elements 0 and 1. LEék = {0, 1}. Define an addition and multiplicatiom &> that makes it a
finite field. To assist, here are addition and tiplication tables already filled in with entries
that are dictated explicitly by the field axiom@lere, “x” stands for multiplication.)

+|0|1 x|0|1
0101 0 0
1|1 1101

Be sure to check that all the field axioms hold.

Note that there is only one way to complete thetemtdand multiplication tables to create a
field with 2 elements.

Problem 9. Make addition and multiplication tables for eldi with the elements 0, 1, aad
Problem 10. Make addition and multiplication tables for eldi with the elements 0, fi, andg.

The last two problems probably required a gooabitork to do completely. It would be rather
tedious if all finite fields had to be constructagexplicitly showing their addition and
multiplication tables and then checking that adl tield axioms are satisfied. So let’s explore
other, more efficient ways to build finite fields.
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Problem 11 (Modular arithmetic.) The set of integ&rsith standard addition and
multiplication satisfies most of the field axiom#@/e will exploit this by modifyingZ to create a
number of finite fields. If you are familiar withodular arithmetic, you’ll recognize it here.

A. Fix a positive integeN. Define an equivalence relation ~&rby declaring thaa ~ b if and
only if N dividesb —a. (Show that this is an equivalence relation.} Z&Z denote the set of
equivalence classes fhwith respect to ~. lais inZ, denote bya the equivalence class af
(For a brief intro to equivalence relations, segepd0 of Volume 1, Number 3 of tHulletin.)

B. Leta, b, ¢, andd be inZ. Suppose tha ~b andc ~d. Show thaa +c~b +d andac~ bd.

Part B shows that it is sensible to define bingrgrations of addition and multiplication by the
formulasa+b = a+bandab = ab.

C. Show that so defined, addition and multiplicatsatisfy the field axioms if and onlyNfis a
prime number. (As you do this, note how commuiigti@nd associativity follow from
commutativity and associativity of integer additemd multiplication, which you can assume.)
Which field axioms fail whem is composite?

Thus, for any prime numbey there exists a finite field with elements.
Problem 12 CompareZ/4Z to the field you constructed in Problem 10.
Let E andF be fields. We say that they asemorphic if there exists a bijective mdpE F
such thaf(0) = 0,f(1) = 1 (note that in these equations, the 0 aod the left side of the equal
sign are the additive identity and multiplicatigentity inE, whereas on the right side of the
equal sign, they are the additive identity and plitative identity inF), and, for alix andy in
E, we havd(x +y) =f(x) + f(y) andf(xy) = f(xX)f(y).
Problem 13. LetF be a finite field. Show th&t contains a field isomorphic #&/pZ for some
prime numbep. (Hint: Consider the sequence 1,1+ 1,1 + 1+ 1 BecausE is finite, this
sequence cannot produce new elemenksfofever.)
Let F be any field. Denote by[x] the polynomials inx with coefficients inF. That is,

F[X] ={ co+cx+cx+...+cexd |dis a nonnegative integer andin F forall0 k d}.

Define addition and multiplication iR[X] in the usual way. That is,d + aix + . .. +ax and
bo + bix + . . . +bex® are inF[x], then

(a0 +aix+ ... +agxd) + (Do +bax + . . . +hex®) = (B0 + o) + (@1 + b)x + (A2 + )X + . . .
and
(a0 +aix + . . . +aax¥)(bo + bax + . . . +bex®) = agho + (aghs + arbo)x + (aobz + awbs + agbo)x® + . . .
We are going to mimic the constructionZNZ replacingZ with F[x] and the modulusl with a

polynomialp(x). (Before reading further, can you guess whatiam will be needed op(x) to
obtain a field?)
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Problem 14 A. Fix a polynomiap(x) in F[x]. Define an Let f(x) andg(x) be polynomials
equivalence relation oR[X] by declaring thai(x) is equivalent in F[x]. We say thaf(x) is

to b(x) if and only ifb(x) —a(x) is divisible byp(x). (Show that divisible byg(x) (or,g(X) divides
this is an equivalence relation.) LE]/(p(x)) denote the set of N f(X) if there exists a
equivalence classes Fijx] with respect to this equivalence f&)'y:?lg;gl(%x) In F[ such that
relation. Ifa(x) is inF[x], denote bya(X) the equivalence class

of a(x).

B. Leta(x), b(x), c(x), andd(x) be inF[x]. Suppose tha(x) is equivalent tdo(x) andc(X) is
equivalent tad(x). Show that(x) + c(x) is equivalent td(x) + d(x) anda(x)c(x) is equivalent to
b(x)d(x).

Part B shows that we can define an addition andipfichtion in F[x]/(p(X)) by using the

formulasa(X)+b(Y =g Y+ § X anda(x) b(X =& ¥ § X.

C. Show that so defined, addition and multiplicatsatisfy all the field axioms except that
nonzero polynomials do not always have a multipieainverse.

D. Show that every element Bfx]/(p(X)) can be expressed agx) wherea(x) is a polynomial

of degree less than the degre@@). (Hint: Use polynomial division and look at the
remainder.)

A polynomialp(x) is said to bérreducible if and only ifp(x) cannot be written as a product of
two polynomials each of degree 1 or greater.

E. Show that all field axioms are satisfiedx]/(p(x)) if p(x) is irreducible. (Suggestion: Adapt
the Euclidean algorithm for finding the greatestnooon factor of two integers to polynomials
and use it to prove a polynomial version of Bézetiteorem. For more on Bézout’s theorem,
see p. 16 of Volume 6, Number 5 of tBislletin.)

Problem 15. Letp(X) =x?+x+ 1 inFz[X]. Show thap(x) is irreducible. Show that[x]/(p(x))
is a finite field with 4 elements. (Also, takeamk at Anna’s Math Journal in the previous issue
of thisBulletin.)

Problem 16. Can you construct a field with 32 elements?n{Hrind an irreducible polynomial
of degree 5 iF2[X]. Also, take a look at Anna’s Math Journal irstigsue of th&ulletin.)

Problem 17. Construct a field with 9 elements.

Problem 18 Prove that all finite fields hay® elements for some prime numigeand positive
integern.

Problem 19. Prove that for any prime numiggand positive integer, there exists a field with
p" elements.

Problem 20. Prove that any two finite fields of the sameesare isomorphic.

Remember, subscribers are always welcome to emaiith any thoughts and questions!
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Notes from the Club

These notes cover some of what happened at GinigleAmeets. In these notes, we include
some of the things that you can try or think ataiudtome or with friends. We also include some
highlights and some elaborations on meet matetiess than 5% of what happens at the club is
revealed here.

Session 17 - Meet 1 Mentors: Bridget Bassi, Karia Dibert, Anna Ellison, Alexaadr
September 17, 2015 Fehnel, Jennifer Matthews, Wangui Mbuguiro, Debbie
Seidell, Sara Sussman, Isabel Vogt, Jane Wang jHead

Permutohedrons can be good stepping stones ighehdimensional thinking. If you
have students who are comfortable with equationstfaight lines and planes, first challenge
them to describe in detail the 2-dimensional peainetiron, which is the convex hull of the 6
points obtained by permuting the coordinates o2(B). Next, ask them to describe in detail the
3-dimensional permutohedron, which is the convdkdfuthe 24 points obtained by permuting
the coordinates of (1, 2, 3, 4). And when theywevided a good description of that, move on to
the 4-dimensional permutohedron, which is the cariugl of the 120 points obtained by
permuting the coordinates of (1, 2, 3, 4, 5).

In general, th@-dimensional permutohedron is the convex hull ef th+ 1)! points
obtained by permuting the coordinates of (1, 2,.,33, n + 1) in Euclideanr(+ 1)-dimensional
space. Challenge students to find, for dadimensional face of the permutohedron, linear
equations whose solution set intersects the petmedton in that face.

Session 17 - Meet 2 Mentors: Bridget Bassi, Karia Dibert, Anna Ellison,
September 24, 2015 Neslly Estrada, Debbie Seidell, Sara Sussman,
Isabel Vogt, Jane Wang (Head)

Spirographs became the launch point of at leasettifferent mathematical journeys.
Some members began thinking about stars that césrined by connecting each dot in a
circular arrangement aof dots to the ddk over in the clockwise direction, for some fixied
Other members investigated the geometric effediftdrent gear ratios. And another group of
members began to work out an algorithm for findimg center of a circle. That is, how can you
find the center of a circle if you're given a cealithout its center marked?

The first journey (concerning-pointed stars) is equivalent to understanding the
solubility of linear equations in one variable mtn, an extremely important topic in algebra
and number theory. For more on such stars, cheicthe series Star Tips in tHlletin,

Volume 8, Numbers 1-4.

The third journey led members to make the followdogjecture: If equally spaced
parallel line segments are drawn all the way adtosg$ace of a circle, including as many lines
as will fit, then the center of the circle will lan or between the two that are longest. Can you
prove or disprove this conjecture?

Session 17 - Meet 3 Mentors: Bridget Bassi, Karia Dibert, Anna Ellison,
October 1, 2015 Neslly Estrada, Jennifer Matthews, Debbie Seidell,
Isabel Vogt, Jane Wang (Head)
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Function madness erupted in a game that pittedd¢ams against each other. Each team
invented a function (from the set of real numberggelf) for the other team to try to figure out.
To figure out the functions, a team could ask fer dutput of the function on any input.

Session 17 - Meet 4 Mentors: Bridget Bassi, Karia Dibert, Neslly Estrada, Jeanif
October 8, 2015 Matthews, Debbie Seidell, Sara Sussman, Anuhya
Vajapeyajula, Isabel Vogt, Jane Wang (Head), SilamyV

Many problem solving efforts at this meet sharedgportant common theme: finding
the simplest case that is not yet understood.ekample, consider the problem of determining
the number of 5-dimensional faces of a 6-dimensipaanutohedron. We recognize that this
guestion is an instance of the general questiany“many  — 1)-dimensional faces does tire
dimensional permutohedron have?” If we are stinggb answer the original question, then
there is a great deal of wisdom in putting asiaedhginal question and replacing it with the
case whera = 1. When the& = 1 case is understood, then proceed to the d¢ase 8, and so
on. It often happens that working systematicaibyrf the simplest case leads to more rapid
understanding of the general case than stubbotiokirgg to an attempt to resolve a more
advanced case before the simpler cases have baenexl. Another advantage is that patterns
are easier to detect in data collected systemiticther than haphazardly.

Session 17 - Meet 5 Mentors: Bridget Bassi, Karia Dibert, Anna Ellison, NesllgtEada,
October 15, 2015 Jennifer Matthews, Debbie Seidell, Jane Wang (Head)

Some members built models of polyhedra using steawisstring. Others explored
criteria for when a shape can be tiled with dominos

Session 17 - Meet 6 Mentors: Bridget Bassi, Anna Ellison, Jennifer Matthews,
October 22, 2015 Debbie Seidell, Isabel Vogt, Jane Wang (Head)

Some members worked on creating an algorithmdar to make a jam sandwich.
Another question that arose at this meet: canshroensisting of regular hexagonal cells
made of rigid edges but flexible joins flex int@aimensional shape, or will it be rigid?

Session 17 - Meet 7 Mentors: Bridget Bassi, Karia Dibert, Neslly Estrada,
October 29, 2015 Isabel Vogt, Jane Wang (Head), Anuhya Vajapeyajula

Jane opened the meet by presenting some interestthgometimes spooky estimation
and approximation problems. She discussed the\dlastimation and some techniques for
making good estimations. Good estimation involdesitifying the most important influences
and thinking in terms of orders of magnitude.

For some problems, approximation is extremely usdéfor example, the motion of a
2

simple pendulum is governed by a differential emumadf the form% +ksinx= 0, wherek is

a constant anglis a function ot. The solution to this differential equation cahbe expressed
in terms of elementary functions. However, if gedulum is only slightly perturbed will be
small, and for small values &f sinx is closely approximated by By approximating six with
x for small values, useful approximate solutions lsarmbtained to the differential equation.
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Calendar

Session 17: (all dates in 2015)

September 17 Start of the seventeenth session!
24
October 1
8
15
22
29
November 5
12
19
26 Thanksgiving - No meet
December 3 Jinger Zhao, Two Sigma
10

Session 18: (all dates in 2016)

January 28 Start of the eighteenth session!
February 4
11
18 No meet
25
March 3
10
17
24 No meet
31
April 7
14
21 No meet
28
May 5

Girls’ Angle has been hosting Math Collaboratiohsahools and libraries. Math Collaborations
are fun math events that can be adapted to a yarfigfroup sizes and skill levels. For more
information and testimonials, please visivw.girlsangle.org/page/math_collaborations.html

Girls’ Angle can offer custom math classes overitibernet for small groups on a wide range of
topics. Please inquire for pricing and possilaiti Emailgirlsangle@gmail.com
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Girls’ Angle: A Math Club for Girls

Membership Application

Note: If you plan to attend the club, you only need to fill out the ClutiEnrollment Form because all
the information here is also on that form.

Applicant’s Name: (last) (first)

Parents/Guardians:

Address (the Bulletin will be sent to this address):

Email:

Home Phone: Cell Phone:

Personal Statement (optional, but strongly encouraged!): Plelase addout your relationship to
mathematics. If you don'’t like math, what don't you like? If you love math, whavddoye? What
would you like to get out of a Girls’ Angle Membership?

The $36 rate is for US postal addresses oRly: international rates, contact us before applying.
Please check all that apply:

Enclosed is a check for $36 for a 1-year Girls’ Angle Membership.

I am making a tax free donation.

Please make check payable@®ixls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiltangle @gmail.com

A Math Club for Girls
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Girls’ Angle
Club Enrollment

Gain confidence in math! Discover how interesting and excitg math can be! Make new friends!

The club is where our in-person mentoring takes place. At the club, girlsiweckly with our mentors
and members of our Support Network. To join, please fill out and return th&@alhment form.
Girls’ Angle Members receive a significant discount on club atteceléees.

Who are the Girls’ Angle mentors? Our mentors possess a deep understanding of mathematics and
enjoy explaining math to others. The mentors get to know each member as igliéha@ind design
custom tailored projects and activities designed to help the mempenie at mathematics and develop
her thinking abilities. Because we believe learning follows nayundien there is motivation, our
mentors work hard to motivate. In order for members to see math as a liviniyecsabject, at least one
mentor is present at every meet who has proven and published original theorems

What is the Girls’ Angle Support Network? The Support Network consists of professional women
who use math in their work and are eager to show the members how and for what they ugeaoia
member of the Support Network serves as a role model for the membersheFoipety demonstrate that
many women today use math to make interesting and important contributionsetg.soci

What is Community Outreach? Girls’ Angle accepts commissions to solve math problems from
members of the community. Our members solve them. We believe that when dagrsiafiorts are
actually used in real life, the motivation to learn math increases.

Who can join? Ultimately, we hope to open membership to all women. Currently, we are openilgrima
to girls in grades 5-12. We welcorak girls (in grades 5-12) regardless of perceived mathematical
ability. There is no entrance test. Whether you love math or suffer fedmanxiety, math is worth
studying.

How do | enroll? You can enroll by filling out and returning the Club Enrollment form.

How do | pay? The cost is $20/meet for members and $30/meet for nonmembers. Members get an
additional 10% discount if they pay in advance for all 12 meets in a sessitsmaré&iwelcome to join at
any time. The program is individually focused, so the concept of “catchingttughe group” doesn’t

apply.

Where is Girls’ Angle located? Girls’ Angle is located about 12 minutes walk from Central Square on
Magazine Street in Cambridge, Massachusetts. For security reasonmagambers and their
parents/guardian will be given the exact location of the club and its ploomeer.

When are the club hours?Girls’ Angle meets Thursdays from 3:45 to 5:45. For calendar detailsepleas
visit our website atvww.girlsangle.org/page/calendar.htarlsend us email.

Can you describe what the activities at the club will be likeGirls’ Angle activities are tailored to
each girl's specific needs. We assess where each girl is matrediyatnol then design and fashion
strategies that will help her develop her mathematical abilitieeryBudy learns math differently and
what works best for one individual may not work for another. At Girls’ Angle,re@ery sensitive to
individual differences. If you would like to understand this process in maaé, gg¢ase email us!
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Are donations to Girls’ Angle tax deductible? Yes, Girls’ Angle is a 501(c)(3). As a nonprofit, we
rely on public support. Join us in the effort to improve math education! Pleaseymakdonation out to
Girls’ Angle and send to Girls’ Angle, P.O. Box 410038, Cambridge, MA 02141-0038.

Who is the Girls’ Angle director? Ken Fan is the director and founder of Girls’ Angle. He has a Ph.D.
in mathematics from MIT and was a Benjamin Peirce assistant protéseathematics at Harvard, a
member at the Institute for Advanced Study, and a National Science Foundatidoctoral fellow. In
addition, he has designed and taught math enrichment classes at BostonishMiiSeience, worked in
the mathematics educational publishing industry, and taught at HCSSiM. &eoluateered for

Science Club for Girls and worked with girls to build large modular origaajects that were displayed
at Boston Children’s Museum.

Who advises the director to ensure that Girls’ Angle realizeds goal of helping girls develop their
mathematical interests and abilities? Girls’ Angle has a stellar Board of Advisors. They are:

Connie Chow, executive director of Science ClubGats

Yaim Cooper, lecturer, Harvard University

Julia Elisenda Grigsby, assistant professor of prattics, Boston College

Kay Kirkpatrick, assistant professor of mathematigsiversity of lllinois at Urbana-Champaign

Grace Lyo, Instructional Designer, Stanford Uniitgrs

Lauren McGough, graduate student in physics, Ptamceniveresity

Mia Minnes, SEW assistant professor of mathemalti€&sSan Diego

Beth O’Sullivan, co-founder of Science Club for I&ir

Elissa Ozanne, associate professor, The Dartmaosthute

Kathy Paur, Kiva Systems

Bjorn Poonen, professor of mathematics, MIT

Gigliola Staffilani, professor of mathematics, MIT

Bianca Viray, assistant professor, University ofSMagton

Karen Willcox, professor of aeronautics and astatica, MIT

Lauren Williams, associate professor of mathemati€s Berkeley

At Girls’ Angle, mentors will be selected for their depth of understanding of mathematics as well as
their desire to help others learn math. But does it really mattethat girls be instructed by people
with such a high level understanding of mathematics2Ve believe YES, absolutely! One goal of
Girls’ Angle is to empower girls to be able to tackte/field regardless of the level of mathematics
required, including fields that involve original research. Over thaidest the mathematical universe
has grown enormously. Without guidance from people who understand a lot of math, thihask is
student will acquire a very shallow and limited view of mathematicshenghtportance of various topics
will be improperly appreciated. Also, people who have proven original theamashesstand what it is
like to work on questions for which there is no known answer and for which tlgitermot even be an
answer. Much of school mathematics (all the way through collegalves around math questions with
known answers, and most teachers have structured their teaching, whetheustnscnot, with the
knowledge of the answer in mind. At Girls’ Angle, girls will learn tetgées and techniques that apply
even when no answer is known. In this way, we hope to help girls become solvergatfuthsolved.

Also, math should not be perceived as the stuff that is done in math klaksad, math lives and thrives

today and can be found all around us. Girls’ Angle mentors can show girls how méhastreo their
daily lives and how this math can lead to abstract structures of enormenesi and beauty.
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Girls’ Angle: Club Enroliment Form

Applicant’s Name: (last) (first)

Parents/Guardians:

Address: Zip Code:

Home Phone: Cell Phone: Email:

Please fill out the information in this box.

Emergency contact name and number

Pick Up Info: For safety reasons, only the following peopl# ¢ allowed to pick up your daughter. Names:

Medical Information: Are there any medical issues or conditions, suclarsgies, that you'd like us to know about?

Photography ReleaseOccasionally, photos and videos are taken to deotiiand publicize our program in all media forms Wil
not print or use your daughter’s name in any waywe have permission to use your daughter’s imagéhese purposes?yYes No

Eligibility: Girls roughly in grades 5-12 are welcome. Althlowge will work hard to include every girl and torsmunicate with you
any issues that may arise, Girls’ Angle reservediilcretion to dismiss any girl whose actionsdigeuptive to club activities.

Personal Statement (optional, but strongly encouraged!)}Ve encourage the participant to fill out the
optional personal statement on the next page.

Permission: | give my daughter permission to participate in Girls’ Angle. | haael rand understand
everything on this registration form and the attached information sheets

Date:
(Parent/Guardian Signature)
Participant Signature:
Members: Please choose one. Nonmembers: Please choose one.
Enclosed is $216 for one session | will pay on a per meet basis at $30/meet.
(12 meets) _ )
I’'m including $36 to become a member,
| will pay on a per meet basis at $20/me and | have selected an item from the left.

| am making a tax free donation.

Please make check payable@xls’ Angle. Mail to: Girls’ Angle, P.O. Box 410038, Cambridge, MA
02141-0038. Please notify us of your application by sending engiiltangle @gmail.comAlso,
please sign and return the Liability Waiver or bring it with you to ths fireet.
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Personal Statement (optional, but strongly encouraged!)this is for the club participant only. How
would you describe your relationship to mathematics? What would you like to gdtymuir Girls’
Angle club experience? If you don'’t like math, please tell us why. If you lotle, piaase tell us what
you love about it. If you need more space, please attach another sheet.

Girls’ Angle: A Math Club for Girls
Liability Waiver

[, the undersigned parent or guardian of the walhg minor(s)

do hereby consent to my child(ren)’s participatiosirls’ Angle and do forever and irrevocably r&te Girls’
Angle and its directors, officers, employees, ageaund volunteers (collectively the “Releaseesdirfrany and
all liability, and waive any and all claims, foumy, loss or damage, including attorney’s feesany way
connected with or arising out of my child(ren)’'stg@pation in Girls’ Angle, whether or not causeg my
child(ren)’s negligence or by any act or omissiéGols’ Angle or any of the Releasees. | forevelease,
acquit, discharge and covenant to hold harmlesRéweasees from any and all causes of action antslon
account of, or in any way growing out of, direabhlyindirectly, my minor child(ren)’s participation Girls’
Angle, including all foreseeable and unforeseepblsonal injuries or property damage, further ideig all
claims or rights of action for damages which my onichild(ren) may acquire, either before or afteron she
has reached his or her majority, resulting froncamnected with his or her participation in Girls\@le. | agree
to indemnify and to hold harmless the Releasees &lbclaims (in other words, to reimburse the Reées and
to be responsible) for liability, injury, loss, dage or expense, including attorneys’ fees (inclgdire cost of
defending any claim my child might make, or thaghtibe made on my child(ren)’s behalf, that isasésl or
waived by this paragraph), in any way connectetl witarising out of my child(ren)’s participatiam the
Program.

Signature of applicant/parent: Date:

Print name of applicant/parent:

Print name(s) of child(ren) in program:
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